NetBSD/sys/arch/powerpc/booke/e500_tlb.c
matt f82647e665 Make the 85xx get closer to spinning up the secondary CPUs.
Don't assume TLB1[0] has the mapping for VA/PA 0.
Make sure the TLB1 entries that map physical memory have the M (memory
coherent) bit set.
2012-11-27 19:24:45 +00:00

1153 lines
33 KiB
C

/* $NetBSD: e500_tlb.c,v 1.12 2012/11/27 19:24:46 matt Exp $ */
/*-
* Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
* Agency and which was developed by Matt Thomas of 3am Software Foundry.
*
* This material is based upon work supported by the Defense Advanced Research
* Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
* Contract No. N66001-09-C-2073.
* Approved for Public Release, Distribution Unlimited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define __PMAP_PRIVATE
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.12 2012/11/27 19:24:46 matt Exp $");
#include <sys/param.h>
#include <uvm/uvm_extern.h>
#include <powerpc/spr.h>
#include <powerpc/booke/spr.h>
#include <powerpc/booke/cpuvar.h>
#include <powerpc/booke/e500reg.h>
#include <powerpc/booke/e500var.h>
#include <powerpc/booke/pmap.h>
struct e500_tlb {
vaddr_t tlb_va;
uint32_t tlb_pte;
uint32_t tlb_asid;
vsize_t tlb_size;
};
struct e500_hwtlb {
uint32_t hwtlb_mas0;
uint32_t hwtlb_mas1;
uint32_t hwtlb_mas2;
uint32_t hwtlb_mas3;
};
struct e500_xtlb {
struct e500_tlb e_tlb;
struct e500_hwtlb e_hwtlb;
u_long e_refcnt;
};
static struct e500_tlb1 {
uint32_t tlb1_maxsize;
uint32_t tlb1_minsize;
u_int tlb1_numentries;
u_int tlb1_numfree;
u_int tlb1_freelist[32];
struct e500_xtlb tlb1_entries[32];
} e500_tlb1;
static inline register_t mftlb0cfg(void) __pure;
static inline register_t mftlb1cfg(void) __pure;
static inline register_t
mftlb0cfg(void)
{
register_t tlb0cfg;
__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
return tlb0cfg;
}
static inline register_t
mftlb1cfg(void)
{
register_t tlb1cfg;
__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
return tlb1cfg;
}
static struct e500_tlb
hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
{
struct e500_tlb tlb;
register_t prot_mask;
u_int prot_shift;
tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
| (hwtlb.hwtlb_mas3 & MAS3_RPN);
if (hwtlb.hwtlb_mas1 & MAS1_TS) {
prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
prot_shift = PTE_RWX_SHIFT - 1;
} else {
prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
prot_shift = PTE_RWX_SHIFT;
}
tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
return tlb;
}
static inline struct e500_hwtlb
hwtlb_read(uint32_t mas0, u_int slot)
{
struct e500_hwtlb hwtlb;
register_t tlbcfg;
if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
tlbcfg = mftlb0cfg();
} else if (mas0 == MAS0_TLBSEL_TLB1) {
tlbcfg = mftlb1cfg();
} else {
panic("%s:%d: unexpected MAS0 %#" PRIx32,
__func__, __LINE__, mas0);
}
/*
* ESEL is the way we want to look up.
* If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
* fully associative, the entire slot is placed into ESEL. If tlbassoc
* is less then the number of tlb entries, the slot is split in two
* fields. Since the TLB is M rows by N ways, the lowers bits are for
* row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
*/
const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
const u_int esel_shift =
__builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
/*
* Disable interrupts since we don't want anyone else mucking with
* the MMU Assist registers
*/
const register_t msr = wrtee(0);
const register_t saved_mas0 = mfspr(SPR_MAS0);
mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
if (__predict_true(tlbassoc > tlbentries))
mtspr(SPR_MAS2, slot << PAGE_SHIFT);
/*
* Now select the entry and grab its contents.
*/
__asm volatile("tlbre");
hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
mtspr(SPR_MAS0, saved_mas0);
wrtee(msr); /* restore interrupts */
return hwtlb;
}
static inline void
hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
{
const register_t msr = wrtee(0);
const uint32_t saved_mas0 = mfspr(SPR_MAS0);
/*
* Need to always write MAS0 and MAS1
*/
mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
/*
* Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
*/
if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
|| (hwtlb.hwtlb_mas1 & MAS1_V)) {
mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
}
/*
* Only need to write the RPN/prot if we are dealing with a valid
* mapping.
*/
if (hwtlb.hwtlb_mas1 & MAS1_V) {
mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
//mtspr(SPR_MAS7, 0);
}
#if 0
printf("%s->[%x,%x,%x,%x]\n",
__func__,
hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
#endif
__asm volatile("tlbwe");
if (needs_sync) {
__asm volatile("tlbsync\n\tisync\n\tsync");
}
mtspr(SPR_MAS0, saved_mas0);
wrtee(msr);
}
static struct e500_hwtlb
tlb_to_hwtlb(const struct e500_tlb tlb)
{
struct e500_hwtlb hwtlb;
KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
KASSERT(tlb.tlb_size != 0);
KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
hwtlb.hwtlb_mas0 = 0;
hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
/*
* A non-zero ASID means this is a user page so mark it as
* being in the user's address space.
*/
if (tlb.tlb_asid) {
hwtlb.hwtlb_mas1 |= MAS1_TS
| MASX_TID_MAKE(tlb.tlb_asid);
hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
| ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
KASSERT(prot_mask & PTE_xR);
KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
} else {
hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
}
if (tlb.tlb_pte & PTE_UNMODIFIED)
hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
if (tlb.tlb_pte & PTE_UNSYNCED)
hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
} else {
KASSERT(tlb.tlb_asid == 0);
KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
u_int cntlz = __builtin_clz(tlb.tlb_size);
KASSERT(cntlz & 1);
KASSERT(cntlz <= 19);
hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
/*
* TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
* allowed. So 1K would be 0x00000400 giving 21 leading zero
* bits. Subtracting the leading number of zero bits from 21
* and dividing by 2 gives us the number that the MMU wants.
*/
hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
| MAS1_IPROT | MAS1_V;
hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
}
/* We are done with MAS1, on to MAS2 ... */
hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
return hwtlb;
}
void *
e500_tlb1_fetch(size_t slot)
{
struct e500_tlb1 * const tlb1 = &e500_tlb1;
return &tlb1->tlb1_entries[slot].e_hwtlb;
}
void
e500_tlb1_sync(void)
{
struct e500_tlb1 * const tlb1 = &e500_tlb1;
for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
const struct e500_hwtlb * const new_hwtlb =
&tlb1->tlb1_entries[slot].e_hwtlb;
const struct e500_hwtlb old_hwtlb =
hwtlb_read(MAS0_TLBSEL_TLB1, slot);
#define CHANGED(n,o,f) ((n)->f != (o).f)
bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
#undef CHANGED
bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
if ((new_valid_p || old_valid_p)
&& (mas1_changed_p
|| (new_valid_p
&& (mas2_changed_p || mas3_changed_p))))
hwtlb_write(*new_hwtlb, true);
}
}
static int
e500_alloc_tlb1_entry(void)
{
struct e500_tlb1 * const tlb1 = &e500_tlb1;
if (tlb1->tlb1_numfree == 0)
return -1;
const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
return (int)slot;
}
static void
e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
{
struct e500_tlb1 * const tlb1 = &e500_tlb1;
KASSERT(slot < tlb1->tlb1_numentries);
KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
hwtlb_write(xtlb->e_hwtlb, needs_sync);
const register_t msr = wrtee(0);
tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
wrtee(msr);
}
static tlb_asid_t
e500_tlb_get_asid(void)
{
return mfspr(SPR_PID0);
}
static void
e500_tlb_set_asid(tlb_asid_t asid)
{
mtspr(SPR_PID0, asid);
}
static void
e500_tlb_invalidate_all(void)
{
/*
* This does a flash invalidate of all entries in TLB0.
* We don't touch TLB1 since we don't expect those to be volatile.
*/
#if 1
__asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
__asm volatile("tlbsync\n\tisync\n\tsync");
#else
mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
while (mfspr(SPR_MMUCSR0) != 0)
;
#endif
}
static void
e500_tlb_invalidate_globals(void)
{
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
const register_t msr = wrtee(0);
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
mtspr(SPR_MAS2, epn);
__asm volatile("tlbre");
uint32_t mas1 = mfspr(SPR_MAS1);
/*
* Make sure this is a valid kernel entry first.
*/
if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
continue;
/*
* We have a valid kernel TLB entry. But if it matches
* the stack we are currently running on, it would
* unwise to invalidate it. First see if the epn
* overlaps the stack. If it does then get the
* VA and see if it really is part of the stack.
*/
if (epn_kstack_lo < epn_kstack_hi
? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
: (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
const uint32_t mas2_epn =
mfspr(SPR_MAS2) & MAS2_EPN;
if (kstack_lo <= mas2_epn
&& mas2_epn <= kstack_hi)
continue;
}
mtspr(SPR_MAS1, mas1 ^ MAS1_V);
__asm volatile("tlbwe");
}
}
__asm volatile("isync\n\tsync");
wrtee(msr);
}
static void
e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
{
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
const register_t msr = wrtee(0);
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
mtspr(SPR_MAS2, epn);
__asm volatile("tlbre");
const uint32_t mas1 = mfspr(SPR_MAS1);
/*
* If this is a valid entry for AS space 1 and
* its asid matches the constraints of the caller,
* clear its valid bit.
*/
if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
&& asid_lo <= (mas1 & MAS1_TID)
&& (mas1 & MAS1_TID) <= asid_hi) {
mtspr(SPR_MAS1, mas1 ^ MAS1_V);
#if 0
printf("%s[%zu,%zu]->[%x]\n",
__func__, assoc, epn, mas1);
#endif
__asm volatile("tlbwe");
}
}
}
__asm volatile("isync\n\tsync");
wrtee(msr);
}
static u_int
e500_tlb_record_asids(u_long *bitmap)
{
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
const size_t nbits = 8 * sizeof(bitmap[0]);
u_int found = 0;
const register_t msr = wrtee(0);
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
mtspr(SPR_MAS2, epn);
__asm volatile("tlbre");
const uint32_t mas1 = mfspr(SPR_MAS1);
/*
* If this is a valid entry for AS space 1 and
* its asid matches the constraints of the caller,
* clear its valid bit.
*/
if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
const uint32_t asid = MASX_TID_GET(mas1);
const u_int i = asid / nbits;
const u_long mask = 1UL << (asid & (nbits - 1));
if ((bitmap[i] & mask) == 0) {
bitmap[i] |= mask;
found++;
}
}
}
}
wrtee(msr);
return found;
}
static void
e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
{
KASSERT((va & PAGE_MASK) == 0);
/*
* Bits 60 & 61 have meaning
*/
if (asid == KERNEL_PID) {
/*
* For data accesses, the context-synchronizing instruction
* before tlbwe or tlbivax ensures that all memory accesses
* due to preceding instructions have completed to a point
* at which they have reported all exceptions they will cause.
*/
__asm volatile("isync");
}
__asm volatile("tlbivax\t0, %0" :: "b"(va));
__asm volatile("tlbsync");
__asm volatile("tlbsync"); /* Why? */
if (asid == KERNEL_PID) {
/*
* The context-synchronizing instruction after tlbwe or tlbivax
* ensures that subsequent accesses (data and instruction) use
* the updated value in any TLB entries affected.
*/
__asm volatile("isync\n\tsync");
}
}
static bool
e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
{
struct e500_hwtlb hwtlb = tlb_to_hwtlb(
(struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
register_t msr = wrtee(0);
mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
__asm volatile("tlbsx 0, %0" :: "b"(va));
register_t mas1 = mfspr(SPR_MAS1);
if ((mas1 & MAS1_V) == 0) {
if (!insert) {
wrtee(msr);
#if 0
printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
__func__, va, asid, pte, insert);
#endif
return false;
}
mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
}
mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
//mtspr(SPR_MAS7, 0);
__asm volatile("tlbwe");
if (asid == KERNEL_PID)
__asm volatile("isync\n\tsync");
wrtee(msr);
#if 0
if (asid)
printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
__func__, va, asid, pte, insert,
hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
#endif
return (mas1 & MAS1_V) != 0;
}
static void
e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
{
}
static void
e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
{
}
static void
e500_tlb_dump(void (*pr)(const char *, ...))
{
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
const uint32_t saved_mas0 = mfspr(SPR_MAS0);
size_t valid = 0;
if (pr == NULL)
pr = printf;
const register_t msr = wrtee(0);
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
struct e500_hwtlb hwtlb;
hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
mtspr(SPR_MAS2, epn);
__asm volatile("tlbre");
hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
/*
* If this is a valid entry for AS space 1 and
* its asid matches the constraints of the caller,
* clear its valid bit.
*/
if (hwtlb.hwtlb_mas1 & MAS1_V) {
hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
(*pr)("[%zu,%zu]->[%x,%x,%x]",
assoc, atop(epn),
hwtlb.hwtlb_mas1,
hwtlb.hwtlb_mas2,
hwtlb.hwtlb_mas3);
(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
tlb.tlb_pte & PTE_RPN_MASK,
tlb.tlb_pte & PTE_xR ? "R" : "",
tlb.tlb_pte & PTE_xW ? "W" : "",
tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
tlb.tlb_pte & PTE_xX ? "X" : "",
tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
tlb.tlb_pte & PTE_W ? "W" : "",
tlb.tlb_pte & PTE_I ? "I" : "",
tlb.tlb_pte & PTE_M ? "M" : "",
tlb.tlb_pte & PTE_G ? "G" : "",
tlb.tlb_pte & PTE_E ? "E" : "");
valid++;
}
}
}
mtspr(SPR_MAS0, saved_mas0);
wrtee(msr);
(*pr)("%s: %zu valid entries\n", __func__, valid);
}
static void
e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
{
const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
const uint32_t saved_mas0 = mfspr(SPR_MAS0);
const register_t msr = wrtee(0);
for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
struct e500_hwtlb hwtlb;
hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
mtspr(SPR_MAS2, epn);
__asm volatile("tlbre");
hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
if (hwtlb.hwtlb_mas1 & MAS1_V) {
hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
tlb.tlb_pte))
break;
}
}
}
mtspr(SPR_MAS0, saved_mas0);
wrtee(msr);
}
static struct e500_xtlb *
e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
{
struct e500_tlb1 * const tlb1 = &e500_tlb1;
struct e500_xtlb *xtlb = tlb1->tlb1_entries;
/*
* See if we have a TLB entry for the pa.
*/
for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
&& ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
if (slotp != NULL)
*slotp = i;
return xtlb;
}
}
return NULL;
}
struct e500_xtlb *
e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
{
struct e500_tlb1 * const tlb1 = &e500_tlb1;
struct e500_xtlb *xtlb = tlb1->tlb1_entries;
/*
* See if we have a TLB entry for the va.
*/
for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
&& ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
if (slotp != NULL)
*slotp = i;
return xtlb;
}
}
return NULL;
}
static struct e500_xtlb *
e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
{
struct e500_tlb1 * const tlb1 = &e500_tlb1;
struct e500_xtlb *xtlb = tlb1->tlb1_entries;
/*
* See if we have a TLB entry for the pa.
*/
for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
&& ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
&& (((va + len - 1) ^ va) & mask) == 0) {
return xtlb;
}
}
return NULL;
}
static void *
e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
{
struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
/*
* See if we have a TLB entry for the pa. If completely falls within
* mark the reference and return the pa. But only if the tlb entry
* is not cacheable.
*/
if (xtlb
&& (prefetchable
|| (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
xtlb->e_refcnt++;
return (void *) (xtlb->e_tlb.tlb_va
+ pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
}
return NULL;
}
static void
e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
{
if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
if (xtlb)
xtlb->e_refcnt--;
}
}
static int
e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
{
struct e500_tlb1 * const tlb1 = &e500_tlb1;
struct e500_xtlb *xtlb;
KASSERT(len & 0x55555000);
KASSERT((len & ~0x55555000) == 0);
KASSERT(len >= PAGE_SIZE);
KASSERT((len & (len - 1)) == 0);
KASSERT((va & (len - 1)) == 0);
KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
KASSERT(len <= xtlb->e_tlb.tlb_size);
KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
xtlb->e_refcnt++;
return 0;
}
const int slot = e500_alloc_tlb1_entry();
if (slot < 0)
return ENOMEM;
xtlb = &tlb1->tlb1_entries[slot];
xtlb->e_tlb.tlb_va = va;
xtlb->e_tlb.tlb_size = len;
xtlb->e_tlb.tlb_pte = pte;
xtlb->e_tlb.tlb_asid = KERNEL_PID;
xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
hwtlb_write(xtlb->e_hwtlb, true);
return 0;
}
static int
e500_tlb_iorelease(vaddr_t va)
{
u_int slot;
struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
if (xtlb == NULL)
return ENOENT;
if (xtlb->e_refcnt)
return EBUSY;
e500_free_tlb1_entry(xtlb, slot, true);
return 0;
}
static u_int
e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
{
u_int slotmask = 0;
u_int slots = 0, nextslot = 0;
KASSERT(tlb1->tlb1_numfree > 1);
KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
for (paddr_t lastaddr = memstart; 0 < memsize; ) {
u_int cnt = __builtin_clz(memsize);
psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
slots += memsize / size;
if (slots > 4)
panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
__func__, __LINE__, memsize, "too fragmented");
if (slots > tlb1->tlb1_numfree - 1)
panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
__func__, __LINE__, memsize,
"insufficent TLB entries");
for (; nextslot < slots; nextslot++) {
const u_int freeslot = e500_alloc_tlb1_entry();
struct e500_xtlb * const xtlb =
&tlb1->tlb1_entries[freeslot];
xtlb->e_tlb.tlb_asid = KERNEL_PID;
xtlb->e_tlb.tlb_size = size;
xtlb->e_tlb.tlb_va = lastaddr;
xtlb->e_tlb.tlb_pte = lastaddr
| PTE_M | PTE_xX | PTE_xW | PTE_xR;
lastaddr += size;
memsize -= size;
slotmask |= 1 << (31 - freeslot); /* clz friendly */
}
}
return nextslot;
}
static const struct tlb_md_ops e500_tlb_ops = {
.md_tlb_get_asid = e500_tlb_get_asid,
.md_tlb_set_asid = e500_tlb_set_asid,
.md_tlb_invalidate_all = e500_tlb_invalidate_all,
.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
.md_tlb_update_addr = e500_tlb_update_addr,
.md_tlb_record_asids = e500_tlb_record_asids,
.md_tlb_write_entry = e500_tlb_write_entry,
.md_tlb_read_entry = e500_tlb_read_entry,
.md_tlb_dump = e500_tlb_dump,
.md_tlb_walk = e500_tlb_walk,
};
static const struct tlb_md_io_ops e500_tlb_io_ops = {
.md_tlb_mapiodev = e500_tlb_mapiodev,
.md_tlb_unmapiodev = e500_tlb_unmapiodev,
.md_tlb_ioreserve = e500_tlb_ioreserve,
.md_tlb_iorelease = e500_tlb_iorelease,
};
void
e500_tlb_init(vaddr_t endkernel, psize_t memsize)
{
struct e500_tlb1 * const tlb1 = &e500_tlb1;
#if 0
register_t mmucfg = mfspr(SPR_MMUCFG);
register_t mas4 = mfspr(SPR_MAS4);
#endif
const uint32_t tlb1cfg = mftlb1cfg();
tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
/*
* Limit maxsize to 1G since 4G isn't really useful to us.
*/
tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
#ifdef VERBOSE_INITPPC
printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
tlb1->tlb1_maxsize >> 10);
#endif
/*
* Let's see what's in TLB1 and we need to invalidate any entry that
* would fit within the kernel's mapped address space.
*/
psize_t memmapped = 0;
for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
#ifdef VERBOSE_INITPPC
printf(" TLB1[%u]=<unused>", i);
#endif
continue;
}
xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
#ifdef VERBOSE_INITPPC
printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
#endif
if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
&& xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
|| (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
&& VM_MIN_KERNEL_ADDRESS <
xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
#ifdef VERBOSE_INITPPC
printf("free");
#endif
e500_free_tlb1_entry(xtlb, i, false);
#ifdef VERBOSE_INITPPC
printf("d");
#endif
continue;
}
if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
hwtlb_write(xtlb->e_hwtlb, false);
#ifdef VERBOSE_INITPPC
printf("+iprot");
#endif
}
if (xtlb->e_tlb.tlb_pte & PTE_I)
continue;
if (xtlb->e_tlb.tlb_va == 0
|| xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
memmapped += xtlb->e_tlb.tlb_size;
/*
* Let make sure main memory is setup so it's memory
* coherent. For some reason u-boot doesn't set it up
* that way.
*/
if ((xtlb->e_hwtlb.hwtlb_mas2 & MAS2_M) == 0) {
xtlb->e_hwtlb.hwtlb_mas2 |= MAS2_M;
hwtlb_write(xtlb->e_hwtlb, true);
}
}
}
cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
if (__predict_false(memmapped < memsize)) {
/*
* Let's see how many TLB entries are needed to map memory.
*/
u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
/*
* To map main memory into the TLB, we need to flush any
* existing entries from the TLB that overlap the virtual
* address space needed to map physical memory. That may
* include the entries for the pages currently used by the
* stack or that we are executing. So to avoid problems, we
* are going to temporarily map the kernel and stack into AS 1,
* switch to it, and clear out the TLB entries from AS 0,
* install the new TLB entries to map memory, and then switch
* back to AS 0 and free the temp entry used for AS1.
*/
u_int b = __builtin_clz(endkernel);
/*
* If the kernel doesn't end on a clean power of 2, we need
* to round the size up (by decrementing the number of leading
* zero bits). If the size isn't a power of 4KB, decrement
* again to make it one.
*/
if (endkernel & (endkernel - 1))
b--;
if ((b & 1) == 0)
b--;
/*
* Create a TLB1 mapping for the kernel in AS1.
*/
const u_int kslot = e500_alloc_tlb1_entry();
struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
kxtlb->e_tlb.tlb_va = 0;
kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
kxtlb->e_tlb.tlb_asid = KERNEL_PID;
kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
hwtlb_write(kxtlb->e_hwtlb, true);
/*
* Now that we have a TLB mapping in AS1 for the kernel and its
* stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
*/
const register_t saved_msr = mfmsr();
mtmsr(saved_msr | PSL_DS | PSL_IS);
__asm volatile("isync");
/*
*** Invalidate all the TLB0 entries.
*/
e500_tlb_invalidate_all();
/*
*** Now let's see if we have any entries in TLB1 that would
*** overlap the ones we are about to install. If so, nuke 'em.
*/
for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
&& (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
e500_free_tlb1_entry(xtlb, i, false);
}
}
/*
*** Now we can add the TLB entries that will map physical
*** memory. If bit 0 [MSB] in slotmask is set, then tlb
*** entry 0 contains a mapping for physical memory...
*/
struct e500_xtlb *entries = tlb1->tlb1_entries;
while (slotmask != 0) {
const u_int slot = __builtin_clz(slotmask);
hwtlb_write(entries[slot].e_hwtlb, false);
entries += slot + 1;
slotmask <<= slot + 1;
}
/*
*** Synchronize the TLB and the instruction stream.
*/
__asm volatile("tlbsync");
__asm volatile("isync");
/*
*** Switch back to AS 0.
*/
mtmsr(saved_msr);
__asm volatile("isync");
/*
* Free the temporary TLB1 entry.
*/
e500_free_tlb1_entry(kxtlb, kslot, true);
}
/*
* Finally set the MAS4 defaults.
*/
mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
/*
* Invalidate all the TLB0 entries.
*/
e500_tlb_invalidate_all();
}
void
e500_tlb_minimize(vaddr_t endkernel)
{
#ifdef PMAP_MINIMALTLB
struct e500_tlb1 * const tlb1 = &e500_tlb1;
extern uint32_t _fdata[];
u_int slot;
paddr_t boot_page = cpu_read_4(GUR_BPTR);
if (boot_page & BPTR_EN) {
/*
* shift it to an address
*/
boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
pmap_kvptefill(boot_page, boot_page + NBPG,
PTE_M | PTE_xR | PTE_xW | PTE_xX);
}
KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
KASSERT((uintptr_t)_fdata == 0x400000);
struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
const u_int tmp_slot = e500_alloc_tlb1_entry();
KASSERT(tmp_slot != (u_int) -1);
struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
tmp_xtlb->e_tlb = xtlb->e_tlb;
tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
hwtlb_write(tmp_xtlb->e_hwtlb, true);
const u_int text_slot = e500_alloc_tlb1_entry();
KASSERT(text_slot != (u_int)-1);
struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
text_xtlb->e_tlb.tlb_va = 0;
text_xtlb->e_tlb.tlb_size = 0x400000;
text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
text_xtlb->e_tlb.tlb_asid = 0;
text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
const u_int data_slot = e500_alloc_tlb1_entry();
KASSERT(data_slot != (u_int)-1);
struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
data_xtlb->e_tlb.tlb_va = 0x400000;
data_xtlb->e_tlb.tlb_size = 0x400000;
data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
data_xtlb->e_tlb.tlb_asid = 0;
data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
const register_t msr = mfmsr();
const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
__asm __volatile(
"mtmsr %[ts_msr]" "\n\t"
"sync" "\n\t"
"isync"
:: [ts_msr] "r" (ts_msr));
#if 0
hwtlb_write(text_xtlb->e_hwtlb, false);
hwtlb_write(data_xtlb->e_hwtlb, false);
e500_free_tlb1_entry(xtlb, slot, true);
#endif
__asm __volatile(
"mtmsr %[msr]" "\n\t"
"sync" "\n\t"
"isync"
:: [msr] "r" (msr));
e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
#endif /* PMAP_MINIMALTLB */
}