* Previously PE binaries would trigger the "incorrectly
executable" dialog. Now we get a special message for
B_LEGACY_EXECUTABLE and B_UNKNOWN_EXECUTABLE
* Legacy at the moment is a R3 x86 PE binary. This could
be extended to gcc2 binaries someday far, far, down the
road though
* The check for legacy is based on a PE flag I see
set on every R3 binary (that isn't set on dos ones)
* Unknown is something we know *is* an executable, but
can't do anything with (such as an MSDOS or Windows
application)
* No performance drops as we do the PE scan last
* Tested on x86 and x86_gcc2
* Increase FIFO buffer capacity from 32 to 64 KiB and the FIFO atomic
write size ({BUF_SIZE}) from 512 bytes to 4 KiB (both like Linux).
* Fix *pathconf(..., _PC_PIPE_BUF). It was returning 4 KiB although the
implemented atomic write size was 512 bytes only. Now both *pathconf()
and the FIFO implementation refer to the same constant.
In each installation location, it is now possible to create a settings
file "packages" that allows to blacklist entries contained in packages.
The format is:
Package <package name> {
EntryBlacklist {
<entry path>
...
}
}
...
<package name> is the base name (no version) of the respective package
(e.g. "haiku"), <entry path> is an installation location relative path
(e.g. "add-ons/Translators/FooTranslator").
Blacklisted entries will be ignored by packagefs, i.e. they won't appear
in the file system. This addresses the issue that it may be necessary to
remove a problematic file (e.g. driver, add-on, or library), which would
otherwise require editing the containing package file.
The settings file is not not "live". Changes take effect only after
reboot (respectively when remounting the concerned packagefs volume).
* get_architectures() returns the primary and the secondary
architectures in one array. That turned out to be convenient.
* Add C++ versions for get[_secondary]_architectures(), returning a
BStringList.
* Add get_architecture(), get_primary_architecture(),
get_secondary_architectures(), guess_architecture_for_path() to get
the caller's architecture, the primary architecture, all secondary
architectures, or the architecture associated with a specified path
respectively.
* Rename the find_path*() functions to find_path*_etc() and add an
optional architecture parameter. Add simplified find_path*()
functions.
* BPathFinder: Add FindPath[s]() versions with an architecture
parameter.
The new functions are meant to replace many uses of find_directory():
* find_paths() is supposed to be used when the directories of a certain
kind in all installation directories are needed (e.g. font
directories, add-on directory, etc.). Using this API makes code
robust wrt addition or removal of installation locations.
* find_path() is supposed to be used when files/directories associated
with a loaded program, library, or add-on need to be found (e.g. data
files or global settings).
* find_path_for_path() is similar to find_path(), but it starts from a
given path instead of an image.
Should already have been done back when the semantics for the
B_COMMON_*DIRECTORY constants was changed.
Currently old and new version behave the same. So this is just a
contingency measure ATM.
* This does intentionally break source compatibility, so that a review
of concerned code is forced.
* Binary compatibility should be maintained in most cases. The values
of the constants for the writable directories are now used for the
writable system directories. The values for the non-writable
directories are mapped to "/boot/system/data/empty/...", an empty or
non-existent directory, so that they will simply be skipped in search
paths. Only code that explicitly expects to find something in a
B_COMMON_* directory, will fail.
* find_directory() and hard-coded paths use /boot/system instead of
/boot/common.
* The build system creates the writable directories in /boot/system
instead of /boot/common.
* The build system no longer installs any packages in /boot/common.
Support for 64-bit atomic operations for ARMv7+ is currently stubbed
out in libroot, but our current targets do not use it anyway.
We now select atomics-as-syscalls automatically based on the ARM
architecture we're building for. The intent is to do away with
most of the board specifics (at the very least on the kernel side)
and just specify the lowest ARMvX version you want to build for.
This will give flexibility in being able to distribute a single
image for a wide range of devices, and building a tuned system
for one specific core type.
As korli suggested use B_PAGE_SIZE for defining stack size related
definitions what seems to be more natural for them and also may
help if we ever support an architecture with page size different than
4kB.
As korli suggested use B_PAGE_SIZE for defining stack size related
definitions what seems to be more natural for them and also may
help if we ever support an architecture with page size different than
4kB.
* Mostly useful for virtualization at the moment. Works in QEmu.
* Can be enabled by safemode settings/menu.
* Please note that x2APIC normally requires use of VT-d interrupt remapping feature
on real hardware, which we don't support yet.
* If at least one image is either B_HAIKU_ABI_GCC_2_ANCIENT or
B_HAIKU_ABI_GCC_2_BEOS almost all areas are marked as executable.
* B_EXECUTE_AREA and B_STACK_AREA are made public. The former is enforced since
the introduction of DEP and apps need it to correctly set area protection.
The latter is currently needed only to recognize stack areas and fix their
protection in compatibility mode, but may also be useful if an app wants
to use sigaltstack from POSIX API.
This patch introduces randomization of commpage position. From now on commpage
table contains offsets from begining to of the commpage to the particular
commpage entry. Similary addresses of symbols in ELF memory image "commpage"
are just offsets from the begining of the commpage.
This patch also updates KDL so that commpage entries are recognized and shown
correctly in stack trace. An update of Debugger is yet to be done.
x86_userspace_thread_exit() is a stub originally placed at the bottom of
each thread user stack that ensures any thread invokes exit_thread() upon
returning from its main higher level function.
Putting anything that is expected to be executed on a stack causes problems
when implementing data execution prevention. Code of x86_userspace_thread_exit()
is now moved to commpage which seems to be much more appropriate place for it.
Inside the page randomization of initial user stack pointer is not only a part
of ASLR implementation but also a performance improvement that helps
eliminating aligned 64 kB data access.
Minimal user stack size is increased to 8 kB in order to ensure that regardless
of initial stack pointer value there is still enough space on stack.
* Added the aforementioned functions.
* create_area_etc() now takes a guard size parameter.
* The thread_info::stack_base/end range now refers to the usable range
only.
Reused x86 arch_user_debugger.cpp, with a few minor changes to make
the code work for both 32 and 64 bit. Something isn't quite working
right, if a breakpoint is hit the kernel will hang. Other than that
everything appears to work correctly.
The cookie is used to store the base address of the area that was just
visited. On 64-bit systems, int32 is not sufficient. Therefore, changed
to ssize_t which retains compatibility on x86 while expanding to a
sufficient size on x86_64.
Since the commpage is at a kernel address, changed 64-bit paging code
to match x86's behaviour of allowing user-accessible mappings to be
created in the kernel portion of the address space. This is also
required by some drivers.
Since this argument may be used to pass pointers, uint32 is not
correct for 64-bit. Effectively no change on 32-bit targets, both
size_t and uint32 are unsigned long there.
This has been done by adding typedefs in elf_common.h to the correct ELF
structures for the architecture, and changing all Elf32_* uses to those
types. I don't know whether image loading works as I cannot test it yet,
there may be some 64-bit safety issues around. However, symbol lookup for
the kernel is working correctly.
The actual implementation of the ELF loading methods have been put into
an ELFLoader template class that takes a single template parameter, which
is a structure containing all the necessary ELF typedefs. It's a bit
verbose, but I thought it was a neater solution than using a bunch of
standalone functions with a huge number of template parameters. There is
no change to code outside of elf.cpp, the ELF32/ELF64 differences are
handled internally.
* x86_64 is using the existing *_ia32 boot platforms.
* Special flags are required when compiling the loader to get GCC to compile
32-bit code. This adds a new set of rules for compiling boot code rather
than using the kernel rules, which compile using the necessary flags.
* Some x86_64 private headers have been stubbed by #include'ing the x86
versions. These will be replaced later.
directory of a file without traversing leaf links (just like lstat()).
* Minor cleanup.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@42620 a95241bf-73f2-0310-859d-f6bbb57e9c96
address protection bits as well as the wiring flags for an arbitrary address
in a team's address space. Will be used in the debugger for the purposes
of the memory inspector/editor, in order to determine whether it can in fact
allow editing for the currently inspected address range.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@42129 a95241bf-73f2-0310-859d-f6bbb57e9c96