NetBSD/usr.sbin/sysinst/msg.mbr.fr

140 lines
4.3 KiB
Plaintext
Raw Permalink Normal View History

Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
/* $NetBSD: msg.mbr.fr,v 1.6 2019/06/12 06:20:17 martin Exp $ */
/*
* Copyright 1997 Piermont Information Systems Inc.
* All rights reserved.
*
* Written by Philip A. Nelson for Piermont Information Systems Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Piermont Information Systems Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY PIERMONT INFORMATION SYSTEMS INC. ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL PIERMONT INFORMATION SYSTEMS INC. BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/* MD Message catalog -- french, i386 version */
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message mbr_part_header_1 {Type}
message mbr_part_header_2 {Mount}
.if BOOTSEL
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message mbr_part_header_3 {Menu}
.endif
message noactivepart
{Vous n'avez pas choisi de partition active.
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
Cela peut emp<6D>cher votre syst<73>me de d<>marrer correctement.}
message fixactivepart
{
2009-10-18 23:31:53 +04:00
Dois-je marquer la partition NetBSD comme active ?}
message setbiosgeom
{
La g<>om<6F>trie du disque doit <20>tre pr<70>cis<69>e.
2009-10-18 23:31:53 +04:00
Veuillez entrer le nombre de secteurs par piste (maximum 63) et le nombre de
t<EFBFBD>tes (maximum 256) que le BIOS utilise pour acc<63>der au disque.
Le nombre de cylindres sera d<>duit de la taille du disque.
}
message nobiosgeom
{Sysinst n'a pas pu d<>terminer automatiquement la g<>om<6F>trie utilis<69>e par le
BIOS pour votre disque.
La g<>om<6F>trie physique est %d cylindres %d secteurs %d t<>tes\n}
message biosguess
2015-04-20 17:10:31 +03:00
{En utilisant les informations d<>j<EFBFBD> pr<70>sentes sur le disque, il semble que
la g<>om<6F>trie utilis<69>e par le BIOS soit de %d cylindres, %d secteurs et %d t<>tes\n}
message realgeom
2009-10-18 23:31:53 +04:00
{ g<>om r<>elle : %d cylindres, %d t<>tes, %d secteurs (pour information)\n}
message biosgeom
2009-10-18 23:31:53 +04:00
{ g<>om fdisk : %d cylindres, %d t<>tes, %d secteurs \n}
message ptn_active
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
{active}
.if BOOTSEL
message bootmenu
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
{menu de d<>marrage}
message boot_dflt
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
{d<>faut}
.endif
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message mbr_get_ptn_id {Type de partition (0..255)}
message Only_one_extended_ptn {Il ne peut y avoir qu'une seule partition <20>tendue}
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message mbr_flags {ad}
message mbr_flag_desc
.if BOOTSEL
{, (Ac)tive partition, bootselect (d)efault}
.else
{, (A)ctive partition}
.endif
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
/* Called with: Example
* $0 = device name wd0
* $1 = outer partitioning name Master Boot Record (MBR)
* $2 = short version of $1 MBR
*/
message dofdisk
{Configuration de la table de partition $2...
}
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message wmbrfail
{L'<27>criture du MBR a <20>chou<6F>. Nous ne pouvons continuer.}
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message mbr_inside_ext
{The partition needs to start within the Extended Partition}
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message mbr_ext_nofit
{The Extended Partition must be able to hold all contained partitions}
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message mbr_ext_not_empty
{Can not delete a non-empty extended partition!}
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message mbr_no_free_primary_have_ext
{This partition is not inside the extended partition
and there is no free slot in the primary boot record}
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message mbr_no_free_primary_no_ext
{No space in the primary boot block.
You may consider deleting one partition, creating an extended partition
and then re-adding the deleted one}
2003-07-07 16:55:48 +04:00
.if 0
.if BOOTSEL
message Set_timeout_value
{Modifier le temps d'attente}
message bootseltimeout
2009-10-18 23:31:53 +04:00
{Temps d'attente : %d\n}
.endif
2003-07-07 16:55:48 +04:00
.endif
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
message parttype_mbr {Master Boot Record (MBR)}
message parttype_mbr_short {MBR}
message mbr_type_invalid {Invalid partition type (0 .. 255)}