// // "$Id$" // // Portable drawing routines for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2005 by Bill Spitzak and others. // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Library General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Library General Public License for more details. // // You should have received a copy of the GNU Library General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 // USA. // // Please report all bugs and problems on the following page: // // http://www.fltk.org/str.php // // Portable drawing code for drawing arbitrary shapes with // simple 2D transformations. See also fl_arc.cxx // matt: the Quartz implementation purposly doesn't use the Quartz matrix // operations for reasons of compatibility and maintainability #include #include #include #include #include #include struct matrix {double a, b, c, d, x, y;}; static matrix m = {1, 0, 0, 1, 0, 0}; static matrix stack[32]; static int sptr = 0; void fl_push_matrix() { if (sptr==32) Fl::error("fl_push_matrix(): matrix stack overflow."); else stack[sptr++] = m; } void fl_pop_matrix() { if (sptr==0) Fl::error("fl_pop_matrix(): matrix stack underflow."); else m = stack[--sptr]; } void fl_mult_matrix(double a, double b, double c, double d, double x, double y) { matrix o; o.a = a*m.a + b*m.c; o.b = a*m.b + b*m.d; o.c = c*m.a + d*m.c; o.d = c*m.b + d*m.d; o.x = x*m.a + y*m.c + m.x; o.y = x*m.b + y*m.d + m.y; m = o; } void fl_scale(double x,double y) {fl_mult_matrix(x,0,0,y,0,0);} void fl_scale(double x) {fl_mult_matrix(x,0,0,x,0,0);} void fl_translate(double x,double y) {fl_mult_matrix(1,0,0,1,x,y);} void fl_rotate(double d) { if (d) { double s, c; if (d == 0) {s = 0; c = 1;} else if (d == 90) {s = 1; c = 0;} else if (d == 180) {s = 0; c = -1;} else if (d == 270 || d == -90) {s = -1; c = 0;} else {s = sin(d*M_PI/180); c = cos(d*M_PI/180);} fl_mult_matrix(c,-s,s,c,0,0); } } // typedef what the x,y fields in a point are: #ifdef WIN32 typedef int COORD_T; # define XPOINT XPoint #elif defined(__APPLE_QUARTZ__) typedef float COORD_T; typedef struct { float x; float y; } QPoint; # define XPOINT QPoint extern float fl_quartz_line_width_; #else typedef short COORD_T; # define XPOINT XPoint #endif static XPOINT *p = (XPOINT *)0; static int p_size; static int n; static int what; enum {LINE, LOOP, POLYGON, POINT_}; void fl_begin_points() {n = 0; what = POINT_;} void fl_begin_line() {n = 0; what = LINE;} void fl_begin_loop() {n = 0; what = LOOP;} void fl_begin_polygon() {n = 0; what = POLYGON;} double fl_transform_x(double x, double y) {return x*m.a + y*m.c + m.x;} double fl_transform_y(double x, double y) {return x*m.b + y*m.d + m.y;} double fl_transform_dx(double x, double y) {return x*m.a + y*m.c;} double fl_transform_dy(double x, double y) {return x*m.b + y*m.d;} static void fl_transformed_vertex(COORD_T x, COORD_T y) { if (!n || x != p[n-1].x || y != p[n-1].y) { if (n >= p_size) { p_size = p ? 2*p_size : 16; p = (XPOINT*)realloc((void*)p, p_size*sizeof(*p)); } p[n].x = x; p[n].y = y; n++; } } void fl_transformed_vertex(double xf, double yf) { #ifdef __APPLE_QUARTZ__ fl_transformed_vertex(COORD_T(xf), COORD_T(yf)); #else fl_transformed_vertex(COORD_T(rint(xf)), COORD_T(rint(yf))); #endif } void fl_vertex(double x,double y) { fl_transformed_vertex(x*m.a + y*m.c + m.x, x*m.b + y*m.d + m.y); } void fl_end_points() { #ifdef WIN32 for (int i=0; i1) XDrawPoints(fl_display, fl_window, fl_gc, p, n, 0); #endif } void fl_end_line() { if (n < 2) { fl_end_points(); return; } #ifdef WIN32 if (n>1) Polyline(fl_gc, p, n); #elif defined(__APPLE_QD__) if (n<=1) return; MoveTo(p[0].x, p[0].y); for (int i=1; i1) XDrawLines(fl_display, fl_window, fl_gc, p, n, 0); #endif } static void fixloop() { // remove equal points from closed path while (n>2 && p[n-1].x == p[0].x && p[n-1].y == p[0].y) n--; } void fl_end_loop() { fixloop(); if (n>2) fl_transformed_vertex((COORD_T)p[0].x, (COORD_T)p[0].y); fl_end_line(); } void fl_end_polygon() { fixloop(); if (n < 3) { fl_end_line(); return; } #ifdef WIN32 if (n>2) { SelectObject(fl_gc, fl_brush()); Polygon(fl_gc, p, n); } #elif defined(__APPLE_QD__) if (n<=1) return; PolyHandle ph = OpenPoly(); MoveTo(p[0].x, p[0].y); for (int i=1; i2) XFillPolygon(fl_display, fl_window, fl_gc, p, n, Convex, 0); #endif } static int gap; #ifdef WIN32 static int counts[20]; static int numcount; #endif void fl_begin_complex_polygon() { fl_begin_polygon(); gap = 0; #ifdef WIN32 numcount = 0; #endif } void fl_gap() { while (n>gap+2 && p[n-1].x == p[gap].x && p[n-1].y == p[gap].y) n--; if (n > gap+2) { fl_transformed_vertex((COORD_T)p[gap].x, (COORD_T)p[gap].y); #ifdef WIN32 counts[numcount++] = n-gap; #endif gap = n; } else { n = gap; } } void fl_end_complex_polygon() { fl_gap(); if (n < 3) { fl_end_line(); return; } #ifdef WIN32 if (n>2) { SelectObject(fl_gc, fl_brush()); PolyPolygon(fl_gc, p, counts, numcount); } #elif defined(__APPLE_QD__) if (n<=1) return; PolyHandle ph = OpenPoly(); MoveTo(p[0].x, p[0].y); for (int i=1; i2) XFillPolygon(fl_display, fl_window, fl_gc, p, n, 0, 0); #endif } // shortcut the closed circles so they use XDrawArc: // warning: these do not draw rotated ellipses correctly! // See fl_arc.c for portable version. void fl_circle(double x, double y,double r) { double xt = fl_transform_x(x,y); double yt = fl_transform_y(x,y); double rx = r * (m.c ? sqrt(m.a*m.a+m.c*m.c) : fabs(m.a)); double ry = r * (m.b ? sqrt(m.b*m.b+m.d*m.d) : fabs(m.d)); int llx = (int)rint(xt-rx); int w = (int)rint(xt+rx)-llx; int lly = (int)rint(yt-ry); int h = (int)rint(yt+ry)-lly; #ifdef WIN32 if (what==POLYGON) { SelectObject(fl_gc, fl_brush()); Pie(fl_gc, llx, lly, llx+w, lly+h, 0,0, 0,0); } else Arc(fl_gc, llx, lly, llx+w, lly+h, 0,0, 0,0); #elif defined(__APPLE_QD__) Rect rt; rt.left=llx; rt.right=llx+w; rt.top=lly; rt.bottom=lly+h; (what == POLYGON ? PaintOval : FrameOval)(&rt); #elif defined(__APPLE_QUARTZ__) // Quartz warning : circle won't scale to current matrix! CGContextAddArc(fl_gc, xt, yt, (w+h)*0.25f, 0, 2.0f*M_PI, 1); (what == POLYGON ? CGContextFillPath : CGContextStrokePath)(fl_gc); #else (what == POLYGON ? XFillArc : XDrawArc) (fl_display, fl_window, fl_gc, llx, lly, w, h, 0, 360*64); #endif } // // End of "$Id$". //