* maintain a list of all BPictures to do so
* BView downloads the BPicture data after recording the picture. This could probably done more efficiently using shared memory in the first place.
* Rename init_sse to init_fpu and handle FPU setup.
* Stop trying to set up FPU before VM init.
We tried to set up the FPU before VM init, then
set it up again after VM init with SSE extensions,
this caused SSE and MMX applications to crash.
* Be more logical in FPU setup by detecting CPU flag prior
to enabling FPU. (it's unlikely Haiku will run on
a processor without a fpu... but lets be consistant)
* SSE2 gcc code now runs (faster even) without GPF
* tqh confirms his previously crashing mmx code now works
* The non-SSE FPU enable after VM init needs tested!
* add Wcscoll() and Wcsxfrm() ICU locale backend
* provide implementations of wcscoll() and wcsxfrm() that are using
the respective methods of the locale backend
* Casts like BReference<Derived> to BReference<Base> are now possible.
* This cast for BWeakReference is, because of the underlying structure, not automatically type safe. I used a simple hack to make the compiler complain if the cast
is not type safe. Please take a look if that can be done better.
* Smaller style and bug fixes.
* make room in mbstate_t for containing an ICU-converter's state
(well, in fact the whole converter object)
* adjust libroot's locale add-on to clone converters into a given
mbstate_t directly
* adjust ICUThreadLocalStorageValue to contain the converter pointer
instead of a converter-ID (if the converter is related to an
mbstate_t, it points into the mbstate_t).
* adjust users of converters to directly use converter pointers
instead of ICUConverterRef
* drop now unused ICUConverterManager and ICUConverterRef
* update gcc4 optional package
This brings our multibyte implementation into a fully working state,
both non-ascii and non-8-bit characters can now be handled normally
in the Terminal, i.e. this finally fixes#6276.
N.B.: Since the size of mbstate_t has changed, everything (including
the compiler!) needs to be rebuilt.
* I'd rather this be common code, but I don't have access
to the DisplayPort specifications. If I added it as common
code I would want to be 100% it was complete and variables
were named properly.
* For now putting in radeon_hd private headers
* add MultibyteStringToWchar() to ICU locale backend
* implement mbsrtowcs() and mbsnrtowcs() on top of
MultibyteStringToWchar()
* drop respective glibc files
It turns out,this is an old method added by Be, and is not really related to BView::InvalidateLayout(bool). In fact BMenu::InvalidateLayout() does something separate, but related to the BView method. I was wrong to delete this method, since it needs to have action taken each time it is called, so moving these actions into LayoutInvalidated() only worked sometimes (when the BView was considered to have a valid layout).
I have added a comment for future hackers so that they don't delete this method.
This one works with non-terminated strings that we may need to handle.
It also validates that the sequence is valid UTF-8 so it results in
the same behaviour as the version that is used when converting to
codes (syncing the enumeration and drawing behaviour).
This allows to use the debug features of the guarded heap also on
allocations made through the object cache API. This is obivously
horrible for performance and uses up huge amounts of memory, so the
initial and grow sizes are adjusted accordingly.
Note that this is a rather simple hack, using the object_cache pointer
to transport the allocation size. The alignment is neglected completely.
This adds a pair of functions vm_prepare_kernel_area_debug_protection()
and vm_set_kernel_area_debug_protection() to set a kernel area up for
page wise protection and to actually protect individual pages
respectively.
It was already possible to read and write protect full areas via area
protection flags and not mapping any actual pages. For areas that
actually have mapped pages this doesn't work however as no fault, at
which the permissions could be checked, is generated on access.
These new functions use the debug helpers of the translation map to mark
individual pages as non-present without unmapping them. This allows them
to be "protected", i.e. causing a fault on read and write access. As they
aren't actually unmapped they can later be marked present again.
Note that these are debug helpers and have quite a few restrictions as
described in the comment above the function and is only useful for some
very specific and constrained use cases.
They can be used to mark pages as present/non-present without actually
unmapping them. Marking pages as non-present causes every access to
fault. We can use that for debugging as it allows us to "read protect"
individual kernel pages.
* The vm86 code or the code running in virtual 8086 mode may clobber the
%fs register that we use for the CPU dependent thread local storage
(TLS). Previously the vm86 code would simply restore %fs on exit, but
this doesn't always work. If the thread got unscheduled while running
in virtual 8086 mode and was then rescheduled on a different CPU, the
vm86 exit code would restore the %fs register with the TLS value of
the old CPU, causing anything using TLS in userland to crash later on.
Instead we skip the %fs register restore on exit (as do the other
interrupt return functions) and explicitly update the potentially
clobbered %fs by calling x86_set_tls_context(). This will repopulate
the %fs register with the TLS value for the right CPU. Fixes#8068.
* Made the static set_tls_context() into x86_set_tls_context() and made
it available to others to faciliate the above.
* Sync the vm86 specific interrupt code with the changes from hrev23370,
using the iframe pop macro to properly return. Previously what was
pushed in int_bottom wasn't poped on return.
* Account for the time update macro resetting the in_kernel flag and
reset it to 1, as we aren't actually returning to userland. This
didn't cause any harm though as only the time tracking is using that
flag so far.
* Some minor cleanup.
Apparently I should have done a complete rebuild after moving
directories.h from headers/private/libroot to .../system, since a lot of
stuff didn't build anymore.
The implementation is temporary. Currently it reads through the packages
in the respective packages directory and checks against the package
links. Once package activation is tracked explicitly we'll use the
activation file/directory.
A BPackageContentHandler subclass that initializes a BPackageInfo from
the read package attributes. Pulled out of RepositoryWriterImpl's
PackageContentHandler.
* Remove InitCheck() and the initializing constructor.
* Rename PackageCount() to CountPackages().
* Use BOpenHashTable instead of HashMap for the internal PackageMap.
* Allow multiple packages with the same name. Equally named packages are
in a singly linked list after the first package with that name.
* Add an Iterator inner class and a GetIterator() method, so one can now
iterate through the packages in the repository.
The attribute is intended for simplifying package building. The
package's install path will be used for the package's .self package
symlink, allowing installation to a temporary directory when building
the package.