cd ${KERNSRCDIR}/${KERNARCHDIR}/compile && ${PRINTOBJDIR}
This is far simpler than the previous system, and more robust with
objdirs built via BSDOBJDIR.
The previous method of finding KERNOBJDIR when using BSDOBJDIR by
referencing _SRC_TOP_OBJ_ from another directory was extremely
fragile due to the depth first tree walk by <bsd.subdir.mk>, and
the caching of _SRC_TOP_OBJ_ (with MAKEOVERRIDES) which would be
empty on the *first* pass to create fresh objdirs.
This change requires adding sys/arch/*/compile/Makefile to create
the objdir in that directory, and descending into arch/*/compile
from arch/*/Makefile. Remove the now-unnecessary .keep_me files
whilst here.
Per lengthy discussion with Andrew Brown.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
add rd, pc, #foo - . - 8 -> adr rd, foo
ldr rd, [pc, #foo - . - 8] -> ldr rd, foo
Also, when saving the return address for a function pointer call, use
"mov lr, pc" just before the call unless the return address is somewhere
other than just after the call site.
Finally, a few obvious little micro-optimisations like using LDR directly
rather than ADR followed by LDR, and loading directly into PC rather than
bouncing via R0.
- when moving the stylus, the cursor was updated only when the screen was
released
- when moving the stylus for too long, the kernel crashed
This was caused by improper delays in SSP read and write, and by interrupt
hammering while the screen is touched). Both led to the machine handling
interrupts all the time and been unable to schedule the X server, therefore
the lack of cursor refresh.
The problem is fixed by
- masking touchpanel interrupts as soon as we are already handling them
- creating a kernel thread (j720ssp) that takes care of keyboard and
touchpanel I/O, instead of doing it in a softintr.
- reducing delays in j720ssp_readwrite operations from 5ms to 0.1ms.
NB: If the delay in j720ssp_readwrite operation is lowered to 0.1, then
switching on the screen using the power key pushes brightness to maximum.
In order to avoid this, we introduce a wait argument to j720ssp_readwrite,
which specify how many microseconds we have to wait. j720ssp_readwrite is
called with wait = 100 everywhere except in j720lcdparam where it is called
with wait = 500. That way it works.
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
to do uncached memory access during VM operations (which can be
quite expensive on some CPUs).
We currently write-back PTEs as soon as they're modified; there is
some room for optimization (to write them back in larger chunks).
For PTEs in the APTE space (i.e. PTEs for pmaps that describe another
process's address space), PTEs must also be evicted from the cache
complete (PTEs in PTE space will be evicted durint a context switch).
counters. These counters do not exist on all CPUs, but where they
do exist, can be used for counting events such as dcache misses that
would otherwise be difficult or impossible to instrument by code
inspection or hardware simulation.
pmc(9) is meant to be a general interface. Initially, the Intel XScale
counters are the only ones supported.
into platform-specific initialization code, giving platform-specific
code control over which free list a given chunk of memory gets put
onto.
Changes are essentially mechanical. Test compiled for all ARM
platforms, test booted on Intel IQ80321 and Shark.
Discussed some time ago on port-arm.
* Pull in dev/mii/files.mii from conf/files, rather than playing
the magic "files include order" dance in N machine-dependent
configuration definitions.
file, <arm/cpuconf.h>, which pulls in "opt_cputypes.h" and then defines
the following:
* CPU_NTYPES -- now many CPU types are configured into the kernel. What
you really want to know is "== 1" or "> 1".
* Defines ARM_ARCH_2, ARM_ARCH_3, ARM_ARCH_4, ARM_ARCH_5, depending
on which ARM architecture versions are configured (based on CPU_*
options). Also defines ARM_NARCH to determins how many architecture
versions are configured.
* Defines ARM_MMU_MEMC, ARM_MMU_GENERIC, ARM_MMU_XSCALE depending on
which classes of ARM MMUs are configured into the kernel, and ARM_NMMUS
to determine how many MMU classes are configured.
Remove the needless inclusion of "opt_cputypes.h" in several places.
Convert remaining users to <arm/cpuconf.h>.
and pte_l2_s_cache_mode. The cache-meaningful bits are different
for these descriptor types on some processor models.
* Add pte_*_cache_mask, corresponding to each above, which has a mask
of the cache-meangful bits, and define those for generic and XScale
MMU classes. Note, the L2_S_CACHE_MASK_xscale definition requires
use of the Extended Small Page L2 descriptor (the "X" bit overlaps
with AP bits otherwise).
Significant cleanup, here, including better PTE bit names.
* Add XScale PTE extensions (ECC enable, write-allocate cache mode).
* Mechanical changes everywhere else to update for new pte.h. While
doing this, two bugs (as a result of typos) were fixed in
arm/arm32/bus_dma.c
evbarm/integrator/int_bus_dma.c
* Don't refer to VA 0, instead refer to a new variable: vector_page
* Delete the old zero_page_*() functions, replacing them with a new
one: vector_page_setprot().
* When manipulating vector page mappings in user pmaps, only do so if
the vector page is below KERNEL_BASE (if it's above KERNEL_BASE, the
vector page is mapped by the kernel pmap).
* Add a new function, arm32_vector_init(), which takes the virtual
address of the vector page (which MUST be valid when the function
is called) and a bitmask of vectors the kernel is going to take
over, and performs all vector page initialization, including setting
the V bit in the CPU Control register ("relocate vectors to high
address"), if necessary.
indicating an unhandled "command". ERESTART is -1, which can lead to
confusion. ERESTART has been moved to -3 and EPASSTHROUGH has been
placed at -4. No ioctl code should now return -1 anywhere. The
ioctl() system call is now properly restartable.
Note that this has been compiled on some systems, cats, IQ80310, IPAQ, netwinder and shark (note that shark's build is currently broken due to other reasons), but only actually run on cats.
Shark doesn't make use of the functionality as I believe there has to be a correlation between OFW and the kernel tables so that calls into OFW work.
to the L1 table and a virtual address, and no pointer to the L2 table.
The L2 table will be looked up by pmap_map_entry(), which will panic
if the there is no L2 table for the requested VA.
NOTE: IT IS EXTREMELY IMPORTANT THAT THE CORRECT VIRTUAL ADDRESS
BE PROVIDED TO pmap_map_entry()! Notably, the code that mapped
the kernel L2 tables into the kernel PT mapping L2 table were not
passing actual virtual addresses, but rather offsets into the range
mapped by the L2 table. I have fixed up all of these call sites,
and tested the resulting kernel on both an IQ80310 and a Shark.
Other portmasters should examine their pmap_map_entry() calls if
their new kernels fail.
and let pmap_map_chunk() lookup the correct one to use for the
current VA. Eliminate the "l2table" argument to pmap_map_chunk().
Add a second L2 table for mapping kernel text/data/bss on the
IQ80310 (fixes booting kernels with ramdisks).
MACHINE_ARCH since <arm/param.h> already sets it correctly to "arm".
* For platforms which are not yet ELF, defined MACHINE_ARCH to "arm32"
if __ELF__ is not defined by the C preprocessor.
* In <arm/param.h>, clarify the rules about when MACHINE and
MACHINE_ARCH are defined, and to what. Also, for ELF platforms,
int the non-_KERNEL case, force both MACHINE and MACHINE_ARCH to "arm",
rather than allowing platform-specifc code to define either.
pass. Rather than providing a whole slew of cache operations that
aren't ever used, distill them down to some useful primitives:
icache_sync_all Synchronize I-cache
icache_sync_range Synchronize I-cache range
dcache_wbinv_all Write-back and Invalidate D-cache
dcache_wbinv_range Write-back and Invalidate D-cache range
dcache_inv_range Invalidate D-cache range
dcache_wb_range Write-back D-cache range
idcache_wbinv_all Write-back and Invalidate D-cache,
Invalidate I-cache
idcache_wbinv_range Write-back and Invalidate D-cache,
Invalidate I-cache range
Note: This does not yet include an overhaul of the actual asm files
that implement the primitives. Instead, we've provided a safe default
for each CPU type, and the individual CPU types can now be optimized
one at a time.
* Use a common set of exception handlers for all arm32 platforms.
* New FIQ framework based on discussions with Ben Harris, shared
between arm26 and arm32.
Any problems reported by testers have been fixed, and massive
cross-compiling of kernels has shown that any problems that remain
with actually building kernels are not related to this.
not support a value (e.g., it's to be used as "options FOO" instead of
"options FOO=xxx"). options that take a value were converted to
defparam recently.
- minor whitespace & formatting cleanups
<arm/arm32/vmparam.h> (mostly the stuff that's tied to the pmap
implementation).
- Since the MMU definitions in pte.h are specific to ARM processors
that support 32-bit mode, move pte.h to <arm/arm32/pte.h>.
- Make the Netwinder startup file build again (use PT_B|PT_C, rather
than PT_CACHEABLE, since the latter expands to a variable these days).
model in use for a given platform (__PROG26 vs __PROG32), then pulls
in <arm/types.h>. Change each ARM port to pull in <arm/arm26/types.h>
or <arm/arm32/types.h> as appropriate. Change all references to PROG26
and PROG32 to __PROG26 and __PROG32. Eliminate the opt_progmode.h
header file.
- replace opt_kgdb_machdep.h with opt_kgdb.h
- defparam opt_kgdb.h:
KGDB_DEV KGDB_DEVNAME KGDB_DEVADDR KGDB_DEVRATE KGDB_DEVMODE
- move from opt_ddbparam.h to opt_ddb.h:
DDB_FROMCONSOLE DDB_ONPANIC DDB_HISTORY_SIZE DDB_BREAK_CHAR SYMTAB_SPACE
- replace KGDBDEV with KGDB_DEV
- replace KGDBADDR with KGDB_DEVADDR
- replace KGDBMODE with KGDB_DEVMODE
- replace KGDBRATE with KGDB_DEVRATE
- use `9600' instead of `0x2580' for 9600 baud rate
- use correct quotes for options KGDB_DEVNAME="\"com\""
- use correct quotes for options KGDB_DEV="17*256+0"
- remove unnecessary dependancy on Makefile for kgdb_stub.o
- minor whitespace cleanup
the etc Makefile override that by putting USETOOLS into $.MAKEOVERRIDES
This way the default for kernel compiles is still to use the installed
toolchain instead of depending on $TOOLDIR. $TOOLDIR can be used by
simply adding USETOOLS=yes to the command line as usual.
Adjust each ports template to set the default no setting and also pull in
bsd.own.mk if they weren't already to ensure they'll build correctly
with the new toolchain setup.
This will allow improvements to the pmaps so that they can more easily defer expensive operations, eg tlb/cache flush, til the last possible moment.
Currently this is a no-op on most platforms, so they should see no difference.
Reviewed by Jason.