- don't use managed mappings/backing objects for wired memory allocations.
save some resources like pv_entry. also fix (most of) PR/27030.
- simplify kernel memory management API.
- simplify pmap bootstrap of some ports.
- some related cleanups.
which bustype should be attached with a specific call to config_found()
(from a "mainbus" or a bus bridge).
Do it for isa/eisa/mca and pci/agp for now. These buses all attach to
an mi interface attribute "isabus", "eisabus" etc., and the autoconf
framework now allows to specify an interface attribute on config_found()
and config_search(), which limits the search of matching config data
to these which attach to that specific attribute.
So we basically have to call config_found_ia(..., "foobus", ...) where
such a bus is attached.
As a consequence, where a "mainbus" or alike also attaches other
devices (eg CPUs) which do not attach to a specific attribute yet,
we need at least pass an attribute name (different from "foobus") so
that the foo bus is not found at these places. This made some minor
changes necessary which are not obviously related to the mentioned buses.
enabled on amd64). Add a dmat64 field to various PCI attach structures,
and pass it down where needed. Implement a simple new function called
pci_dma64_available(pa) to test if 64bit DMA addresses may be used.
This returns 1 iff _PCI_HAVE_DMA64 is defined in <machine/pci_machdep.h>,
and there is more than 4G of memory.
This is based upon Jason's work on xscale.
Most of the interrupt handling code is now written in C using an asm stub to
call into the C code.
spl* now only updates a software mask, and does not update the hardware,
this should be much faster.
The new code works well on cats, it's untested on netwinder, but should work.
The code implements generic soft interrupts.
More work is still required to bring the isa interrupt handling code upto
scratch currently all isa interrupts are handled at IPL_BIO on the footbridge.
This may cause isa interrupts to be handled later than they should be.
I plan to fix this in the near future.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
add rd, pc, #foo - . - 8 -> adr rd, foo
ldr rd, [pc, #foo - . - 8] -> ldr rd, foo
Also, when saving the return address for a function pointer call, use
"mov lr, pc" just before the call unless the return address is somewhere
other than just after the call site.
Finally, a few obvious little micro-optimisations like using LDR directly
rather than ADR followed by LDR, and loading directly into PC rather than
bouncing via R0.
joins other machdep files)
Saves maintaining multiple copies of the same thing, the only differences
were:
IRQ line used on the footbridge (made that a define in include/isa_machdep.h)
name of a dma_ranges variable contained arch name, so just made it generic.
When the read value is 0, reset the timer (don't wait till the next loop round to reset it)
Add a bit of debug to the calibration stuff to make sure its working ok.
Currently statclock runs at 64hz, maybe it should be faster or slower, I did
try it being the same as hz, but that just made it look like we spent 10% of
time handling interrupts, rather than the 3% that this gives.
Also fix the IPL_LEVELS for netwinder.
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
Change the bus_dmamap_sync() macro to test the ops argument against pre-
and post- constants. The compiler will optimize out dead code because
of the constants. Since post- operations are not needed on ARM (except
for ISA bounce buffers), this eliminate a large number of function calls
which are noops, each of which cost at least 6 cycles just in the call
and return overhead (not to mention whatever other useless work the
compiler decides to do in the callee).
A new "arm32_dma_range" structure now describes a DMA window, with
a system address base, bus address base, and length. In addition to
providing info about which memory regions are legal for DMA, the new
structure provides address translation support, as well.
As before, if a tag does not list any ranges, then all addresses are
considered valid, and no DMA address translation is performed.
This allows us to remove a large chunk of code which was duplicated and
tweaked slightly (to do the address translation) from the stock ARM
bus_dma in the XScale IOP and ARM Integrator ports.
Test compiled on all ARM platforms, test booted on Intel IQ80321 and Shark.
NULL for root PCI busses. For busses behind a bridge, it points to
a persistent copy of the bridge's pcitag_t. This can be very useful
for machine-dependent PCI bus enumeration code.
* Implement a machine-dependent pci_enumerate_bus() for sparc64 which
uses OFW device nodes to enumerate the bus. When a PCI bus that is
behind a bridge is attached, pci_attach_hook() allocates a new PCI
chipset tag for the new bus and sets it's "curnode" to the OFW node
of the bridge. This is used as a starting point when enumerating
that bus. Root busses get the OFW node of the host bridge (psycho).
* Garbage-collect "ofpci" and "ofppb" from the sparc64 port.
until the footbridge is attached we still have to rely on a loop. This
uses TIMER_3 running at 100Hz.
Sadly this doesn't appear to fix the tlp problems, which either means that this
delay routine is not as accurate as it should/could be or tlp is still broken.