NetBSD/sys/arch/evbarm/beagle/beagle_machdep.c

1131 lines
34 KiB
C
Raw Normal View History

/* $NetBSD: beagle_machdep.c,v 1.61 2015/07/22 14:10:45 maxv Exp $ */
/*
* Machine dependent functions for kernel setup for TI OSK5912 board.
* Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
*
* Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Genetec Corporation may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 2007 Microsoft
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Microsoft
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: beagle_machdep.c,v 1.61 2015/07/22 14:10:45 maxv Exp $");
#include "opt_machdep.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_ipkdb.h"
#include "opt_md.h"
#include "opt_com.h"
#include "opt_omap.h"
2013-04-15 22:56:38 +04:00
#include "com.h"
#include "omapwdt32k.h"
#include "prcm.h"
#include "sdhc.h"
#include "ukbd.h"
#include "arml2cc.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/exec.h>
#include <sys/kernel.h>
#include <sys/ksyms.h>
#include <sys/msgbuf.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/gpio.h>
#include <uvm/uvm_extern.h>
#include <sys/conf.h>
#include <dev/cons.h>
#include <dev/md.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#include <machine/bootconfig.h>
#include <arm/armreg.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <arm/mainbus/mainbus.h>
#include <dev/ic/ns16550reg.h>
#include <dev/ic/comreg.h>
#include <arm/omap/omap_com.h>
#include <arm/omap/omap_var.h>
#include <arm/omap/omap_wdtvar.h>
#include <arm/omap/omap2_prcm.h>
#include <arm/omap/omap2_gpio.h>
#ifdef TI_AM335X
# if NPRCM == 0
# error no prcm device configured.
# endif
# include <arm/omap/am335x_prcm.h>
# include <dev/i2c/tps65217pmicvar.h>
# if NSDHC > 0
# include <arm/omap/omap2_obiovar.h>
# include <arm/omap/omap3_sdmmcreg.h>
# endif
#endif
#ifdef CPU_CORTEXA9
#include <arm/cortex/pl310_reg.h>
#include <arm/cortex/scu_reg.h>
#include <arm/cortex/a9tmr_var.h>
#include <arm/cortex/pl310_var.h>
#endif
#if defined(CPU_CORTEXA7) || defined(CPU_CORTEXA15)
#include <arm/cortex/gtmr_var.h>
#endif
#include <evbarm/include/autoconf.h>
#include <evbarm/beagle/beagle.h>
#include <dev/i2c/i2cvar.h>
#include <dev/i2c/ddcreg.h>
#include <dev/usb/ukbdvar.h>
BootConfig bootconfig; /* Boot config storage */
static char bootargs[MAX_BOOT_STRING];
char *boot_args = NULL;
char *boot_file = NULL;
static uint8_t beagle_edid[128]; /* EDID storage */
u_int uboot_args[4] = { 0 }; /* filled in by beagle_start.S (not in bss) */
/* Same things, but for the free (unused by the kernel) memory. */
extern char KERNEL_BASE_phys[];
extern char _end[];
#if NCOM > 0
int use_fb_console = false;
#else
int use_fb_console = true;
#endif
#ifdef CPU_CORTEXA15
uint32_t omap5_cnt_frq;
#endif
#if defined(TI_AM335X)
device_t pmic_dev = NULL;
#endif
/*
* Macros to translate between physical and virtual for a subset of the
* kernel address space. *Not* for general use.
*/
#define KERNEL_BASE_PHYS ((paddr_t)KERNEL_BASE_phys)
#define OMAP_L4_CORE_VOFFSET (OMAP_L4_CORE_VBASE - OMAP_L4_CORE_BASE)
/* Prototypes */
void consinit(void);
#ifdef KGDB
static void kgdb_port_init(void);
#endif
static void init_clocks(void);
static void beagle_device_register(device_t, void *);
static void beagle_reset(void);
#if defined(OMAP_3XXX) || defined(TI_DM37XX)
static void omap3_cpu_clk(void);
#endif
#if defined(OMAP_4XXX) || defined(OMAP_5XXX)
static void omap4_cpu_clk(void);
#endif
#if defined(OMAP_4XXX) || defined(OMAP_5XXX) || defined(TI_AM335X)
static psize_t emif_memprobe(void);
#endif
#if defined(OMAP_3XXX)
static psize_t omap3_memprobe(void);
#endif
bs_protos(bs_notimpl);
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif
/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel, and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/
#define _A(a) ((a) & ~L1_S_OFFSET)
#define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
static const struct pmap_devmap devmap[] = {
{
/*
* Map the first 1MB of L4 Core area
2008-10-22 21:29:33 +04:00
* this gets us the ICU, I2C, USB, GPT[10-11], MMC, McSPI
* UART[12], clock manager, sDMA, ...
*/
.pd_va = _A(OMAP_L4_CORE_VBASE),
.pd_pa = _A(OMAP_L4_CORE_BASE),
.pd_size = _S(OMAP_L4_CORE_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
{
/*
2008-10-22 21:29:33 +04:00
* Map the all 1MB of the L4 Core area
* this gets us the console UART3, GPT[2-9], WDT1,
* and GPIO[2-6].
*/
.pd_va = _A(OMAP_L4_PERIPHERAL_VBASE),
.pd_pa = _A(OMAP_L4_PERIPHERAL_BASE),
.pd_size = _S(OMAP_L4_PERIPHERAL_SIZE),
2008-10-22 21:29:33 +04:00
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
#if defined(OMAP_L4_WAKEUP_BASE) && defined(OMAP_L4_WAKEUP_VBASE)
2008-10-22 21:29:33 +04:00
{
/*
* Map all 256KB of the L4 Wakeup area
* this gets us GPIO1, WDT2, GPT1, 32K and power/reset regs
*/
.pd_va = _A(OMAP_L4_WAKEUP_VBASE),
.pd_pa = _A(OMAP_L4_WAKEUP_BASE),
.pd_size = _S(OMAP_L4_WAKEUP_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
#endif
#ifdef OMAP_L4_FAST_BASE
{
/*
* Map all of the L4 Fast area
* this gets us GPIO1, WDT2, GPT1, 32K and power/reset regs
*/
.pd_va = _A(OMAP_L4_FAST_VBASE),
.pd_pa = _A(OMAP_L4_FAST_BASE),
.pd_size = _S(OMAP_L4_FAST_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
#endif
#ifdef OMAP_EMIF1_BASE
{
/*
* Map all of the L4 EMIF1 area
*/
.pd_va = _A(OMAP_EMIF1_VBASE),
.pd_pa = _A(OMAP_EMIF1_BASE),
.pd_size = _S(OMAP_EMIF1_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
#endif
#ifdef OMAP_EMIF2_BASE
{
/*
* Map all of the L4 EMIF2 area
*/
.pd_va = _A(OMAP_EMIF2_VBASE),
.pd_pa = _A(OMAP_EMIF2_BASE),
.pd_size = _S(OMAP_EMIF2_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
#endif
#ifdef OMAP_L4_ABE_BASE
{
/*
* Map all of the L4 Fast area
* this gets us GPIO1, WDT2, GPT1, 32K and power/reset regs
*/
.pd_va = _A(OMAP_L4_ABE_VBASE),
.pd_pa = _A(OMAP_L4_ABE_BASE),
.pd_size = _S(OMAP_L4_ABE_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
#endif
#ifdef OMAP_SDRC_BASE
{
/*
* Map SDRAM Controller (SDRC) registers
*/
.pd_va = _A(OMAP_SDRC_VBASE),
.pd_pa = _A(OMAP_SDRC_BASE),
.pd_size = _S(OMAP_SDRC_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE,
},
#endif
{0}
};
#undef _A
#undef _S
#ifdef DDB
static void
beagle_db_trap(int where)
{
#if NOMAPWDT32K > 0
static int oldwatchdogstate;
if (where) {
oldwatchdogstate = omapwdt32k_enable(0);
} else {
omapwdt32k_enable(oldwatchdogstate);
}
#endif
}
#endif
2008-10-22 21:29:33 +04:00
void beagle_putchar(char c);
void
2008-10-22 21:29:33 +04:00
beagle_putchar(char c)
{
#if NCOM > 0
volatile uint32_t *com0addr = (volatile uint32_t *)CONSADDR_VA;
int timo = 150000;
while ((com0addr[com_lsr] & LSR_TXRDY) == 0) {
if (--timo == 0)
break;
}
com0addr[com_data] = c;
while ((com0addr[com_lsr] & LSR_TXRDY) == 0) {
if (--timo == 0)
break;
}
#endif
}
/*
* u_int initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
u_int
initarm(void *arg)
{
psize_t ram_size = 0;
char *ptr;
#if 1
2008-10-22 21:29:33 +04:00
beagle_putchar('d');
#endif
/*
* When we enter here, we are using a temporary first level
* translation table with section entries in it to cover the OBIO
* peripherals and SDRAM. The temporary first level translation table
* is at the end of SDRAM.
*/
#if defined(OMAP_3XXX) || defined(TI_DM37XX)
omap3_cpu_clk(); // find our CPU speed.
#endif
#if defined(OMAP_4XXX) || defined(OMAP_5XXX)
omap4_cpu_clk(); // find our CPU speed.
#endif
#if defined(TI_AM335X)
prcm_bootstrap(OMAP2_CM_BASE + OMAP_L4_CORE_VOFFSET);
// find our reference clock.
am335x_sys_clk(TI_AM335X_CTLMOD_BASE + OMAP_L4_CORE_VOFFSET);
am335x_cpu_clk(); // find our CPU speed.
#endif
/* Heads up ... Setup the CPU / MMU / TLB functions. */
if (set_cpufuncs())
panic("cpu not recognized!");
init_clocks();
/* The console is going to try to map things. Give pmap a devmap. */
pmap_devmap_register(devmap);
consinit();
#ifdef CPU_CORTEXA15
#ifdef MULTIPROCESSOR
arm_cpu_max = 1 + __SHIFTOUT(armreg_l2ctrl_read(), L2CTRL_NUMCPU);
#endif
#endif
#if defined(OMAP_4XXX)
#if NARML2CC > 0
/*
* Probe the PL310 L2CC
*/
const bus_space_handle_t pl310_bh = OMAP4_L2CC_BASE
+ OMAP_L4_PERIPHERAL_VBASE - OMAP_L4_PERIPHERAL_BASE;
arml2cc_init(&omap_bs_tag, pl310_bh, 0);
beagle_putchar('l');
#endif
#ifdef MULTIPROCESSOR
const bus_space_handle_t scu_bh = OMAP4_SCU_BASE
+ OMAP_L4_PERIPHERAL_VBASE - OMAP_L4_PERIPHERAL_BASE;
uint32_t scu_cfg = bus_space_read_4(&omap_bs_tag, scu_bh, SCU_CFG);
arm_cpu_max = 1 + (scu_cfg & SCU_CFG_CPUMAX);
beagle_putchar('s');
#endif
#endif /* OMAP_4XXX */
#if defined(TI_AM335X) && defined(VERBOSE_INIT_ARM)
am335x_cpu_clk(); // find our CPU speed.
#endif
#if 1
2008-10-22 21:29:33 +04:00
beagle_putchar('h');
#endif
printf("\nuboot arg = %#x, %#x, %#x, %#x\n",
uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]);
#ifdef KGDB
kgdb_port_init();
#endif
cpu_reset_address = beagle_reset;
#ifdef VERBOSE_INIT_ARM
/* Talk to the user */
2008-10-22 21:29:33 +04:00
printf("\nNetBSD/evbarm (beagle) booting ...\n");
#endif
#ifdef BOOT_ARGS
char mi_bootargs[] = BOOT_ARGS;
parse_mi_bootargs(mi_bootargs);
#endif
#ifdef VERBOSE_INIT_ARM
printf("initarm: Configuring system ...\n");
#endif
#if !defined(CPU_CORTEXA8)
printf("initarm: cbar=%#x\n", armreg_cbar_read());
#endif
/*
* Set up the variables that define the availability of physical
* memory.
*/
#if defined(OMAP_3XXX)
ram_size = omap3_memprobe();
#endif
#if defined(OMAP_4XXX) || defined(OMAP_5XXX) || defined(TI_AM335X)
ram_size = emif_memprobe();
#endif
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) {
printf("%s: dropping RAM size from %luMB to %uMB\n",
__func__, (unsigned long) (ram_size >> 20),
(KERNEL_VM_BASE - KERNEL_BASE) >> 20);
ram_size = KERNEL_VM_BASE - KERNEL_BASE;
}
#endif
/*
* If MEMSIZE specified less than what we really have, limit ourselves
* to that.
*/
#ifdef MEMSIZE
if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024)
ram_size = (unsigned)MEMSIZE * 1024 * 1024;
#else
KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined");
#endif
/* Fake bootconfig structure for the benefit of pmap.c. */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = KERNEL_BASE_PHYS & -0x400000;
bootconfig.dram[0].pages = ram_size / PAGE_SIZE;
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
const bool mapallmem_p = true;
KASSERT(ram_size <= KERNEL_VM_BASE - KERNEL_BASE);
#else
const bool mapallmem_p = false;
#endif
KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0);
arm32_bootmem_init(bootconfig.dram[0].address, ram_size,
KERNEL_BASE_PHYS);
arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_LOW, 0, devmap,
mapallmem_p);
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
/* "bootargs" env variable is passed as 4th argument to kernel */
if (uboot_args[3] - 0x80000000 < ram_size) {
strlcpy(bootargs, (char *)uboot_args[3], sizeof(bootargs));
}
#endif
boot_args = bootargs;
parse_mi_bootargs(boot_args);
/* we've a specific device_register routine */
evbarm_device_register = beagle_device_register;
2008-10-22 21:29:33 +04:00
db_trap_callback = beagle_db_trap;
if (get_bootconf_option(boot_args, "console",
BOOTOPT_TYPE_STRING, &ptr) && strncmp(ptr, "fb", 2) == 0) {
use_fb_console = true;
}
return initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0);
}
static void
init_clocks(void)
{
#ifdef NOTYET
static volatile uint32_t * const clksel_reg = (volatile uint32_t *) (OMAP3530_L4_WAKEUP_VBASE + OMAP2_CM_BASE + OMAP2_CM_CLKSEL_MPU - OMAP3530_L4_WAKEUP_BASE);
uint32_t v;
2008-10-22 21:29:33 +04:00
beagle_putchar('E');
v = *clksel_reg;
2008-10-22 21:29:33 +04:00
beagle_putchar('F');
if (v != OMAP3530_CM_CLKSEL_MPU_FULLSPEED) {
printf("Changed CPU speed from half (%d) ", v);
*clksel_reg = OMAP3530_CM_CLKSEL_MPU_FULLSPEED;
printf("to full speed.\n");
}
2008-10-22 21:29:33 +04:00
beagle_putchar('G');
#endif
}
#if NCOM > 0
#ifndef CONSADDR
#error Specify the address of the console UART with the CONSADDR option.
#endif
#ifndef CONSPEED
#define CONSPEED 115200
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
static const bus_addr_t consaddr = CONSADDR;
static const int conspeed = CONSPEED;
static const int conmode = CONMODE;
#endif
void
consinit(void)
{
#if NCOM > 0
bus_space_handle_t bh;
#endif
static int consinit_called = 0;
if (consinit_called != 0)
return;
consinit_called = 1;
2008-10-22 21:29:33 +04:00
beagle_putchar('e');
#if NCOM > 0
if (bus_space_map(&omap_a4x_bs_tag, consaddr, OMAP_COM_SIZE, 0, &bh))
panic("Serial console can not be mapped.");
if (comcnattach(&omap_a4x_bs_tag, consaddr, conspeed,
OMAP_COM_FREQ, COM_TYPE_NORMAL, conmode))
panic("Serial console can not be initialized.");
bus_space_unmap(&omap_a4x_bs_tag, bh, OMAP_COM_SIZE);
#endif
#if NUKBD > 0
ukbd_cnattach(); /* allow USB keyboard to become console */
#endif
2008-10-22 21:29:33 +04:00
beagle_putchar('f');
beagle_putchar('g');
}
void
beagle_reset(void)
{
2013-06-19 03:40:38 +04:00
#if defined(OMAP_4XXX)
*(volatile uint32_t *)(OMAP_L4_CORE_VBASE + (OMAP_L4_WAKEUP_BASE - OMAP_L4_CORE_BASE) + OMAP4_PRM_RSTCTRL) = OMAP4_PRM_RSTCTRL_WARM;
2013-06-19 03:40:38 +04:00
#elif defined(OMAP_5XXX)
*(volatile uint32_t *)(OMAP_L4_CORE_VBASE + (OMAP_L4_WAKEUP_BASE - OMAP_L4_CORE_BASE) + OMAP5_PRM_RSTCTRL) = OMAP4_PRM_RSTCTRL_COLD;
#elif defined(TI_AM335X)
*(volatile uint32_t *)(OMAP_L4_CORE_VBASE + (OMAP2_CM_BASE - OMAP_L4_CORE_BASE) + AM335X_PRCM_PRM_DEVICE + PRM_RSTCTRL) = RST_GLOBAL_WARM_SW;
#else
#if NPRCM > 0
prcm_cold_reset();
#endif
#if NOMAPWDT32K > 0
omapwdt32k_reboot();
#endif
#endif
}
#ifdef KGDB
#ifndef KGDB_DEVADDR
#error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
#endif
#ifndef KGDB_DEVRATE
#define KGDB_DEVRATE 115200
#endif
#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
static const int comkgdbspeed = KGDB_DEVRATE;
static const int comkgdbmode = KGDB_DEVMODE;
void
static kgdb_port_init(void)
{
static int kgdbsinit_called = 0;
if (kgdbsinit_called != 0)
return;
kgdbsinit_called = 1;
bus_space_handle_t bh;
if (bus_space_map(&omap_a4x_bs_tag, comkgdbaddr, OMAP_COM_SIZE, 0, &bh))
panic("kgdb port can not be mapped.");
if (com_kgdb_attach(&omap_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
OMAP_COM_FREQ, COM_TYPE_NORMAL, comkgdbmode))
panic("KGDB uart can not be initialized.");
bus_space_unmap(&omap_a4x_bs_tag, bh, OMAP_COM_SIZE);
}
#endif
#if defined(OMAP_3XXX) || defined(TI_DM37XX)
void
omap3_cpu_clk(void)
{
const vaddr_t prm_base = OMAP2_PRM_BASE + OMAP_L4_CORE_VOFFSET;
const uint32_t prm_clksel = *(volatile uint32_t *)(prm_base + PLL_MOD + OMAP3_PRM_CLKSEL);
static const uint32_t prm_clksel_freqs[] = OMAP3_PRM_CLKSEL_FREQS;
const uint32_t sys_clk = prm_clksel_freqs[__SHIFTOUT(prm_clksel, OMAP3_PRM_CLKSEL_CLKIN)];
const vaddr_t cm_base = OMAP2_CM_BASE - OMAP_L4_CORE_BASE + OMAP_L4_CORE_VBASE;
const uint32_t dpll1 = *(volatile uint32_t *)(cm_base + OMAP3_CM_CLKSEL1_PLL_MPU);
const uint32_t dpll2 = *(volatile uint32_t *)(cm_base + OMAP3_CM_CLKSEL2_PLL_MPU);
const uint32_t m = __SHIFTOUT(dpll1, OMAP3_CM_CLKSEL1_PLL_MPU_DPLL_MULT);
const uint32_t n = __SHIFTOUT(dpll1, OMAP3_CM_CLKSEL1_PLL_MPU_DPLL_DIV);
const uint32_t m2 = __SHIFTOUT(dpll2, OMAP3_CM_CLKSEL2_PLL_MPU_DPLL_CLKOUT_DIV);
/*
* MPU_CLK supplies ARM_FCLK which is twice the CPU frequency.
*/
curcpu()->ci_data.cpu_cc_freq = ((sys_clk * m) / ((n + 1) * m2 * 2)) * OMAP3_PRM_CLKSEL_MULT;
omap_sys_clk = sys_clk * OMAP3_PRM_CLKSEL_MULT;
}
#endif /* OMAP_3XXX || TI_DM37XX */
#if defined(OMAP_4XXX) || defined(OMAP_5XXX)
void
omap4_cpu_clk(void)
{
const vaddr_t prm_base = OMAP2_PRM_BASE + OMAP_L4_CORE_VOFFSET;
const vaddr_t cm_base = OMAP2_CM_BASE + OMAP_L4_CORE_VOFFSET;
static const uint32_t cm_clksel_freqs[] = OMAP4_CM_CLKSEL_FREQS;
const uint32_t prm_clksel = *(volatile uint32_t *)(prm_base + OMAP4_CM_SYS_CLKSEL);
const u_int clksel = __SHIFTOUT(prm_clksel, OMAP4_CM_SYS_CLKSEL_CLKIN);
const uint32_t sys_clk = cm_clksel_freqs[clksel];
const uint32_t dpll1 = *(volatile uint32_t *)(cm_base + OMAP4_CM_CLKSEL_DPLL_MPU);
const uint32_t dpll2 = *(volatile uint32_t *)(cm_base + OMAP4_CM_DIV_M2_DPLL_MPU);
const uint32_t m = __SHIFTOUT(dpll1, OMAP4_CM_CLKSEL_DPLL_MPU_DPLL_MULT);
const uint32_t n = __SHIFTOUT(dpll1, OMAP4_CM_CLKSEL_DPLL_MPU_DPLL_DIV);
const uint32_t m2 = __SHIFTOUT(dpll2, OMAP4_CM_DIV_M2_DPLL_MPU_DPLL_CLKOUT_DIV);
/*
* MPU_CLK supplies ARM_FCLK which is twice the CPU frequency.
*/
curcpu()->ci_data.cpu_cc_freq = ((sys_clk * 2 * m) / ((n + 1) * m2)) * OMAP4_CM_CLKSEL_MULT / 2;
omap_sys_clk = sys_clk * OMAP4_CM_CLKSEL_MULT;
printf("%s: %"PRIu64": sys_clk=%u m=%u n=%u (%u) m2=%u mult=%u\n",
__func__, curcpu()->ci_data.cpu_cc_freq,
sys_clk, m, n, n+1, m2, OMAP4_CM_CLKSEL_MULT);
#if defined(CPU_CORTEXA15)
if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0) {
beagle_putchar('0');
uint32_t voffset = OMAP_L4_PERIPHERAL_VBASE - OMAP_L4_PERIPHERAL_BASE;
uint32_t frac1_reg = OMAP5_PRM_FRAC_INCREMENTER_NUMERATOR;
uint32_t frac2_reg = OMAP5_PRM_FRAC_INCREMENTER_DENUMERATOR_RELOAD;
uint32_t frac1 = *(volatile uint32_t *)(frac1_reg + voffset);
beagle_putchar('1');
uint32_t frac2 = *(volatile uint32_t *)(frac2_reg + voffset);
beagle_putchar('2');
uint32_t numer = __SHIFTOUT(frac1, PRM_FRAC_INCR_NUM_SYS_MODE);
uint32_t denom = __SHIFTOUT(frac2, PRM_FRAC_INCR_DENUM_DENOMINATOR);
uint32_t freq = (uint64_t)omap_sys_clk * numer / denom;
#if 1
if (freq != OMAP5_GTIMER_FREQ) {
static uint16_t numer_demon[8][2] = {
{ 0, 0 }, /* not used */
{ 26 * 64, 26 * 125 }, /* 12.0Mhz */
{ 2 * 768, 2 * 1625 }, /* 13.0Mhz */
{ 0, 0 }, /* 16.8Mhz (not used) */
{ 130 * 8, 130 * 25 }, /* 19.2Mhz */
{ 2 * 384, 2 * 1625 }, /* 26.0Mhz */
{ 3 * 256, 3 * 1125 }, /* 27.0Mhz */
{ 130 * 4, 130 * 25 }, /* 38.4Mhz */
};
if (numer_demon[clksel][0] != numer) {
frac1 &= ~PRM_FRAC_INCR_NUM_SYS_MODE;
frac1 |= numer_demon[clksel][0];
}
if (numer_demon[clksel][1] != denom) {
frac2 &= ~PRM_FRAC_INCR_DENUM_DENOMINATOR;
frac2 |= numer_demon[clksel][1];
}
*(volatile uint32_t *)(frac1_reg + voffset) = frac1;
*(volatile uint32_t *)(frac2_reg + voffset) = frac2
| PRM_FRAC_INCR_DENUM_RELOAD;
freq = OMAP5_GTIMER_FREQ;
}
#endif
beagle_putchar('3');
#if 0
if (gtimer_freq != freq) {
armreg_cnt_frq_write(freq); // secure only
}
#endif
omap5_cnt_frq = freq;
beagle_putchar('4');
}
#endif
}
#endif /* OMAP_4XXX || OMAP_5XXX */
#if defined(OMAP_4XXX) || defined(OMAP_5XXX) || defined(TI_AM335X)
static inline uint32_t
emif_read_sdram_config(vaddr_t emif_base)
{
#ifdef CPU_CORTEXA15
return 0x61851b32; // XXX until i figure out why deref emif_base dies
#else
emif_base += EMIF_SDRAM_CONFIG;
//printf("%s: sdram_config @ %#"PRIxVADDR" = ", __func__, emif_base);
uint32_t v = *(const volatile uint32_t *)(emif_base);
//printf("%#x\n", v);
return v;
#endif
}
static psize_t
emif_memprobe(void)
{
uint32_t sdram_config = emif_read_sdram_config(OMAP_EMIF1_VBASE);
psize_t memsize = 1L;
#if defined(TI_AM335X)
/*
* The original bbone's u-boot misprograms the EMIF so correct it
* if we detect if it has the wrong value.
*/
if (sdram_config == 0x41805332)
2013-05-12 06:55:54 +04:00
sdram_config -= __SHIFTIN(1, SDRAM_CONFIG_RSIZE);
#endif
#ifdef OMAP_EMIF2_VBASE
/*
* OMAP4 and OMAP5 have two EMIFs so if the 2nd one is configured
* like the first, we have twice the memory.
*/
const uint32_t sdram_config2 = emif_read_sdram_config(OMAP_EMIF2_VBASE);
if (sdram_config2 == sdram_config)
memsize <<= 1;
#endif
const u_int ebank = __SHIFTOUT(sdram_config, SDRAM_CONFIG_EBANK);
const u_int ibank = __SHIFTOUT(sdram_config, SDRAM_CONFIG_IBANK);
const u_int rsize = 9 + __SHIFTOUT(sdram_config, SDRAM_CONFIG_RSIZE);
const u_int pagesize = 8 + __SHIFTOUT(sdram_config, SDRAM_CONFIG_PAGESIZE);
const u_int width = 2 - __SHIFTOUT(sdram_config, SDRAM_CONFIG_WIDTH);
#ifdef TI_AM335X
KASSERT(ebank == 0); // No chip selects on Sitara
#endif
memsize <<= (ebank + ibank + rsize + pagesize + width);
#ifdef VERBOSE_INIT_ARM
printf("sdram_config = %#x, memsize = %uMB\n", sdram_config,
(u_int)(memsize >> 20));
#endif
return memsize;
}
#endif
#if defined(OMAP_3XXX)
#define SDRC_MCFG(p) (0x80 + (0x30 * (p)))
#define SDRC_MCFG_MEMSIZE(m) ((((m) & __BITS(8,17)) >> 8) * 2)
static psize_t
omap3_memprobe(void)
{
const vaddr_t gpmc_base = OMAP_SDRC_VBASE;
const uint32_t mcfg0 = *(volatile uint32_t *)(gpmc_base + SDRC_MCFG(0));
const uint32_t mcfg1 = *(volatile uint32_t *)(gpmc_base + SDRC_MCFG(1));
printf("mcfg0 = %#x, size %lld\n", mcfg0, SDRC_MCFG_MEMSIZE(mcfg0));
printf("mcfg1 = %#x, size %lld\n", mcfg1, SDRC_MCFG_MEMSIZE(mcfg1));
return (SDRC_MCFG_MEMSIZE(mcfg0) + SDRC_MCFG_MEMSIZE(mcfg1)) * 1024 * 1024;
}
#endif
/*
* EDID can be read from DVI-D (HDMI) port on BeagleBoard from
* If EDID data is present, this function fills in the supplied edid_buf
* and returns true. Otherwise, it returns false and the contents of the
* buffer are undefined.
*/
static bool
beagle_read_edid(uint8_t *edid_buf, size_t edid_buflen)
{
2013-02-10 02:11:29 +04:00
#if defined(OMAP_3530)
i2c_tag_t ic = NULL;
uint8_t reg;
int error;
/* On Beagleboard, EDID is accessed using I2C2 ("omapiic2"). */
extern i2c_tag_t omap3_i2c_get_tag(device_t);
ic = omap3_i2c_get_tag(device_find_by_xname("omapiic2"));
if (ic == NULL)
return false;
iic_acquire_bus(ic, 0);
for (reg = DDC_EDID_START; reg < edid_buflen; reg++) {
error = iic_exec(ic, I2C_OP_READ_WITH_STOP, DDC_ADDR,
&reg, sizeof(reg), &edid_buf[reg], 1, 0);
if (error)
break;
}
iic_release_bus(ic, 0);
return error == 0 ? true : false;
2013-02-10 02:11:29 +04:00
#else
return false;
#endif
}
void
beagle_device_register(device_t self, void *aux)
{
prop_dictionary_t dict = device_properties(self);
if (device_is_a(self, "armperiph")
&& device_is_a(device_parent(self), "mainbus")) {
/*
* XXX KLUDGE ALERT XXX
* The iot mainbus supplies is completely wrong since it scales
* addresses by 2. The simpliest remedy is to replace with our
* bus space used for the armcore regisers (which armperiph uses).
*/
struct mainbus_attach_args * const mb = aux;
mb->mb_iot = &omap_bs_tag;
return;
}
#ifdef CPU_CORTEXA9
/*
* We need to tell the A9 Global/Watchdog Timer
* what frequency it runs at.
*/
if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
/*
* This clock always runs at (arm_clk div 2) and only goes
* to timers that are part of the A9 MP core subsystem.
*/
prop_dictionary_set_uint32(dict, "frequency",
curcpu()->ci_data.cpu_cc_freq / 2);
return;
}
#endif
#ifdef CPU_CORTEXA15
if (device_is_a(self, "armgtmr")) {
/*
* The frequency of the generic timer was figured out when
* determined the cpu frequency.
*/
prop_dictionary_set_uint32(dict, "frequency", omap5_cnt_frq);
}
#endif
if (device_is_a(self, "ehci")) {
#if defined(OMAP_3530)
/* XXX Beagleboard specific port configuration */
prop_dictionary_set_uint16(dict, "nports", 3);
prop_dictionary_set_cstring(dict, "port0-mode", "none");
prop_dictionary_set_cstring(dict, "port1-mode", "phy");
prop_dictionary_set_cstring(dict, "port2-mode", "none");
prop_dictionary_set_bool(dict, "phy-reset", true);
prop_dictionary_set_int16(dict, "port0-gpio", -1);
prop_dictionary_set_int16(dict, "port1-gpio", 147);
prop_dictionary_set_bool(dict, "port1-gpioval", true);
prop_dictionary_set_int16(dict, "port2-gpio", -1);
prop_dictionary_set_uint16(dict, "dpll5-m", 443);
prop_dictionary_set_uint16(dict, "dpll5-n", 11);
prop_dictionary_set_uint16(dict, "dpll5-m2", 4);
#endif
#if defined(TI_DM37XX)
/* XXX Beagleboard specific port configuration */
prop_dictionary_set_uint16(dict, "nports", 3);
prop_dictionary_set_cstring(dict, "port0-mode", "none");
prop_dictionary_set_cstring(dict, "port1-mode", "phy");
prop_dictionary_set_cstring(dict, "port2-mode", "none");
prop_dictionary_set_bool(dict, "phy-reset", true);
prop_dictionary_set_int16(dict, "port0-gpio", -1);
prop_dictionary_set_int16(dict, "port1-gpio", 56);
prop_dictionary_set_bool(dict, "port1-gpioval", true);
prop_dictionary_set_int16(dict, "port2-gpio", -1);
#if 0
prop_dictionary_set_uint16(dict, "dpll5-m", 443);
prop_dictionary_set_uint16(dict, "dpll5-n", 11);
prop_dictionary_set_uint16(dict, "dpll5-m2", 4);
#endif
#endif
#if defined(OMAP_4430)
prop_dictionary_set_uint16(dict, "nports", 2);
prop_dictionary_set_bool(dict, "phy-reset", false);
prop_dictionary_set_cstring(dict, "port0-mode", "none");
prop_dictionary_set_int16(dict, "port0-gpio", -1);
prop_dictionary_set_cstring(dict, "port1-mode", "phy");
prop_dictionary_set_int16(dict, "port1-gpio", 62);
prop_dictionary_set_bool(dict, "port1-gpioval", true);
omap2_gpio_ctl(1, GPIO_PIN_OUTPUT);
omap2_gpio_write(1, 1); // Power Hub
#endif
#if defined(OMAP_5430)
prop_dictionary_set_uint16(dict, "nports", 3);
prop_dictionary_set_cstring(dict, "port0-mode", "none");
prop_dictionary_set_int16(dict, "port0-gpio", -1);
prop_dictionary_set_cstring(dict, "port1-mode", "hsic");
prop_dictionary_set_int16(dict, "port1-gpio", -1);
prop_dictionary_set_cstring(dict, "port2-mode", "hsic");
prop_dictionary_set_int16(dict, "port2-gpio", -1);
#endif
#if defined(OMAP_5430)
bus_space_tag_t iot = &omap_bs_tag;
bus_space_handle_t ioh;
omap2_gpio_ctl(80, GPIO_PIN_OUTPUT);
omap2_gpio_write(80, 0);
prop_dictionary_set_uint16(dict, "nports", 1);
prop_dictionary_set_cstring(dict, "port0-mode", "hsi");
#if 0
prop_dictionary_set_bool(dict, "phy-reset", true);
prop_dictionary_set_int16(dict, "port0-gpio", 80);
prop_dictionary_set_bool(dict, "port0-gpioval", true);
#endif
int rv = bus_space_map(iot, OMAP5_CM_CTL_WKUP_REF_CLK0_OUT_REF_CLK1_OUT, 4, 0, &ioh);
KASSERT(rv == 0);
uint32_t v = bus_space_read_4(iot, ioh, 0);
v &= 0xffff;
v |= __SHIFTIN(OMAP5_CM_CTL_WKUP_MUXMODE1_REF_CLK1_OUT,
OMAP5_CM_CTL_WKUP_MUXMODE1);
bus_space_write_4(iot, ioh, 0, v);
bus_space_unmap(iot, ioh, 4);
omap2_gpio_write(80, 1);
2012-12-12 19:20:44 +04:00
#endif
return;
}
if (device_is_a(self, "sdhc")) {
#if defined(OMAP_3430) || defined(OMAP_3530)
2012-12-12 19:20:44 +04:00
prop_dictionary_set_uint32(dict, "clkmask", 0);
2012-12-31 17:20:16 +04:00
prop_dictionary_set_bool(dict, "8bit", true);
#endif
#if defined(TI_AM335X) && 0 // doesn't work
struct obio_attach_args * const obio = aux;
if (obio->obio_addr == SDMMC2_BASE_TIAM335X)
prop_dictionary_set_bool(dict, "8bit", true);
#endif
return;
}
if (device_is_a(self, "omapfb")) {
if (beagle_read_edid(beagle_edid, sizeof(beagle_edid))) {
prop_dictionary_set(dict, "EDID",
prop_data_create_data(beagle_edid,
sizeof(beagle_edid)));
}
if (use_fb_console)
prop_dictionary_set_bool(dict, "is_console", true);
return;
}
if (device_is_a(self, "tifb")) {
if (use_fb_console)
prop_dictionary_set_bool(dict, "is_console", true);
return;
}
if (device_is_a(self, "com")) {
if (use_fb_console)
prop_dictionary_set_bool(dict, "is_console", false);
}
#if defined(TI_AM335X)
if (device_is_a(self, "tps65217pmic")) {
pmic_dev = self;
}
#endif
}
#if defined(TI_AM335X)
int
set_mpu_volt(int mvolt)
{
if (pmic_dev == NULL)
return ENODEV;
/* MPU voltage is on vdcd2 */
return tps65217pmic_set_volt(pmic_dev, "DCDC2", mvolt);
}
#endif