Sorry, that was the problem actually reported by Alexander Deynichenko...
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16216 a95241bf-73f2-0310-859d-f6bbb57e9c96
time of the idle thread as a measure, we now compute the CPU activity on
each thread switch - the time the CPU worked is the total of user and kernel
time a thread spent during its quantum.
Unlike before, this mechanism works correctly on SMP machines. I hope this
works as expected :)
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16193 a95241bf-73f2-0310-859d-f6bbb57e9c96
* Added syscalls _kern_set_cpu_enabled() and _kern_cpu_enabled().
* scheduler.c::sRunQueue::tail was not maintained at all; changed sRunQueue to
be a simple thread pointer instead of a struct thread_queue.
* Turns out we're monitoring CPU activity incorrectly when we've got more
than one CPU.
* Renamed the global CPU array from "cpu" to gCPU.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16186 a95241bf-73f2-0310-859d-f6bbb57e9c96
SetToImage() variants for initializing the object to the resources of
the shared object file belonging to a loaded image. Should be handy for
libraries and add-ons.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16176 a95241bf-73f2-0310-859d-f6bbb57e9c96
The test application lets run a thread at the highest priority that calls
yield all the time - the system stays responsible when it runs, so it seems
to work fine :)
Changed the malloc implementation to use _kern_thread_yield() instead of
snoozing.
We should think about making this call public, too.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16166 a95241bf-73f2-0310-859d-f6bbb57e9c96
enqueueing a thread to the run queue.
This mechanism is now used for the thread priority boost on semaphore
release. Also, those threads are no longer made real time threads, they
now get a temporary priority of B_FIRST_REAL_TIME_PRIORITY - 1.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16165 a95241bf-73f2-0310-859d-f6bbb57e9c96
moment, but committing since it's too late to continue working, and at
least the window is resized correctly...
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16142 a95241bf-73f2-0310-859d-f6bbb57e9c96
different "force" levels now and updates the app file info attributes
for shared object files.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16123 a95241bf-73f2-0310-859d-f6bbb57e9c96
device tree for PCI controllers and make them known to the bus manager,
if we know how to talk with them. ATM we support only the UniNorth chip,
which can be found in G4 Macs (code ported from FreeBSD).
As far as I can judge it, all attached devices are identified correctly
on all three host bridges of my Mac mini.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16102 a95241bf-73f2-0310-859d-f6bbb57e9c96
* Moved the Open Firmware function platform_get_next_device() from
the boot loader into the kernel (renamed to of_get_next_device()).
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16101 a95241bf-73f2-0310-859d-f6bbb57e9c96
* BEntry::Remove() now uses _kern_remove_dir() for directories.
* Added fd parameter to _kern_remove_dir().
* Fixed LibBeAdapter's _kern_unlink() to only work on files, and
added _kern_remove_dir() for directories.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16078 a95241bf-73f2-0310-859d-f6bbb57e9c96
message header into account. It worked before at some point as BLooper was
letting the looper handle messages to invalid targets - they are now just
dropped.
This fixes bug #93.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@16045 a95241bf-73f2-0310-859d-f6bbb57e9c96
can now safely unmount volumes that are still in use by some applications.
Minor fixes to the FD disconnection implementation:
* put_fd() checked the condition for being able to disconnect a descriptor
incorrectly (causing the FD to never be disconnected).
* remove_fd() would hand out disconnected descriptors (but should have
returned NULL for them).
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15952 a95241bf-73f2-0310-859d-f6bbb57e9c96
code. The stack pointer was not adjusted, hence we were
overwriting the previous register value. But it looks like I
missed to check in the arch_cpu.h with the iframe structure
including the floating point registers anyway.
* Backported the ELF PPC relocation code from the boot loader to
the kernel.
* Fixed the PPC version of arch_thread_switch_kstack_and_call().
Apparently the signature had changed, but the assembly
implementation was not adjusted accordingly.
* sc prints more registers now (LR, CR, CTR, XER,...).
* Fixed several occurences of not-working fault handlers.
Apparently the compiler realized, that the "error" label was
never jumped to (by the code it knew), and optimized the
respective code away. Now we use a trick to make it think the
error label might actually be jumped to. I wonder whether the
x86 version has the same problem when being compiled with GCC4.
* Adopted the x86 page fault handling interrupt code.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15933 a95241bf-73f2-0310-859d-f6bbb57e9c96
in all drawing methods in case the parent window was
not in a "transaction" (fInTransaction). For ordinary
updates, nothing has changed, but if you call drawing
methods outside of an update, they will happen "immediately"
rather than when the link is sporadically full and auto
flushes. The effect is that the cursor in Terminal blinks
reliably, the selection in BTextViews follows the mouse
right on the spot (and so on). BWindow::BeginViewTransaction()
and EndViewTransaction() now have a meaning in Haiku too.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15927 a95241bf-73f2-0310-859d-f6bbb57e9c96
We don't do anything with it yet, though, so the BIOS will probably ignore us since
we are supposed to poll for events.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15900 a95241bf-73f2-0310-859d-f6bbb57e9c96
* Cloned iframe stack management from x86.
* Reimplemented arch_thread_{get,set}_current_thread(). The
thread structure is stored in SPRG2. It is set to NULL in
arch_cpu_preboot_init(), now. A non-null current thread
causes all kinds of undesired behavior in early boot code.
* We establish the address space mappings we know from the
Open Firmware as areas. At least those in kernel address
space. The ones in userland address space are tougher.
Fortunately on my Mac mini there aren't any save the
boot_loader stack, which is not needed any longer anyway.
* Added stack trace support to the kernel debugger. Mostly
cloned and adjusted the x86 code. Some bits are still
missing, like stack traces for other threads.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15890 a95241bf-73f2-0310-859d-f6bbb57e9c96
void after turning off BAT for the segment containing itself.
The monster macro for the exception vector code was not really
elegant besides being too long for the 32 byte performance
monitor exception slot. Furthermore wasting three of the SPRG*
registers as cheap scratch memory wasn't that nice either.
We now have a three-step approach: The exception vectors
themselves contain only five instructions which branch to common
code at the beginning of the same physical page. That one sets
up BAT for itself, turns address translation back on and jumps
into the kernel. There we turn off BAT again, dump an iframe,
and enter the actual exception handler (/dispatcher). Upon return
the registers are restored from the iframe and we get back to the
place where the exception occurred.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15881 a95241bf-73f2-0310-859d-f6bbb57e9c96
* fixed weird pointer conversion in SetStyle()
* fixed a potential mix up in operator=() in case the
other ServerFont has fStyle == NULL
ServerWindow:
* the WindowLayer fTopLayer cannot be deleted by
client request, just for safety reasons
* the link is flushed if there is no drawing engine,
but this case is theoretical only
* deleting the ServerWindow object syncs with the
client, so that when BBitmaps are deleted, they
can be sure there are no pending messages (which
would be executed in a nother thread)
* there is no timeout anymore when sending messages
to the client, which made absolutely no sense
AGGTextRenderer:
* renamed fFontManager to fFontCache, because that's
what it really is
* fLastFamilyAndStyle defaulted to the system plain
font and therefor that font was never loaded when
the font never changed meanwhile
DrawingMode:
* I'm not quite sure but I think there was the
potential of a division by zero, at least I
had crashes with "divide error"
HWInterface:
* fix update when the cursor shape changed in
double buffered mode
ViewLayer:
* since the top layer is never really deleted
before its time has come, it is not necessary
to set it to NULL in the ViewLayer destructor
ViewLayer/WindowLayer:
* added a function to collect the view tokens
that are affected by an update session
EventDispatcher:
* use the importance of the message for the timeout
in _SendMessage()
* drop mouse moved events in the server if we're
lagging behind more than 5 ms (Axel, maybe review)
View:
* there were some problems with the locking
of the BWindow looper in RemoveSelf(), since
this is called from the window destructor,
also of BWindows from BBitmaps, which have
never been run (this might need review), at
least I seem to have solved the crashing
problems introduced by actually deleting the
view hirarchy in the BWindow destructor
* fixed _Draw() for being used non-recursively,
temporarily disabled DrawAfterChildren, which
didn't work yet anyways (because views cannot
draw over children in the server yet)
Window:
* small cleanup when deleting shortcuts
* sync with the server when having send
AS_DELETE_WINDOW (see ServerWindow above)
* fixed locking in Begin/EndViewTransaction()
* removed folding of _UPDATE_ messages, since
there is only one ever in the queue
* set the fInTransaction flag during an update,
I plan to use this in BView later to
flush the link when drawing outside of an
update
* BView::_Draw() is now called by view token,
this gives the next leap forward in speed,
the overhead because of drawing clean views
was considerable
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15878 a95241bf-73f2-0310-859d-f6bbb57e9c96
The time base conversion factor is the 32 bit value
2^32 * 1000000 / time base frequency,
so the system time can be computed by
system time = time base * conversion factor / 2^32.
The expression in system_time() looks more complicated now, but is
actually much faster (factor 2.5 on my Mac mini). I'm positively
surprised, how good the assembly looks, that GCC 4 generates. There's
not that much potential for optimization by hand-coding the function.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15863 a95241bf-73f2-0310-859d-f6bbb57e9c96