PR#23470, with minor updates by me. This is only the syscall support
from that PR, for now.
Changes: port over fix from FreeBSD for multicast address generation.
Changed bcopy to memcpy. For now, #ifdef notyet the portions of
kern_uuid.c that are meant to be used by (currently nonexistent) other
things in the kernel. Added syscall to COMPAT_FREEBSD as well, though
that's currently not useful, as any program new enough to use this call
also uses other syscalls we don't (yet) emulate.
* lpt device is defined in MI place (dev/ppbus/files.ppbus), dev/ic/lpt.c
is included there too; dev/ic/lpt.c is not included if ppbus is
configured or if there is alternative platform lpt (like for pc532)
* g/c MD lpt definitions and custom puc/upc attachments,
glue moved to conf/files and dev/pci/files.pci respectively; remove
device lpt definition from dev/isa/files.isa
* add ppbus parport attribute, atppc device attachments, adjust plip and lpt
glue
systems that don't have a dedicated feeper. It's up to MD code to enable
this by having the "audiobell" attribute and calling audiobell() at the
appropriate moment.
Code for making noise in the kernel from Richard Earnshaw. Simple synthesizer
design from the RISC OS Programmer's Reference manual.
virtual memory reservation and a private pool of memory pages -- by a scheme
based on memory pools.
This allows better utilization of memory because buffers can now be allocated
with a granularity finer than the system's native page size (useful for
filesystems with e.g. 1k or 2k fragment sizes). It also avoids fragmentation
of virtual to physical memory mappings (due to the former fixed virtual
address reservation) resulting in better utilization of MMU resources on some
platforms. Finally, the scheme is more flexible by allowing run-time decisions
on the amount of memory to be used for buffers.
On the other hand, the effectiveness of the LRU queue for buffer recycling
may be somewhat reduced compared to the traditional method since, due to the
nature of the pool based memory allocation, the actual least recently used
buffer may release its memory to a pool different from the one needed by a
newly allocated buffer. However, this effect will kick in only if the
system is under memory pressure.
Uses a hook in spec_strategy() to save data written from a mounted
file system to its block device and a hook in dounmount().
Not enabled by default in any kernel config.
Approved by: Frank van der Linden <fvdl@netbsd.org>
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
http://mail-index.netbsd.org/tech-kern/2003/09/25/0006.html
This adds a device (atabus) between IDE controllers and wd or atapibus, to
have each ATA channel show up in the device tree. Later there will be atabus
devices in /dev, so that we can do IOCTL on them.
Each atabus has its own kernel thread, to handle operations that needs polling,
e.g. reset and others.
Device probing on each bus it defered to the atabus thread creation.
This allows to do the reset and basic device probes in parallel, which reduce
boot time on systems with several pciide controllers.
which is automatically included during kernel config, and add comments
to individual machine-dependant majors.* files to assign new MI majors
in MI file.
Range 0-191 is reserved for machine-specific assignments, range
192+ are MI assignments.
Follows recent discussion on tech-kern@
interface controllers (of varying intelligence levels).
Contributed by Wasabi Systems, Inc. Primarily written by Steve Woodford,
with some modification by me.
code is derived from Sam Leffler's FreeBSD port of OCF, which is in
turn a port of Angelos Keromytis's OpenBSD work.
Credit to Sam and Angelos, any blame for the NetBSD port to me.
adapters. Currently supports:
* LSI 53c1030 Ultra320 SCSI
* LSI FC909, FC909A, FC919, and FC929 Fibre Channel
Ported from the FreeBSD "mpt" driver, written by Greg Ansley. Thanks
to Frank van der Linden for testing and some bug finding.
This work was sponsored by Wasabi Systems, Inc.
This "oosiop" driver was originally written by Shuichiro URATA
for arc port, and then it was modified by me to make it work
also on hp700.
This driver has been tested on my NEC Express5800/240 with 53c700-66
for several months, and also tested on HP9000 735/125 with 53c700
(though current hp700 port has been broken since SA merge).
Both sync transfer and disconnect/reselect work fine,
but tagged queuing is not implemented yet.