Bochs/bochs/cpu/bit16.cc

363 lines
9.4 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
2009-01-16 21:18:59 +03:00
// $Id: bit16.cc,v 1.16 2009-01-16 18:18:58 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
2009-01-16 21:18:59 +03:00
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_CPU_LEVEL >= 3
2008-08-10 23:34:28 +04:00
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSF_GwEwR(bxInstruction_c *i)
{
2008-08-10 23:34:28 +04:00
Bit16u op2_16 = BX_READ_16BIT_REG(i->rm());
if (op2_16 == 0) {
assert_ZF(); /* op1_16 undefined */
}
2008-07-13 14:44:34 +04:00
else {
2008-08-10 23:34:28 +04:00
Bit16u op1_16 = 0;
2008-07-13 14:44:34 +04:00
while ((op2_16 & 0x01) == 0) {
op1_16++;
op2_16 >>= 1;
}
2008-07-13 14:44:34 +04:00
SET_FLAGS_OSZAPC_LOGIC_16(op1_16);
clear_ZF();
2008-07-13 14:44:34 +04:00
/* now write result back to destination */
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
}
}
2008-08-10 23:34:28 +04:00
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BSR_GwEwR(bxInstruction_c *i)
{
2008-08-10 23:34:28 +04:00
Bit16u op2_16 = BX_READ_16BIT_REG(i->rm());
if (op2_16 == 0) {
assert_ZF(); /* op1_16 undefined */
}
2008-07-13 14:44:34 +04:00
else {
2008-08-10 23:34:28 +04:00
Bit16u op1_16 = 15;
2008-07-13 14:44:34 +04:00
while ((op2_16 & 0x8000) == 0) {
op1_16--;
op2_16 <<= 1;
}
2008-07-13 14:44:34 +04:00
SET_FLAGS_OSZAPC_LOGIC_16(op1_16);
clear_ZF();
2008-07-13 14:44:34 +04:00
/* now write result back to destination */
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
}
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EwGwM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit16u op1_16, op2_16, index;
Bit32s displacement32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_16 = BX_READ_16BIT_REG(i->nnn());
index = op2_16 & 0x0f;
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
op1_addr = eaddr + 2 * displacement32;
if (! i->as32L())
op1_addr = (Bit16u) op1_addr;
#if BX_SUPPORT_X86_64
else if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
#endif
/* pointer, segment address pair */
op1_16 = read_virtual_word(i->seg(), op1_addr);
set_CF((op1_16 >> index) & 0x01);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EwGwR(bxInstruction_c *i)
{
Bit16u op1_16, op2_16;
op1_16 = BX_READ_16BIT_REG(i->rm());
op2_16 = BX_READ_16BIT_REG(i->nnn());
op2_16 &= 0x0f;
set_CF((op1_16 >> op2_16) & 0x01);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EwGwM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit16u op1_16, op2_16, index;
Bit32s displacement32;
bx_bool bit_i;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_16 = BX_READ_16BIT_REG(i->nnn());
index = op2_16 & 0x0f;
displacement32 = ((Bit16s) (op2_16 & 0xfff0)) / 16;
op1_addr = eaddr + 2 * displacement32;
if (! i->as32L())
op1_addr = (Bit16u) op1_addr;
#if BX_SUPPORT_X86_64
else if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
#endif
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), op1_addr);
bit_i = (op1_16 >> index) & 0x01;
op1_16 |= (((Bit16u) 1) << index);
write_RMW_virtual_word(op1_16);
set_CF(bit_i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EwGwR(bxInstruction_c *i)
{
Bit16u op1_16, op2_16;
op1_16 = BX_READ_16BIT_REG(i->rm());
op2_16 = BX_READ_16BIT_REG(i->nnn());
op2_16 &= 0x0f;
set_CF((op1_16 >> op2_16) & 0x01);
op1_16 |= (((Bit16u) 1) << op2_16);
/* now write result back to the destination */
BX_WRITE_16BIT_REG(i->rm(), op1_16);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EwGwM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit16u op1_16, op2_16, index;
Bit32s displacement32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_16 = BX_READ_16BIT_REG(i->nnn());
index = op2_16 & 0x0f;
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
op1_addr = eaddr + 2 * displacement32;
if (! i->as32L())
op1_addr = (Bit16u) op1_addr;
#if BX_SUPPORT_X86_64
else if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
#endif
/* pointer, segment address pair */
op1_16 = read_RMW_virtual_word(i->seg(), op1_addr);
bx_bool temp_cf = (op1_16 >> index) & 0x01;
op1_16 &= ~(((Bit16u) 1) << index);
/* now write back to destination */
write_RMW_virtual_word(op1_16);
set_CF(temp_cf);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EwGwR(bxInstruction_c *i)
{
Bit16u op1_16, op2_16;
op1_16 = BX_READ_16BIT_REG(i->rm());
op2_16 = BX_READ_16BIT_REG(i->nnn());
op2_16 &= 0x0f;
set_CF((op1_16 >> op2_16) & 0x01);
op1_16 &= ~(((Bit16u) 1) << op2_16);
/* now write result back to the destination */
BX_WRITE_16BIT_REG(i->rm(), op1_16);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EwGwM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit16u op1_16, op2_16, index_16;
Bit16s displacement16;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_16 = BX_READ_16BIT_REG(i->nnn());
index_16 = op2_16 & 0x0f;
displacement16 = ((Bit16s) (op2_16 & 0xfff0)) / 16;
op1_addr = eaddr + 2 * displacement16;
if (! i->as32L())
op1_addr = (Bit16u) op1_addr;
#if BX_SUPPORT_X86_64
else if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
#endif
op1_16 = read_RMW_virtual_word(i->seg(), op1_addr);
bx_bool temp_CF = (op1_16 >> index_16) & 0x01;
op1_16 ^= (((Bit16u) 1) << index_16); /* toggle bit */
write_RMW_virtual_word(op1_16);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EwGwR(bxInstruction_c *i)
{
Bit16u op1_16, op2_16;
op1_16 = BX_READ_16BIT_REG(i->rm());
op2_16 = BX_READ_16BIT_REG(i->nnn());
op2_16 &= 0x0f;
bx_bool temp_CF = (op1_16 >> op2_16) & 0x01;
op1_16 ^= (((Bit16u) 1) << op2_16); /* toggle bit */
BX_WRITE_16BIT_REG(i->rm(), op1_16);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EwIbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit16u op1_16 = read_virtual_word(i->seg(), eaddr);
Bit8u op2_8 = i->Ib() & 0xf;
set_CF((op1_16 >> op2_8) & 0x01);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EwIbR(bxInstruction_c *i)
{
Bit16u op1_16 = BX_READ_16BIT_REG(i->rm());
Bit8u op2_8 = i->Ib() & 0xf;
set_CF((op1_16 >> op2_8) & 0x01);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EwIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0xf;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr);
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 |= (((Bit16u) 1) << op2_8);
write_RMW_virtual_word(op1_16);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EwIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0xf;
Bit16u op1_16 = BX_READ_16BIT_REG(i->rm());
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 |= (((Bit16u) 1) << op2_8);
BX_WRITE_16BIT_REG(i->rm(), op1_16);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EwIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0xf;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr);
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 ^= (((Bit16u) 1) << op2_8); /* toggle bit */
write_RMW_virtual_word(op1_16);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EwIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0xf;
Bit16u op1_16 = BX_READ_16BIT_REG(i->rm());
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 ^= (((Bit16u) 1) << op2_8); /* toggle bit */
BX_WRITE_16BIT_REG(i->rm(), op1_16);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EwIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0xf;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr);
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 &= ~(((Bit16u) 1) << op2_8);
write_RMW_virtual_word(op1_16);
set_CF(temp_CF);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EwIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0xf;
Bit16u op1_16 = BX_READ_16BIT_REG(i->rm());
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 &= ~(((Bit16u) 1) << op2_8);
BX_WRITE_16BIT_REG(i->rm(), op1_16);
set_CF(temp_CF);
}
/* 0F B8 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPCNT_GwEwR(bxInstruction_c *i)
{
#if BX_SUPPORT_POPCNT || (BX_SUPPORT_SSE > 4) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0)
Bit16u op2_16 = BX_READ_16BIT_REG(i->rm());
Bit16u op1_16 = 0;
while (op2_16 != 0) {
if (op2_16 & 1) op1_16++;
op2_16 >>= 1;
}
Bit32u flags = op1_16 ? 0 : EFlagsZFMask;
setEFlagsOSZAPC(flags);
/* now write result back to destination */
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
#else
BX_INFO(("POPCNT_GwEw: required POPCNT support, use --enable-popcnt option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#endif // (BX_CPU_LEVEL >= 3)