catch kernel stack overflows. This bumps UPAGES from 2 to 4 (one unmapped),
because struct user take 1 page then there's the unmapped page, and
then the 2 pages for the kernel stack. If the NOREDZONE option is
set, UPAGES is 2 as before, and no unmapped page is used.
particular problem on hosts with only wireless interfaces that are
definitely not safe to use as entropy sources.
Add arc4randbytes() which hands out bytes from the same source used
by arc4random(). This is intended to be a _temporary_ interface
until we can design and implement a better general PRNG interface
that is decoupled from the entropy-pool implementation.
Modify key_randomfill() (used only for initialization vectors on
SA creation and via key_sa_stir_iv(), which does not "stir",
despite its name) to use arc4randbytes() instead of pulling bits
directly from the entropy pool. It is my hope that this change
will pose minimal integration problems for the KAME folks as the
random-pool interface is *already* different between each BSD
variant; this just simplifies the NetBSD case and solves a
fairly serious problem.
Note that it is generally considered acceptable cryptographic
practice to use a fast stream cipher to generate IVs for encryption
with stronger block ciphers. For example, the use of "non-Approved"
PRNGs to generate IVs for "Approved" block ciphers is explicitly
sanctioned by FIPS 140-2.
1) Speed up arc4random(). We make arc4randbyte() inline, which makes this
not much slower than, say, the other arc4 implementation in our kernel.
We also replace four calls to arc4randbyte() with a loop, saving about
20% on some processors where the "unrolled" arc4randbyte() calls would
needlessly stomp the cache.
2) Address various problems with the initialization/"stirring" code,
primarily in the area of handling of the source data from the kernel
entropy pool. We used to:
a) Ask the entropy pool for 32 bytes
b) If we got zero bytes, key with junk from the stack (ouch!)
which has some nasty implications, to say the least. For
example, we're most likely to get zero bytes at boot time,
when the stack contents are even more predictable than usual.
c) If we got less than 32 bytes but more than zero bytes, use
however many bytes we got as the arc4 key, copying it
repeatedly as per usual arc4 key setup.
Because of the way NetBSD's entropy pool works, this was
mostly harmless, because if you ask for RND_EXTRACT_ANY,
you always get as many bytes as you ask for. However,
this is probably a security hole in the original FreeBSD
code, where AFAICT you might end up using an 8-bit arc4
key -- not good, much worse than using the output of the
entropy pool hash function even when it thinks it only
has 8 bits of entropy to give you.
One thing this code could do on NetBSD that was not so
good was to replace a key with a lot of entropy with
one with less entropy. That's clearly counterproductive.
The new code, instead:
a) Asks for 32 good bytes. If it gets them, use them as the
arc4 key in the usual way.
b) Tracks how many entropy bytes the key it's replacing had.
If the new entropy request got less bytes, leave the old
key in place. Note that the first time through, the "old
key" had zero bytes, so we'll always replace it.
c) If we get less then 32 bytes but more than we had, request
EXTRACT_ANY bytes from the entropy pool, padding the key
out to 32 bytes which we then use as the arc4 key in the
usual way.
This is still really all rather backwards. Instead of this generator
deciding to rekey itself using a basically arbitrary metric, it should
register a callback so that the entropy pool code could rekey it when
a lot of bits were available. Details at 11.
Finally, rename the "stir" function (which did not stir) to "rekey",
which is what it actually does.
that HAVE_STRUCT_STAT_ST_FLAGS implies this.
- Set HAVE_LCHFLAGS for native builds
- Clean up {CLEAR,SET,CHANGE}FLAGS macros, and only provide if
HAVE_STRUCT_STAT_ST_FLAGS is set.
(Fixes compilation as a tool on MacOS X, noted by Allen Briggs.)
it gathers. Nuke it. Without update_size, FreeReconMapListElem() can
do without mapPtr. That, in turn, means crunch_list() doesn't need a
mapPtr either.
of all CPUs it wants entries shot down on, and waits until it
clears. pmap_tlb_doshootdown clears the bit of the current CPU
in this mask.
Also, change simple_lock -> __cpu_simple_lock in IPI path.