fltk/src/fl_vertex.cxx

326 lines
8.3 KiB
C++
Raw Normal View History

//
// "$Id$"
//
// Portable drawing routines for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2005 by Bill Spitzak and others.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems on the following page:
//
// http://www.fltk.org/str.php
//
// Portable drawing code for drawing arbitrary shapes with
// simple 2D transformations. See also fl_arc.cxx
// matt: the Quartz implementation purposly doesn't use the Quartz matrix
// operations for reasons of compatibility and maintainability
#include <config.h>
#include <FL/fl_draw.H>
#include <FL/x.H>
#include <Fl/FL.H>
#include <FL/math.h>
#include <stdlib.h>
struct matrix {double a, b, c, d, x, y;};
static matrix m = {1, 0, 0, 1, 0, 0};
static matrix stack[32];
static int sptr = 0;
void fl_push_matrix() {
if (sptr==32)
Fl::error("fl_push_matrix(): matrix stack overflow.");
else
stack[sptr++] = m;
}
void fl_pop_matrix() {
if (sptr==0)
Fl::error("fl_pop_matrix(): matrix stack underflow.");
else
m = stack[--sptr];
}
void fl_mult_matrix(double a, double b, double c, double d, double x, double y) {
matrix o;
o.a = a*m.a + b*m.c;
o.b = a*m.b + b*m.d;
o.c = c*m.a + d*m.c;
o.d = c*m.b + d*m.d;
o.x = x*m.a + y*m.c + m.x;
o.y = x*m.b + y*m.d + m.y;
m = o;
}
void fl_scale(double x,double y) {fl_mult_matrix(x,0,0,y,0,0);}
void fl_scale(double x) {fl_mult_matrix(x,0,0,x,0,0);}
void fl_translate(double x,double y) {fl_mult_matrix(1,0,0,1,x,y);}
void fl_rotate(double d) {
if (d) {
double s, c;
if (d == 0) {s = 0; c = 1;}
else if (d == 90) {s = 1; c = 0;}
else if (d == 180) {s = 0; c = -1;}
else if (d == 270 || d == -90) {s = -1; c = 0;}
else {s = sin(d*M_PI/180); c = cos(d*M_PI/180);}
fl_mult_matrix(c,-s,s,c,0,0);
}
}
// typedef what the x,y fields in a point are:
#ifdef WIN32
typedef int COORD_T;
# define XPOINT XPoint
#elif defined(__APPLE_QUARTZ__)
typedef float COORD_T;
typedef struct { float x; float y; } QPoint;
# define XPOINT QPoint
extern float fl_quartz_line_width_;
#else
typedef short COORD_T;
# define XPOINT XPoint
#endif
static XPOINT *p = (XPOINT *)0;
static int p_size;
static int n;
static int what;
enum {LINE, LOOP, POLYGON, POINT_};
void fl_begin_points() {n = 0; what = POINT_;}
void fl_begin_line() {n = 0; what = LINE;}
void fl_begin_loop() {n = 0; what = LOOP;}
void fl_begin_polygon() {n = 0; what = POLYGON;}
double fl_transform_x(double x, double y) {return x*m.a + y*m.c + m.x;}
double fl_transform_y(double x, double y) {return x*m.b + y*m.d + m.y;}
double fl_transform_dx(double x, double y) {return x*m.a + y*m.c;}
double fl_transform_dy(double x, double y) {return x*m.b + y*m.d;}
static void fl_transformed_vertex(COORD_T x, COORD_T y) {
if (!n || x != p[n-1].x || y != p[n-1].y) {
if (n >= p_size) {
p_size = p ? 2*p_size : 16;
p = (XPOINT*)realloc((void*)p, p_size*sizeof(*p));
}
p[n].x = x;
p[n].y = y;
n++;
}
}
void fl_transformed_vertex(double xf, double yf) {
#ifdef __APPLE_QUARTZ__
fl_transformed_vertex(COORD_T(xf), COORD_T(yf));
#else
fl_transformed_vertex(COORD_T(rint(xf)), COORD_T(rint(yf)));
#endif
}
void fl_vertex(double x,double y) {
fl_transformed_vertex(x*m.a + y*m.c + m.x, x*m.b + y*m.d + m.y);
}
void fl_end_points() {
#ifdef WIN32
for (int i=0; i<n; i++) SetPixel(fl_gc, p[i].x, p[i].y, fl_RGB());
#elif defined(__APPLE_QD__)
for (int i=0; i<n; i++) { MoveTo(p[i].x, p[i].y); Line(0, 0); }
#elif defined(__APPLE_QUARTZ__)
if (fl_quartz_line_width_==1.0f) CGContextSetShouldAntialias(fl_gc, false);
for (int i=0; i<n; i++) {
CGContextMoveToPoint(fl_gc, p[i].x, p[i].y);
CGContextAddLineToPoint(fl_gc, p[i].x, p[i].y);
CGContextStrokePath(fl_gc);
}
if (fl_quartz_line_width_==1.0f) CGContextSetShouldAntialias(fl_gc, false);
#else
if (n>1) XDrawPoints(fl_display, fl_window, fl_gc, p, n, 0);
#endif
}
void fl_end_line() {
if (n < 2) {
fl_end_points();
return;
}
#ifdef WIN32
if (n>1) Polyline(fl_gc, p, n);
#elif defined(__APPLE_QD__)
if (n<=1) return;
MoveTo(p[0].x, p[0].y);
for (int i=1; i<n; i++) LineTo(p[i].x, p[i].y);
#elif defined(__APPLE_QUARTZ__)
if (n<=1) return;
CGContextMoveToPoint(fl_gc, p[0].x, p[0].y);
for (int i=1; i<n; i++)
CGContextAddLineToPoint(fl_gc, p[i].x, p[i].y);
CGContextStrokePath(fl_gc);
#else
if (n>1) XDrawLines(fl_display, fl_window, fl_gc, p, n, 0);
#endif
}
static void fixloop() { // remove equal points from closed path
while (n>2 && p[n-1].x == p[0].x && p[n-1].y == p[0].y) n--;
}
void fl_end_loop() {
fixloop();
if (n>2) fl_transformed_vertex((COORD_T)p[0].x, (COORD_T)p[0].y);
fl_end_line();
}
void fl_end_polygon() {
fixloop();
if (n < 3) {
fl_end_line();
return;
}
#ifdef WIN32
if (n>2) {
SelectObject(fl_gc, fl_brush());
Polygon(fl_gc, p, n);
}
#elif defined(__APPLE_QD__)
if (n<=1) return;
PolyHandle ph = OpenPoly();
MoveTo(p[0].x, p[0].y);
for (int i=1; i<n; i++) LineTo(p[i].x, p[i].y);
ClosePoly();
PaintPoly(ph);
KillPoly(ph);
#elif defined(__APPLE_QUARTZ__)
if (n<=1) return;
CGContextMoveToPoint(fl_gc, p[0].x, p[0].y);
for (int i=1; i<n; i++)
CGContextAddLineToPoint(fl_gc, p[i].x, p[i].y);
CGContextClosePath(fl_gc);
CGContextFillPath(fl_gc);
#else
if (n>2) XFillPolygon(fl_display, fl_window, fl_gc, p, n, Convex, 0);
#endif
}
static int gap;
#ifdef WIN32
static int counts[20];
static int numcount;
#endif
void fl_begin_complex_polygon() {
fl_begin_polygon();
gap = 0;
#ifdef WIN32
numcount = 0;
#endif
}
void fl_gap() {
while (n>gap+2 && p[n-1].x == p[gap].x && p[n-1].y == p[gap].y) n--;
if (n > gap+2) {
fl_transformed_vertex((COORD_T)p[gap].x, (COORD_T)p[gap].y);
#ifdef WIN32
counts[numcount++] = n-gap;
#endif
gap = n;
} else {
n = gap;
}
}
void fl_end_complex_polygon() {
fl_gap();
if (n < 3) {
fl_end_line();
return;
}
#ifdef WIN32
if (n>2) {
SelectObject(fl_gc, fl_brush());
PolyPolygon(fl_gc, p, counts, numcount);
}
#elif defined(__APPLE_QD__)
if (n<=1) return;
PolyHandle ph = OpenPoly();
MoveTo(p[0].x, p[0].y);
for (int i=1; i<n; i++) LineTo(p[i].x, p[i].y);
ClosePoly();
PaintPoly(ph);
KillPoly(ph);
#elif defined(__APPLE_QUARTZ__)
if (n<=1) return;
CGContextMoveToPoint(fl_gc, p[0].x, p[0].y);
for (int i=1; i<n; i++)
CGContextAddLineToPoint(fl_gc, p[i].x, p[i].y);
CGContextClosePath(fl_gc);
CGContextFillPath(fl_gc);
#else
if (n>2) XFillPolygon(fl_display, fl_window, fl_gc, p, n, 0, 0);
#endif
}
// shortcut the closed circles so they use XDrawArc:
// warning: these do not draw rotated ellipses correctly!
// See fl_arc.c for portable version.
void fl_circle(double x, double y,double r) {
double xt = fl_transform_x(x,y);
double yt = fl_transform_y(x,y);
double rx = r * (m.c ? sqrt(m.a*m.a+m.c*m.c) : fabs(m.a));
double ry = r * (m.b ? sqrt(m.b*m.b+m.d*m.d) : fabs(m.d));
int llx = (int)rint(xt-rx);
int w = (int)rint(xt+rx)-llx;
int lly = (int)rint(yt-ry);
int h = (int)rint(yt+ry)-lly;
#ifdef WIN32
if (what==POLYGON) {
SelectObject(fl_gc, fl_brush());
Pie(fl_gc, llx, lly, llx+w, lly+h, 0,0, 0,0);
} else
Arc(fl_gc, llx, lly, llx+w, lly+h, 0,0, 0,0);
#elif defined(__APPLE_QD__)
Rect rt; rt.left=llx; rt.right=llx+w; rt.top=lly; rt.bottom=lly+h;
(what == POLYGON ? PaintOval : FrameOval)(&rt);
#elif defined(__APPLE_QUARTZ__)
// Quartz warning : circle won't scale to current matrix!
CGContextAddArc(fl_gc, xt, yt, (w+h)*0.25f, 0, 2.0f*M_PI, 1);
(what == POLYGON ? CGContextFillPath : CGContextStrokePath)(fl_gc);
#else
(what == POLYGON ? XFillArc : XDrawArc)
(fl_display, fl_window, fl_gc, llx, lly, w, h, 0, 360*64);
#endif
}
//
// End of "$Id$".
//