unicorn/uc.c
2022-02-12 14:15:54 +01:00

2249 lines
57 KiB
C

/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
/* Modified for Unicorn Engine by Chen Huitao<chenhuitao@hfmrit.com>, 2020 */
#if defined(UNICORN_HAS_OSXKERNEL)
#include <libkern/libkern.h>
#else
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#endif
#include <time.h> // nanosleep
#include <string.h>
#include "uc_priv.h"
// target specific headers
#include "qemu/target/m68k/unicorn.h"
#include "qemu/target/i386/unicorn.h"
#include "qemu/target/arm/unicorn.h"
#include "qemu/target/mips/unicorn.h"
#include "qemu/target/sparc/unicorn.h"
#include "qemu/target/ppc/unicorn.h"
#include "qemu/target/riscv/unicorn.h"
#include "qemu/target/s390x/unicorn.h"
#include "qemu/include/qemu/queue.h"
#include "qemu-common.h"
UNICORN_EXPORT
unsigned int uc_version(unsigned int *major, unsigned int *minor)
{
if (major != NULL && minor != NULL) {
*major = UC_API_MAJOR;
*minor = UC_API_MINOR;
}
return (UC_API_MAJOR << 24) + (UC_API_MINOR << 16) + (UC_API_PATCH << 8) +
UC_API_EXTRA;
}
UNICORN_EXPORT
uc_err uc_errno(uc_engine *uc)
{
return uc->errnum;
}
UNICORN_EXPORT
const char *uc_strerror(uc_err code)
{
switch (code) {
default:
return "Unknown error code";
case UC_ERR_OK:
return "OK (UC_ERR_OK)";
case UC_ERR_NOMEM:
return "No memory available or memory not present (UC_ERR_NOMEM)";
case UC_ERR_ARCH:
return "Invalid/unsupported architecture (UC_ERR_ARCH)";
case UC_ERR_HANDLE:
return "Invalid handle (UC_ERR_HANDLE)";
case UC_ERR_MODE:
return "Invalid mode (UC_ERR_MODE)";
case UC_ERR_VERSION:
return "Different API version between core & binding (UC_ERR_VERSION)";
case UC_ERR_READ_UNMAPPED:
return "Invalid memory read (UC_ERR_READ_UNMAPPED)";
case UC_ERR_WRITE_UNMAPPED:
return "Invalid memory write (UC_ERR_WRITE_UNMAPPED)";
case UC_ERR_FETCH_UNMAPPED:
return "Invalid memory fetch (UC_ERR_FETCH_UNMAPPED)";
case UC_ERR_HOOK:
return "Invalid hook type (UC_ERR_HOOK)";
case UC_ERR_INSN_INVALID:
return "Invalid instruction (UC_ERR_INSN_INVALID)";
case UC_ERR_MAP:
return "Invalid memory mapping (UC_ERR_MAP)";
case UC_ERR_WRITE_PROT:
return "Write to write-protected memory (UC_ERR_WRITE_PROT)";
case UC_ERR_READ_PROT:
return "Read from non-readable memory (UC_ERR_READ_PROT)";
case UC_ERR_FETCH_PROT:
return "Fetch from non-executable memory (UC_ERR_FETCH_PROT)";
case UC_ERR_ARG:
return "Invalid argument (UC_ERR_ARG)";
case UC_ERR_READ_UNALIGNED:
return "Read from unaligned memory (UC_ERR_READ_UNALIGNED)";
case UC_ERR_WRITE_UNALIGNED:
return "Write to unaligned memory (UC_ERR_WRITE_UNALIGNED)";
case UC_ERR_FETCH_UNALIGNED:
return "Fetch from unaligned memory (UC_ERR_FETCH_UNALIGNED)";
case UC_ERR_RESOURCE:
return "Insufficient resource (UC_ERR_RESOURCE)";
case UC_ERR_EXCEPTION:
return "Unhandled CPU exception (UC_ERR_EXCEPTION)";
}
}
UNICORN_EXPORT
bool uc_arch_supported(uc_arch arch)
{
switch (arch) {
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM:
return true;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64:
return true;
#endif
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K:
return true;
#endif
#ifdef UNICORN_HAS_MIPS
case UC_ARCH_MIPS:
return true;
#endif
#ifdef UNICORN_HAS_PPC
case UC_ARCH_PPC:
return true;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC:
return true;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86:
return true;
#endif
#ifdef UNICORN_HAS_RISCV
case UC_ARCH_RISCV:
return true;
#endif
#ifdef UNICORN_HAS_S390X
case UC_ARCH_S390X:
return true;
#endif
/* Invalid or disabled arch */
default:
return false;
}
}
#define UC_INIT(uc) \
if (unlikely(!(uc)->init_done)) { \
int __init_ret = uc_init(uc); \
if (unlikely(__init_ret != UC_ERR_OK)) { \
return __init_ret; \
} \
}
static gint uc_exits_cmp(gconstpointer a, gconstpointer b, gpointer user_data)
{
uint64_t lhs = *((uint64_t *)a);
uint64_t rhs = *((uint64_t *)b);
if (lhs < rhs) {
return -1;
} else if (lhs == rhs) {
return 0;
} else {
return 1;
}
}
static uc_err uc_init(uc_engine *uc)
{
if (uc->init_done) {
return UC_ERR_HANDLE;
}
uc->exits = g_tree_new_full(uc_exits_cmp, NULL, g_free, NULL);
if (machine_initialize(uc)) {
return UC_ERR_RESOURCE;
}
// init fpu softfloat
uc->softfloat_initialize();
if (uc->reg_reset) {
uc->reg_reset(uc);
}
uc->init_done = true;
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_open(uc_arch arch, uc_mode mode, uc_engine **result)
{
struct uc_struct *uc;
if (arch < UC_ARCH_MAX) {
uc = calloc(1, sizeof(*uc));
if (!uc) {
// memory insufficient
return UC_ERR_NOMEM;
}
/* qemu/exec.c: phys_map_node_reserve() */
uc->alloc_hint = 16;
uc->errnum = UC_ERR_OK;
uc->arch = arch;
uc->mode = mode;
// uc->ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
QLIST_INIT(&uc->ram_list.blocks);
QTAILQ_INIT(&uc->memory_listeners);
QTAILQ_INIT(&uc->address_spaces);
switch (arch) {
default:
break;
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K:
if ((mode & ~UC_MODE_M68K_MASK) || !(mode & UC_MODE_BIG_ENDIAN)) {
free(uc);
return UC_ERR_MODE;
}
uc->init_arch = m68k_uc_init;
break;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86:
if ((mode & ~UC_MODE_X86_MASK) || (mode & UC_MODE_BIG_ENDIAN) ||
!(mode & (UC_MODE_16 | UC_MODE_32 | UC_MODE_64))) {
free(uc);
return UC_ERR_MODE;
}
uc->init_arch = x86_uc_init;
break;
#endif
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM:
if ((mode & ~UC_MODE_ARM_MASK)) {
free(uc);
return UC_ERR_MODE;
}
uc->init_arch = arm_uc_init;
if (mode & UC_MODE_THUMB) {
uc->thumb = 1;
}
break;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64:
if (mode & ~UC_MODE_ARM_MASK) {
free(uc);
return UC_ERR_MODE;
}
uc->init_arch = arm64_uc_init;
break;
#endif
#if defined(UNICORN_HAS_MIPS) || defined(UNICORN_HAS_MIPSEL) || \
defined(UNICORN_HAS_MIPS64) || defined(UNICORN_HAS_MIPS64EL)
case UC_ARCH_MIPS:
if ((mode & ~UC_MODE_MIPS_MASK) ||
!(mode & (UC_MODE_MIPS32 | UC_MODE_MIPS64))) {
free(uc);
return UC_ERR_MODE;
}
if (mode & UC_MODE_BIG_ENDIAN) {
#ifdef UNICORN_HAS_MIPS
if (mode & UC_MODE_MIPS32) {
uc->init_arch = mips_uc_init;
}
#endif
#ifdef UNICORN_HAS_MIPS64
if (mode & UC_MODE_MIPS64) {
uc->init_arch = mips64_uc_init;
}
#endif
} else { // little endian
#ifdef UNICORN_HAS_MIPSEL
if (mode & UC_MODE_MIPS32) {
uc->init_arch = mipsel_uc_init;
}
#endif
#ifdef UNICORN_HAS_MIPS64EL
if (mode & UC_MODE_MIPS64) {
uc->init_arch = mips64el_uc_init;
}
#endif
}
break;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC:
if ((mode & ~UC_MODE_SPARC_MASK) || !(mode & UC_MODE_BIG_ENDIAN) ||
!(mode & (UC_MODE_SPARC32 | UC_MODE_SPARC64))) {
free(uc);
return UC_ERR_MODE;
}
if (mode & UC_MODE_SPARC64) {
uc->init_arch = sparc64_uc_init;
} else {
uc->init_arch = sparc_uc_init;
}
break;
#endif
#ifdef UNICORN_HAS_PPC
case UC_ARCH_PPC:
if ((mode & ~UC_MODE_PPC_MASK) || !(mode & UC_MODE_BIG_ENDIAN) ||
!(mode & (UC_MODE_PPC32 | UC_MODE_PPC64))) {
free(uc);
return UC_ERR_MODE;
}
if (mode & UC_MODE_PPC64) {
uc->init_arch = ppc64_uc_init;
} else {
uc->init_arch = ppc_uc_init;
}
break;
#endif
#ifdef UNICORN_HAS_RISCV
case UC_ARCH_RISCV:
if ((mode & ~UC_MODE_RISCV_MASK) ||
!(mode & (UC_MODE_RISCV32 | UC_MODE_RISCV64))) {
free(uc);
return UC_ERR_MODE;
}
if (mode & UC_MODE_RISCV32) {
uc->init_arch = riscv32_uc_init;
} else if (mode & UC_MODE_RISCV64) {
uc->init_arch = riscv64_uc_init;
} else {
free(uc);
return UC_ERR_MODE;
}
break;
#endif
#ifdef UNICORN_HAS_S390X
case UC_ARCH_S390X:
if ((mode & ~UC_MODE_S390X_MASK) || !(mode & UC_MODE_BIG_ENDIAN)) {
free(uc);
return UC_ERR_MODE;
}
uc->init_arch = s390_uc_init;
break;
#endif
}
if (uc->init_arch == NULL) {
return UC_ERR_ARCH;
}
uc->init_done = false;
uc->cpu_model = INT_MAX; // INT_MAX means the default cpu model.
*result = uc;
return UC_ERR_OK;
} else {
return UC_ERR_ARCH;
}
}
UNICORN_EXPORT
uc_err uc_close(uc_engine *uc)
{
int i;
struct list_item *cur;
struct hook *hook;
MemoryRegion *mr;
if (!uc->init_done) {
free(uc);
return UC_ERR_OK;
}
// Cleanup internally.
if (uc->release) {
uc->release(uc->tcg_ctx);
}
g_free(uc->tcg_ctx);
// Cleanup CPU.
g_free(uc->cpu->cpu_ases);
g_free(uc->cpu->thread);
/* cpu */
free(uc->cpu);
/* flatviews */
g_hash_table_destroy(uc->flat_views);
// During flatviews destruction, we may still access memory regions.
// So we free them afterwards.
/* memory */
mr = &uc->io_mem_unassigned;
mr->destructor(mr);
mr = uc->system_io;
mr->destructor(mr);
mr = uc->system_memory;
mr->destructor(mr);
g_free(uc->system_memory);
g_free(uc->system_io);
// Thread relateds.
if (uc->qemu_thread_data) {
g_free(uc->qemu_thread_data);
}
/* free */
g_free(uc->init_target_page);
// Other auxilaries.
g_free(uc->l1_map);
if (uc->bounce.buffer) {
free(uc->bounce.buffer);
}
// free hooks and hook lists
for (i = 0; i < UC_HOOK_MAX; i++) {
cur = uc->hook[i].head;
// hook can be in more than one list
// so we refcount to know when to free
while (cur) {
hook = (struct hook *)cur->data;
if (--hook->refs == 0) {
free(hook);
}
cur = cur->next;
}
list_clear(&uc->hook[i]);
}
free(uc->mapped_blocks);
g_tree_destroy(uc->exits);
// finally, free uc itself.
memset(uc, 0, sizeof(*uc));
free(uc);
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_reg_read_batch(uc_engine *uc, int *ids, void **vals, int count)
{
int ret = UC_ERR_OK;
UC_INIT(uc);
if (uc->reg_read) {
ret = uc->reg_read(uc, (unsigned int *)ids, vals, count);
} else {
return UC_ERR_HANDLE;
}
return ret;
}
UNICORN_EXPORT
uc_err uc_reg_write_batch(uc_engine *uc, int *ids, void *const *vals, int count)
{
int ret = UC_ERR_OK;
UC_INIT(uc);
if (uc->reg_write) {
ret = uc->reg_write(uc, (unsigned int *)ids, vals, count);
} else {
return UC_ERR_HANDLE;
}
return ret;
}
UNICORN_EXPORT
uc_err uc_reg_read(uc_engine *uc, int regid, void *value)
{
UC_INIT(uc);
return uc_reg_read_batch(uc, &regid, &value, 1);
}
UNICORN_EXPORT
uc_err uc_reg_write(uc_engine *uc, int regid, const void *value)
{
UC_INIT(uc);
return uc_reg_write_batch(uc, &regid, (void *const *)&value, 1);
}
// check if a memory area is mapped
// this is complicated because an area can overlap adjacent blocks
static bool check_mem_area(uc_engine *uc, uint64_t address, size_t size)
{
size_t count = 0, len;
while (count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
len = (size_t)MIN(size - count, mr->end - address);
count += len;
address += len;
} else { // this address is not mapped in yet
break;
}
}
return (count == size);
}
UNICORN_EXPORT
uc_err uc_mem_read(uc_engine *uc, uint64_t address, void *_bytes, size_t size)
{
size_t count = 0, len;
uint8_t *bytes = _bytes;
UC_INIT(uc);
// qemu cpu_physical_memory_rw() size is an int
if (size > INT_MAX)
return UC_ERR_ARG;
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
if (!check_mem_area(uc, address, size)) {
return UC_ERR_READ_UNMAPPED;
}
// memory area can overlap adjacent memory blocks
while (count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
len = (size_t)MIN(size - count, mr->end - address);
if (uc->read_mem(&uc->address_space_memory, address, bytes, len) ==
false) {
break;
}
count += len;
address += len;
bytes += len;
} else { // this address is not mapped in yet
break;
}
}
if (count == size) {
return UC_ERR_OK;
} else {
return UC_ERR_READ_UNMAPPED;
}
}
UNICORN_EXPORT
uc_err uc_mem_write(uc_engine *uc, uint64_t address, const void *_bytes,
size_t size)
{
size_t count = 0, len;
const uint8_t *bytes = _bytes;
UC_INIT(uc);
// qemu cpu_physical_memory_rw() size is an int
if (size > INT_MAX)
return UC_ERR_ARG;
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
if (!check_mem_area(uc, address, size)) {
return UC_ERR_WRITE_UNMAPPED;
}
// memory area can overlap adjacent memory blocks
while (count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
uint32_t operms = mr->perms;
if (!(operms & UC_PROT_WRITE)) { // write protected
// but this is not the program accessing memory, so temporarily
// mark writable
uc->readonly_mem(mr, false);
}
len = (size_t)MIN(size - count, mr->end - address);
if (uc->write_mem(&uc->address_space_memory, address, bytes, len) ==
false) {
break;
}
if (!(operms & UC_PROT_WRITE)) { // write protected
// now write protect it again
uc->readonly_mem(mr, true);
}
count += len;
address += len;
bytes += len;
} else { // this address is not mapped in yet
break;
}
}
if (count == size) {
return UC_ERR_OK;
} else {
return UC_ERR_WRITE_UNMAPPED;
}
}
#define TIMEOUT_STEP 2 // microseconds
static void *_timeout_fn(void *arg)
{
struct uc_struct *uc = arg;
int64_t current_time = get_clock();
do {
usleep(TIMEOUT_STEP);
// perhaps emulation is even done before timeout?
if (uc->emulation_done) {
break;
}
} while ((uint64_t)(get_clock() - current_time) < uc->timeout);
// timeout before emulation is done?
if (!uc->emulation_done) {
uc->timed_out = true;
// force emulation to stop
uc_emu_stop(uc);
}
return NULL;
}
static void enable_emu_timer(uc_engine *uc, uint64_t timeout)
{
uc->timeout = timeout;
qemu_thread_create(uc, &uc->timer, "timeout", _timeout_fn, uc,
QEMU_THREAD_JOINABLE);
}
static void hook_count_cb(struct uc_struct *uc, uint64_t address, uint32_t size,
void *user_data)
{
// count this instruction. ah ah ah.
uc->emu_counter++;
// printf(":: emu counter = %u, at %lx\n", uc->emu_counter, address);
if (uc->emu_counter > uc->emu_count) {
// printf(":: emu counter = %u, stop emulation\n", uc->emu_counter);
uc_emu_stop(uc);
}
}
static void clear_deleted_hooks(uc_engine *uc)
{
struct list_item *cur;
struct hook *hook;
int i;
for (cur = uc->hooks_to_del.head;
cur != NULL && (hook = (struct hook *)cur->data); cur = cur->next) {
assert(hook->to_delete);
for (i = 0; i < UC_HOOK_MAX; i++) {
if (list_remove(&uc->hook[i], (void *)hook)) {
if (--hook->refs == 0) {
uc->del_inline_hook(uc, hook);
free(hook);
}
// a hook cannot be twice in the same list
break;
}
}
}
list_clear(&uc->hooks_to_del);
}
UNICORN_EXPORT
uc_err uc_emu_start(uc_engine *uc, uint64_t begin, uint64_t until,
uint64_t timeout, size_t count)
{
// reset the counter
uc->emu_counter = 0;
uc->invalid_error = UC_ERR_OK;
uc->emulation_done = false;
uc->size_recur_mem = 0;
uc->timed_out = false;
uc->first_tb = true;
UC_INIT(uc);
// Advance the nested levels. We must decrease the level count by one when
// we return from uc_emu_start.
if (uc->nested_level >= UC_MAX_NESTED_LEVEL) {
// We can't support so many nested levels.
return UC_ERR_RESOURCE;
}
uc->nested_level++;
switch (uc->arch) {
default:
break;
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K:
uc_reg_write(uc, UC_M68K_REG_PC, &begin);
break;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86:
switch (uc->mode) {
default:
break;
case UC_MODE_16: {
uint64_t ip;
uint16_t cs;
uc_reg_read(uc, UC_X86_REG_CS, &cs);
// compensate for later adding up IP & CS
ip = begin - cs * 16;
uc_reg_write(uc, UC_X86_REG_IP, &ip);
break;
}
case UC_MODE_32:
uc_reg_write(uc, UC_X86_REG_EIP, &begin);
break;
case UC_MODE_64:
uc_reg_write(uc, UC_X86_REG_RIP, &begin);
break;
}
break;
#endif
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM:
uc_reg_write(uc, UC_ARM_REG_R15, &begin);
break;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64:
uc_reg_write(uc, UC_ARM64_REG_PC, &begin);
break;
#endif
#ifdef UNICORN_HAS_MIPS
case UC_ARCH_MIPS:
// TODO: MIPS32/MIPS64/BIGENDIAN etc
uc_reg_write(uc, UC_MIPS_REG_PC, &begin);
break;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC:
// TODO: Sparc/Sparc64
uc_reg_write(uc, UC_SPARC_REG_PC, &begin);
break;
#endif
#ifdef UNICORN_HAS_PPC
case UC_ARCH_PPC:
uc_reg_write(uc, UC_PPC_REG_PC, &begin);
break;
#endif
#ifdef UNICORN_HAS_RISCV
case UC_ARCH_RISCV:
uc_reg_write(uc, UC_RISCV_REG_PC, &begin);
break;
#endif
#ifdef UNICORN_HAS_S390X
case UC_ARCH_S390X:
uc_reg_write(uc, UC_S390X_REG_PC, &begin);
break;
#endif
}
uc->stop_request = false;
uc->emu_count = count;
// remove count hook if counting isn't necessary
if (count <= 0 && uc->count_hook != 0) {
uc_hook_del(uc, uc->count_hook);
uc->count_hook = 0;
}
// set up count hook to count instructions.
if (count > 0 && uc->count_hook == 0) {
uc_err err;
// callback to count instructions must be run before everything else,
// so instead of appending, we must insert the hook at the begin
// of the hook list
uc->hook_insert = 1;
err = uc_hook_add(uc, &uc->count_hook, UC_HOOK_CODE, hook_count_cb,
NULL, 1, 0);
// restore to append mode for uc_hook_add()
uc->hook_insert = 0;
if (err != UC_ERR_OK) {
uc->nested_level--;
return err;
}
}
// If UC_CTL_UC_USE_EXITS is set, then the @until param won't have any
// effect. This is designed for the backward compatibility.
if (!uc->use_exits) {
g_tree_remove_all(uc->exits);
uc_add_exit(uc, until);
}
if (timeout) {
enable_emu_timer(uc, timeout * 1000); // microseconds -> nanoseconds
}
uc->vm_start(uc);
uc->nested_level--;
// emulation is done if and only if we exit the outer uc_emu_start
// or we may lost uc_emu_stop
if (uc->nested_level == 0) {
uc->emulation_done = true;
}
// remove hooks to delete
clear_deleted_hooks(uc);
if (timeout) {
// wait for the timer to finish
qemu_thread_join(&uc->timer);
}
return uc->invalid_error;
}
UNICORN_EXPORT
uc_err uc_emu_stop(uc_engine *uc)
{
UC_INIT(uc);
if (uc->emulation_done) {
return UC_ERR_OK;
}
uc->stop_request = true;
// TODO: make this atomic somehow?
if (uc->cpu) {
// exit the current TB
cpu_exit(uc->cpu);
}
return UC_ERR_OK;
}
// return target index where a memory region at the address exists, or could be
// inserted
//
// address either is inside the mapping at the returned index, or is in free
// space before the next mapping.
//
// if there is overlap, between regions, ending address will be higher than the
// starting address of the mapping at returned index
static int bsearch_mapped_blocks(const uc_engine *uc, uint64_t address)
{
int left, right, mid;
MemoryRegion *mapping;
left = 0;
right = uc->mapped_block_count;
while (left < right) {
mid = left + (right - left) / 2;
mapping = uc->mapped_blocks[mid];
if (mapping->end - 1 < address) {
left = mid + 1;
} else if (mapping->addr > address) {
right = mid;
} else {
return mid;
}
}
return left;
}
// find if a memory range overlaps with existing mapped regions
static bool memory_overlap(struct uc_struct *uc, uint64_t begin, size_t size)
{
unsigned int i;
uint64_t end = begin + size - 1;
i = bsearch_mapped_blocks(uc, begin);
// is this the highest region with no possible overlap?
if (i >= uc->mapped_block_count)
return false;
// end address overlaps this region?
if (end >= uc->mapped_blocks[i]->addr)
return true;
// not found
return false;
}
// common setup/error checking shared between uc_mem_map and uc_mem_map_ptr
static uc_err mem_map(uc_engine *uc, uint64_t address, size_t size,
uint32_t perms, MemoryRegion *block)
{
MemoryRegion **regions;
int pos;
if (block == NULL) {
return UC_ERR_NOMEM;
}
if ((uc->mapped_block_count & (MEM_BLOCK_INCR - 1)) == 0) { // time to grow
regions = (MemoryRegion **)g_realloc(
uc->mapped_blocks,
sizeof(MemoryRegion *) * (uc->mapped_block_count + MEM_BLOCK_INCR));
if (regions == NULL) {
return UC_ERR_NOMEM;
}
uc->mapped_blocks = regions;
}
pos = bsearch_mapped_blocks(uc, block->addr);
// shift the array right to give space for the new pointer
memmove(&uc->mapped_blocks[pos + 1], &uc->mapped_blocks[pos],
sizeof(MemoryRegion *) * (uc->mapped_block_count - pos));
uc->mapped_blocks[pos] = block;
uc->mapped_block_count++;
return UC_ERR_OK;
}
static uc_err mem_map_check(uc_engine *uc, uint64_t address, size_t size,
uint32_t perms)
{
if (size == 0) {
// invalid memory mapping
return UC_ERR_ARG;
}
// address cannot wrapp around
if (address + size - 1 < address) {
return UC_ERR_ARG;
}
// address must be aligned to uc->target_page_size
if ((address & uc->target_page_align) != 0) {
return UC_ERR_ARG;
}
// size must be multiple of uc->target_page_size
if ((size & uc->target_page_align) != 0) {
return UC_ERR_ARG;
}
// check for only valid permissions
if ((perms & ~UC_PROT_ALL) != 0) {
return UC_ERR_ARG;
}
// this area overlaps existing mapped regions?
if (memory_overlap(uc, address, size)) {
return UC_ERR_MAP;
}
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_mem_map(uc_engine *uc, uint64_t address, size_t size, uint32_t perms)
{
uc_err res;
UC_INIT(uc);
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
res = mem_map_check(uc, address, size, perms);
if (res) {
return res;
}
return mem_map(uc, address, size, perms,
uc->memory_map(uc, address, size, perms));
}
UNICORN_EXPORT
uc_err uc_mem_map_ptr(uc_engine *uc, uint64_t address, size_t size,
uint32_t perms, void *ptr)
{
uc_err res;
UC_INIT(uc);
if (ptr == NULL) {
return UC_ERR_ARG;
}
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
res = mem_map_check(uc, address, size, perms);
if (res) {
return res;
}
return mem_map(uc, address, size, UC_PROT_ALL,
uc->memory_map_ptr(uc, address, size, perms, ptr));
}
UNICORN_EXPORT
uc_err uc_mmio_map(uc_engine *uc, uint64_t address, size_t size,
uc_cb_mmio_read_t read_cb, void *user_data_read,
uc_cb_mmio_write_t write_cb, void *user_data_write)
{
uc_err res;
UC_INIT(uc);
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
res = mem_map_check(uc, address, size, UC_PROT_ALL);
if (res)
return res;
// The callbacks do not need to be checked for NULL here, as their presence
// (or lack thereof) will determine the permissions used.
return mem_map(uc, address, size, UC_PROT_NONE,
uc->memory_map_io(uc, address, size, read_cb, write_cb,
user_data_read, user_data_write));
}
// Create a backup copy of the indicated MemoryRegion.
// Generally used in prepartion for splitting a MemoryRegion.
static uint8_t *copy_region(struct uc_struct *uc, MemoryRegion *mr)
{
uint8_t *block = (uint8_t *)g_malloc0((size_t)int128_get64(mr->size));
if (block != NULL) {
uc_err err =
uc_mem_read(uc, mr->addr, block, (size_t)int128_get64(mr->size));
if (err != UC_ERR_OK) {
free(block);
block = NULL;
}
}
return block;
}
/*
This function is similar to split_region, but for MMIO memory.
This function would delete the region unconditionally.
Note this function may be called recursively.
*/
static bool split_mmio_region(struct uc_struct *uc, MemoryRegion *mr,
uint64_t address, size_t size)
{
uint64_t begin, end, chunk_end;
size_t l_size, r_size;
mmio_cbs backup;
chunk_end = address + size;
// This branch also break recursion.
if (address <= mr->addr && chunk_end >= mr->end) {
return true;
}
if (size == 0) {
return false;
}
begin = mr->addr;
end = mr->end;
memcpy(&backup, mr->opaque, sizeof(mmio_cbs));
/* overlapping cases
* |------mr------|
* case 1 |---size--| // Is it possible???
* case 2 |--size--|
* case 3 |---size--|
*/
// unmap this region first, then do split it later
if (uc_mem_unmap(uc, mr->addr, (size_t)int128_get64(mr->size)) !=
UC_ERR_OK) {
return false;
}
// adjust some things
if (address < begin) {
address = begin;
}
if (chunk_end > end) {
chunk_end = end;
}
// compute sub region sizes
l_size = (size_t)(address - begin);
r_size = (size_t)(end - chunk_end);
if (l_size > 0) {
if (uc_mmio_map(uc, begin, l_size, backup.read, backup.user_data_read,
backup.write, backup.user_data_write) != UC_ERR_OK) {
return false;
}
}
if (r_size > 0) {
if (uc_mmio_map(uc, chunk_end, r_size, backup.read,
backup.user_data_read, backup.write,
backup.user_data_write) != UC_ERR_OK) {
return false;
}
}
return true;
}
/*
Split the given MemoryRegion at the indicated address for the indicated size
this may result in the create of up to 3 spanning sections. If the delete
parameter is true, the no new section will be created to replace the indicate
range. This functions exists to support uc_mem_protect and uc_mem_unmap.
This is a static function and callers have already done some preliminary
parameter validation.
The do_delete argument indicates that we are being called to support
uc_mem_unmap. In this case we save some time by choosing NOT to remap
the areas that are intended to get unmapped
*/
// TODO: investigate whether qemu region manipulation functions already offered
// this capability
static bool split_region(struct uc_struct *uc, MemoryRegion *mr,
uint64_t address, size_t size, bool do_delete)
{
uint8_t *backup;
uint32_t perms;
uint64_t begin, end, chunk_end;
size_t l_size, m_size, r_size;
RAMBlock *block = NULL;
bool prealloc = false;
chunk_end = address + size;
// if this region belongs to area [address, address+size],
// then there is no work to do.
if (address <= mr->addr && chunk_end >= mr->end) {
return true;
}
if (size == 0) {
// trivial case
return true;
}
if (address >= mr->end || chunk_end <= mr->addr) {
// impossible case
return false;
}
QLIST_FOREACH(block, &uc->ram_list.blocks, next)
{
// block->offset is the offset within ram_addr_t, not GPA
if (block->mr->addr <= mr->addr &&
block->used_length >= (mr->end - mr->addr)) {
break;
}
}
if (block == NULL) {
return false;
}
// RAM_PREALLOC is not defined outside exec.c and I didn't feel like
// moving it
prealloc = !!(block->flags & 1);
if (block->flags & 1) {
backup = block->host;
} else {
backup = copy_region(uc, mr);
if (backup == NULL) {
return false;
}
}
// save the essential information required for the split before mr gets
// deleted
perms = mr->perms;
begin = mr->addr;
end = mr->end;
// unmap this region first, then do split it later
if (uc_mem_unmap(uc, mr->addr, (size_t)int128_get64(mr->size)) !=
UC_ERR_OK) {
goto error;
}
/* overlapping cases
* |------mr------|
* case 1 |---size--|
* case 2 |--size--|
* case 3 |---size--|
*/
// adjust some things
if (address < begin) {
address = begin;
}
if (chunk_end > end) {
chunk_end = end;
}
// compute sub region sizes
l_size = (size_t)(address - begin);
r_size = (size_t)(end - chunk_end);
m_size = (size_t)(chunk_end - address);
// If there are error in any of the below operations, things are too far
// gone at that point to recover. Could try to remap orignal region, but
// these smaller allocation just failed so no guarantee that we can recover
// the original allocation at this point
if (l_size > 0) {
if (!prealloc) {
if (uc_mem_map(uc, begin, l_size, perms) != UC_ERR_OK) {
goto error;
}
if (uc_mem_write(uc, begin, backup, l_size) != UC_ERR_OK) {
goto error;
}
} else {
if (uc_mem_map_ptr(uc, begin, l_size, perms, backup) != UC_ERR_OK) {
goto error;
}
}
}
if (m_size > 0 && !do_delete) {
if (!prealloc) {
if (uc_mem_map(uc, address, m_size, perms) != UC_ERR_OK) {
goto error;
}
if (uc_mem_write(uc, address, backup + l_size, m_size) !=
UC_ERR_OK) {
goto error;
}
} else {
if (uc_mem_map_ptr(uc, address, m_size, perms, backup + l_size) !=
UC_ERR_OK) {
goto error;
}
}
}
if (r_size > 0) {
if (!prealloc) {
if (uc_mem_map(uc, chunk_end, r_size, perms) != UC_ERR_OK) {
goto error;
}
if (uc_mem_write(uc, chunk_end, backup + l_size + m_size, r_size) !=
UC_ERR_OK) {
goto error;
}
} else {
if (uc_mem_map_ptr(uc, chunk_end, r_size, perms,
backup + l_size + m_size) != UC_ERR_OK) {
goto error;
}
}
}
if (!prealloc) {
free(backup);
}
return true;
error:
if (!prealloc) {
free(backup);
}
return false;
}
UNICORN_EXPORT
uc_err uc_mem_protect(struct uc_struct *uc, uint64_t address, size_t size,
uint32_t perms)
{
MemoryRegion *mr;
uint64_t addr = address;
size_t count, len;
bool remove_exec = false;
UC_INIT(uc);
if (size == 0) {
// trivial case, no change
return UC_ERR_OK;
}
// address must be aligned to uc->target_page_size
if ((address & uc->target_page_align) != 0) {
return UC_ERR_ARG;
}
// size must be multiple of uc->target_page_size
if ((size & uc->target_page_align) != 0) {
return UC_ERR_ARG;
}
// check for only valid permissions
if ((perms & ~UC_PROT_ALL) != 0) {
return UC_ERR_ARG;
}
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
// check that user's entire requested block is mapped
if (!check_mem_area(uc, address, size)) {
return UC_ERR_NOMEM;
}
// Now we know entire region is mapped, so change permissions
// We may need to split regions if this area spans adjacent regions
addr = address;
count = 0;
while (count < size) {
mr = memory_mapping(uc, addr);
len = (size_t)MIN(size - count, mr->end - addr);
if (!split_region(uc, mr, addr, len, false)) {
return UC_ERR_NOMEM;
}
mr = memory_mapping(uc, addr);
// will this remove EXEC permission?
if (((mr->perms & UC_PROT_EXEC) != 0) &&
((perms & UC_PROT_EXEC) == 0)) {
remove_exec = true;
}
mr->perms = perms;
uc->readonly_mem(mr, (perms & UC_PROT_WRITE) == 0);
count += len;
addr += len;
}
// if EXEC permission is removed, then quit TB and continue at the same
// place
if (remove_exec) {
uc->quit_request = true;
uc_emu_stop(uc);
}
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_mem_unmap(struct uc_struct *uc, uint64_t address, size_t size)
{
MemoryRegion *mr;
uint64_t addr;
size_t count, len;
UC_INIT(uc);
if (size == 0) {
// nothing to unmap
return UC_ERR_OK;
}
// address must be aligned to uc->target_page_size
if ((address & uc->target_page_align) != 0) {
return UC_ERR_ARG;
}
// size must be multiple of uc->target_page_size
if ((size & uc->target_page_align) != 0) {
return UC_ERR_ARG;
}
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
// check that user's entire requested block is mapped
if (!check_mem_area(uc, address, size)) {
return UC_ERR_NOMEM;
}
// Now we know entire region is mapped, so do the unmap
// We may need to split regions if this area spans adjacent regions
addr = address;
count = 0;
while (count < size) {
mr = memory_mapping(uc, addr);
len = (size_t)MIN(size - count, mr->end - addr);
if (!mr->ram) {
if (!split_mmio_region(uc, mr, addr, len)) {
return UC_ERR_NOMEM;
}
} else {
if (!split_region(uc, mr, addr, len, true)) {
return UC_ERR_NOMEM;
}
}
// if we can retrieve the mapping, then no splitting took place
// so unmap here
mr = memory_mapping(uc, addr);
if (mr != NULL) {
uc->memory_unmap(uc, mr);
}
count += len;
addr += len;
}
return UC_ERR_OK;
}
// find the memory region of this address
MemoryRegion *memory_mapping(struct uc_struct *uc, uint64_t address)
{
unsigned int i;
if (uc->mapped_block_count == 0) {
return NULL;
}
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
// try with the cache index first
i = uc->mapped_block_cache_index;
if (i < uc->mapped_block_count && address >= uc->mapped_blocks[i]->addr &&
address < uc->mapped_blocks[i]->end) {
return uc->mapped_blocks[i];
}
i = bsearch_mapped_blocks(uc, address);
if (i < uc->mapped_block_count && address >= uc->mapped_blocks[i]->addr &&
address <= uc->mapped_blocks[i]->end - 1)
return uc->mapped_blocks[i];
// not found
return NULL;
}
UNICORN_EXPORT
uc_err uc_hook_add(uc_engine *uc, uc_hook *hh, int type, void *callback,
void *user_data, uint64_t begin, uint64_t end, ...)
{
int ret = UC_ERR_OK;
int i = 0;
UC_INIT(uc);
struct hook *hook = calloc(1, sizeof(struct hook));
if (hook == NULL) {
return UC_ERR_NOMEM;
}
hook->begin = begin;
hook->end = end;
hook->type = type;
hook->callback = callback;
hook->user_data = user_data;
hook->refs = 0;
hook->to_delete = false;
*hh = (uc_hook)hook;
// UC_HOOK_INSN has an extra argument for instruction ID
if (type & UC_HOOK_INSN) {
va_list valist;
va_start(valist, end);
hook->insn = va_arg(valist, int);
va_end(valist);
if (uc->insn_hook_validate) {
if (!uc->insn_hook_validate(hook->insn)) {
free(hook);
return UC_ERR_HOOK;
}
}
if (uc->hook_insert) {
if (list_insert(&uc->hook[UC_HOOK_INSN_IDX], hook) == NULL) {
free(hook);
return UC_ERR_NOMEM;
}
} else {
if (list_append(&uc->hook[UC_HOOK_INSN_IDX], hook) == NULL) {
free(hook);
return UC_ERR_NOMEM;
}
}
uc->hooks_count[UC_HOOK_INSN_IDX]++;
hook->refs++;
return UC_ERR_OK;
}
if (type & UC_HOOK_TCG_OPCODE) {
va_list valist;
va_start(valist, end);
hook->op = va_arg(valist, int);
hook->op_flags = va_arg(valist, int);
va_end(valist);
if (uc->opcode_hook_invalidate) {
if (!uc->opcode_hook_invalidate(hook->op, hook->op_flags)) {
free(hook);
return UC_ERR_HOOK;
}
}
if (uc->hook_insert) {
if (list_insert(&uc->hook[UC_HOOK_TCG_OPCODE_IDX], hook) == NULL) {
free(hook);
return UC_ERR_NOMEM;
}
} else {
if (list_append(&uc->hook[UC_HOOK_TCG_OPCODE_IDX], hook) == NULL) {
free(hook);
return UC_ERR_NOMEM;
}
}
uc->hooks_count[UC_HOOK_TCG_OPCODE_IDX]++;
hook->refs++;
return UC_ERR_OK;
}
while ((type >> i) > 0) {
if ((type >> i) & 1) {
// TODO: invalid hook error?
if (i < UC_HOOK_MAX) {
if (uc->hook_insert) {
if (list_insert(&uc->hook[i], hook) == NULL) {
if (hook->refs == 0) {
free(hook);
}
return UC_ERR_NOMEM;
}
} else {
if (list_append(&uc->hook[i], hook) == NULL) {
if (hook->refs == 0) {
free(hook);
}
return UC_ERR_NOMEM;
}
}
uc->hooks_count[i]++;
hook->refs++;
}
}
i++;
}
// we didn't use the hook
// TODO: return an error?
if (hook->refs == 0) {
free(hook);
}
return ret;
}
UNICORN_EXPORT
uc_err uc_hook_del(uc_engine *uc, uc_hook hh)
{
int i;
struct hook *hook = (struct hook *)hh;
UC_INIT(uc);
// we can't dereference hook->type if hook is invalid
// so for now we need to iterate over all possible types to remove the hook
// which is less efficient
// an optimization would be to align the hook pointer
// and store the type mask in the hook pointer.
for (i = 0; i < UC_HOOK_MAX; i++) {
if (list_exists(&uc->hook[i], (void *)hook)) {
hook->to_delete = true;
uc->hooks_count[i]--;
list_append(&uc->hooks_to_del, hook);
}
}
return UC_ERR_OK;
}
// TCG helper
// 2 arguments are enough for most opcodes. Load/Store needs 3 arguments but we
// have memory hooks already. We may exceed the maximum arguments of a tcg
// helper but that's easy to extend.
void helper_uc_traceopcode(struct hook *hook, uint64_t arg1, uint64_t arg2,
uint32_t size, void *handle, uint64_t address);
void helper_uc_traceopcode(struct hook *hook, uint64_t arg1, uint64_t arg2,
uint32_t size, void *handle, uint64_t address)
{
struct uc_struct *uc = handle;
if (unlikely(uc->stop_request)) {
return;
}
if (unlikely(hook->to_delete)) {
return;
}
// We did all checks in translation time.
//
// This could optimize the case that we have multiple hooks with different
// opcodes and have one callback per opcode. Note that the assumption don't
// hold in most cases for uc_tracecode.
//
// TODO: Shall we have a flag to allow users to control whether updating PC?
((uc_hook_tcg_op_2)hook->callback)(uc, address, arg1, arg2, size,
hook->user_data);
if (unlikely(uc->stop_request)) {
return;
}
}
void helper_uc_tracecode(int32_t size, uc_hook_idx index, void *handle,
int64_t address);
void helper_uc_tracecode(int32_t size, uc_hook_idx index, void *handle,
int64_t address)
{
struct uc_struct *uc = handle;
struct list_item *cur;
struct hook *hook;
int hook_flags =
index &
UC_HOOK_FLAG_MASK; // The index here may contain additional flags. See
// the comments of uc_hook_idx for details.
index = index & UC_HOOK_IDX_MASK;
// This has been done in tcg code.
// sync PC in CPUArchState with address
// if (uc->set_pc) {
// uc->set_pc(uc, address);
// }
// the last callback may already asked to stop emulation
if (uc->stop_request && !(hook_flags & UC_HOOK_FLAG_NO_STOP)) {
return;
}
for (cur = uc->hook[index].head;
cur != NULL && (hook = (struct hook *)cur->data); cur = cur->next) {
if (hook->to_delete) {
continue;
}
// on invalid block/instruction, call instruction counter (if enable),
// then quit
if (size == 0) {
if (index == UC_HOOK_CODE_IDX && uc->count_hook) {
// this is the instruction counter (first hook in the list)
((uc_cb_hookcode_t)hook->callback)(uc, address, size,
hook->user_data);
}
return;
}
if (HOOK_BOUND_CHECK(hook, (uint64_t)address)) {
((uc_cb_hookcode_t)hook->callback)(uc, address, size,
hook->user_data);
}
// the last callback may already asked to stop emulation
// Unicorn:
// In an ARM IT block, we behave like the emulation continues
// normally. No check_exit_request is generated and the hooks are
// triggered normally. In other words, the whole IT block is treated
// as a single instruction.
if (uc->stop_request && !(hook_flags & UC_HOOK_FLAG_NO_STOP)) {
break;
}
}
}
UNICORN_EXPORT
uc_err uc_mem_regions(uc_engine *uc, uc_mem_region **regions, uint32_t *count)
{
uint32_t i;
uc_mem_region *r = NULL;
UC_INIT(uc);
*count = uc->mapped_block_count;
if (*count) {
r = g_malloc0(*count * sizeof(uc_mem_region));
if (r == NULL) {
// out of memory
return UC_ERR_NOMEM;
}
}
for (i = 0; i < *count; i++) {
r[i].begin = uc->mapped_blocks[i]->addr;
r[i].end = uc->mapped_blocks[i]->end - 1;
r[i].perms = uc->mapped_blocks[i]->perms;
}
*regions = r;
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_query(uc_engine *uc, uc_query_type type, size_t *result)
{
UC_INIT(uc);
switch (type) {
default:
return UC_ERR_ARG;
case UC_QUERY_PAGE_SIZE:
*result = uc->target_page_size;
break;
case UC_QUERY_ARCH:
*result = uc->arch;
break;
case UC_QUERY_MODE:
#ifdef UNICORN_HAS_ARM
if (uc->arch == UC_ARCH_ARM) {
return uc->query(uc, type, result);
}
#endif
*result = uc->mode;
break;
case UC_QUERY_TIMEOUT:
*result = uc->timed_out;
break;
}
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_context_alloc(uc_engine *uc, uc_context **context)
{
struct uc_context **_context = context;
size_t size = uc_context_size(uc);
UC_INIT(uc);
*_context = g_malloc(size);
if (*_context) {
(*_context)->context_size = uc->cpu_context_size;
(*_context)->arch = uc->arch;
(*_context)->mode = uc->mode;
return UC_ERR_OK;
} else {
return UC_ERR_NOMEM;
}
}
UNICORN_EXPORT
uc_err uc_free(void *mem)
{
g_free(mem);
return UC_ERR_OK;
}
UNICORN_EXPORT
size_t uc_context_size(uc_engine *uc)
{
UC_INIT(uc);
// return the total size of struct uc_context
return sizeof(uc_context) + uc->cpu_context_size;
}
UNICORN_EXPORT
uc_err uc_context_save(uc_engine *uc, uc_context *context)
{
UC_INIT(uc);
memcpy(context->data, uc->cpu->env_ptr, context->context_size);
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_context_reg_write(uc_context *ctx, int regid, const void *value)
{
return uc_context_reg_write_batch(ctx, &regid, (void *const *)&value, 1);
}
UNICORN_EXPORT
uc_err uc_context_reg_read(uc_context *ctx, int regid, void *value)
{
return uc_context_reg_read_batch(ctx, &regid, &value, 1);
}
// Keep in mind that we don't a uc_engine when r/w the registers of a context.
static void find_context_reg_rw_function(uc_arch arch, uc_mode mode,
context_reg_rw_t *rw)
{
// We believe that the arch/mode pair is correct.
switch (arch) {
default:
rw->context_reg_read = NULL;
rw->context_reg_write = NULL;
break;
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K:
rw->context_reg_read = m68k_context_reg_read;
rw->context_reg_write = m68k_context_reg_write;
break;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86:
rw->context_reg_read = x86_context_reg_read;
rw->context_reg_write = x86_context_reg_write;
break;
#endif
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM:
rw->context_reg_read = arm_context_reg_read;
rw->context_reg_write = arm_context_reg_write;
break;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64:
rw->context_reg_read = arm64_context_reg_read;
rw->context_reg_write = arm64_context_reg_write;
break;
#endif
#if defined(UNICORN_HAS_MIPS) || defined(UNICORN_HAS_MIPSEL) || \
defined(UNICORN_HAS_MIPS64) || defined(UNICORN_HAS_MIPS64EL)
case UC_ARCH_MIPS:
if (mode & UC_MODE_BIG_ENDIAN) {
#ifdef UNICORN_HAS_MIPS
if (mode & UC_MODE_MIPS32) {
rw->context_reg_read = mips_context_reg_read;
rw->context_reg_write = mips_context_reg_write;
}
#endif
#ifdef UNICORN_HAS_MIPS64
if (mode & UC_MODE_MIPS64) {
rw->context_reg_read = mips64_context_reg_read;
rw->context_reg_write = mips64_context_reg_write;
}
#endif
} else { // little endian
#ifdef UNICORN_HAS_MIPSEL
if (mode & UC_MODE_MIPS32) {
rw->context_reg_read = mipsel_context_reg_read;
rw->context_reg_write = mipsel_context_reg_write;
}
#endif
#ifdef UNICORN_HAS_MIPS64EL
if (mode & UC_MODE_MIPS64) {
rw->context_reg_read = mips64el_context_reg_read;
rw->context_reg_write = mips64el_context_reg_write;
}
#endif
}
break;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC:
if (mode & UC_MODE_SPARC64) {
rw->context_reg_read = sparc64_context_reg_read;
rw->context_reg_write = sparc64_context_reg_write;
} else {
rw->context_reg_read = sparc_context_reg_read;
rw->context_reg_write = sparc_context_reg_write;
}
break;
#endif
#ifdef UNICORN_HAS_PPC
case UC_ARCH_PPC:
if (mode & UC_MODE_PPC64) {
rw->context_reg_read = ppc64_context_reg_read;
rw->context_reg_write = ppc64_context_reg_write;
} else {
rw->context_reg_read = ppc_context_reg_read;
rw->context_reg_write = ppc_context_reg_write;
}
break;
#endif
#ifdef UNICORN_HAS_RISCV
case UC_ARCH_RISCV:
if (mode & UC_MODE_RISCV32) {
rw->context_reg_read = riscv32_context_reg_read;
rw->context_reg_write = riscv32_context_reg_write;
} else if (mode & UC_MODE_RISCV64) {
rw->context_reg_read = riscv64_context_reg_read;
rw->context_reg_write = riscv64_context_reg_write;
}
break;
#endif
#ifdef UNICORN_HAS_S390X
case UC_ARCH_S390X:
rw->context_reg_read = s390_context_reg_read;
rw->context_reg_write = s390_context_reg_write;
break;
#endif
}
return;
}
UNICORN_EXPORT
uc_err uc_context_reg_write_batch(uc_context *ctx, int *ids, void *const *vals,
int count)
{
int ret = UC_ERR_OK;
context_reg_rw_t rw;
find_context_reg_rw_function(ctx->arch, ctx->mode, &rw);
if (rw.context_reg_write) {
ret = rw.context_reg_write(ctx, (unsigned int *)ids, vals, count);
} else {
return UC_ERR_HANDLE;
}
return ret;
}
UNICORN_EXPORT
uc_err uc_context_reg_read_batch(uc_context *ctx, int *ids, void **vals,
int count)
{
int ret = UC_ERR_OK;
context_reg_rw_t rw;
find_context_reg_rw_function(ctx->arch, ctx->mode, &rw);
if (rw.context_reg_read) {
ret = rw.context_reg_read(ctx, (unsigned int *)ids, vals, count);
} else {
return UC_ERR_HANDLE;
}
return ret;
}
UNICORN_EXPORT
uc_err uc_context_restore(uc_engine *uc, uc_context *context)
{
UC_INIT(uc);
memcpy(uc->cpu->env_ptr, context->data, context->context_size);
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_context_free(uc_context *context)
{
return uc_free(context);
}
typedef struct _uc_ctl_exit_request {
uint64_t *array;
size_t len;
} uc_ctl_exit_request;
static inline gboolean uc_read_exit_iter(gpointer key, gpointer val,
gpointer data)
{
uc_ctl_exit_request *req = (uc_ctl_exit_request *)data;
req->array[req->len++] = *(uint64_t *)key;
return false;
}
UNICORN_EXPORT
uc_err uc_ctl(uc_engine *uc, uc_control_type control, ...)
{
int rw, type;
uc_err err = UC_ERR_OK;
va_list args;
// MSVC Would do signed shift on signed integers.
rw = (uint32_t)control >> 30;
type = (control & ((1 << 16) - 1));
va_start(args, control);
switch (type) {
case UC_CTL_UC_MODE: {
if (rw == UC_CTL_IO_READ) {
int *pmode = va_arg(args, int *);
*pmode = uc->mode;
} else {
err = UC_ERR_ARG;
}
break;
}
case UC_CTL_UC_ARCH: {
if (rw == UC_CTL_IO_READ) {
int *arch = va_arg(args, int *);
*arch = uc->arch;
} else {
err = UC_ERR_ARG;
}
break;
}
case UC_CTL_UC_TIMEOUT: {
if (rw == UC_CTL_IO_READ) {
uint64_t *arch = va_arg(args, uint64_t *);
*arch = uc->timeout;
} else {
err = UC_ERR_ARG;
}
break;
}
case UC_CTL_UC_PAGE_SIZE: {
if (rw == UC_CTL_IO_READ) {
UC_INIT(uc);
uint32_t *page_size = va_arg(args, uint32_t *);
*page_size = uc->target_page_size;
} else {
uint32_t page_size = va_arg(args, uint32_t);
int bits = 0;
if (uc->init_done) {
err = UC_ERR_ARG;
break;
}
if (uc->arch != UC_ARCH_ARM) {
err = UC_ERR_ARG;
break;
}
if ((page_size & (page_size - 1))) {
err = UC_ERR_ARG;
break;
}
while (page_size) {
bits++;
page_size >>= 1;
}
uc->target_bits = bits;
err = UC_ERR_OK;
}
break;
}
case UC_CTL_UC_USE_EXITS: {
if (rw == UC_CTL_IO_WRITE) {
int use_exits = va_arg(args, int);
uc->use_exits = use_exits;
} else {
err = UC_ERR_ARG;
}
break;
}
case UC_CTL_UC_EXITS_CNT: {
UC_INIT(uc);
if (!uc->use_exits) {
err = UC_ERR_ARG;
} else if (rw == UC_CTL_IO_READ) {
size_t *exits_cnt = va_arg(args, size_t *);
*exits_cnt = g_tree_nnodes(uc->exits);
} else {
err = UC_ERR_ARG;
}
break;
}
case UC_CTL_UC_EXITS: {
UC_INIT(uc);
if (!uc->use_exits) {
err = UC_ERR_ARG;
} else if (rw == UC_CTL_IO_READ) {
uint64_t *exits = va_arg(args, uint64_t *);
size_t cnt = va_arg(args, size_t);
if (cnt < g_tree_nnodes(uc->exits)) {
err = UC_ERR_ARG;
} else {
uc_ctl_exit_request req;
req.array = exits;
req.len = 0;
g_tree_foreach(uc->exits, uc_read_exit_iter, (void *)&req);
}
} else if (rw == UC_CTL_IO_WRITE) {
uint64_t *exits = va_arg(args, uint64_t *);
size_t cnt = va_arg(args, size_t);
g_tree_remove_all(uc->exits);
for (size_t i = 0; i < cnt; i++) {
uc_add_exit(uc, exits[i]);
}
} else {
err = UC_ERR_ARG;
}
break;
}
case UC_CTL_CPU_MODEL: {
if (rw == UC_CTL_IO_READ) {
UC_INIT(uc);
int *model = va_arg(args, int *);
*model = uc->cpu_model;
} else {
int model = va_arg(args, int);
if (uc->init_done) {
err = UC_ERR_ARG;
break;
}
if (uc->arch == UC_ARCH_ARM) {
if (uc->mode & UC_MODE_BIG_ENDIAN) {
// These cpu models don't support big endian code access.
if (model <= UC_CPU_ARM_CORTEX_A15 &&
model >= UC_CPU_ARM_CORTEX_A7) {
err = UC_ERR_ARG;
break;
}
}
}
uc->cpu_model = model;
err = UC_ERR_OK;
}
break;
}
case UC_CTL_TB_REQUEST_CACHE: {
UC_INIT(uc);
if (rw == UC_CTL_IO_READ_WRITE) {
uint64_t addr = va_arg(args, uint64_t);
uc_tb *tb = va_arg(args, uc_tb *);
err = uc->uc_gen_tb(uc, addr, tb);
} else {
err = UC_ERR_ARG;
}
break;
}
case UC_CTL_TB_REMOVE_CACHE: {
UC_INIT(uc);
if (rw == UC_CTL_IO_WRITE) {
uint64_t addr = va_arg(args, uint64_t);
uint64_t end = va_arg(args, uint64_t);
if (end <= addr) {
err = UC_ERR_ARG;
} else {
uc->uc_invalidate_tb(uc, addr, end - addr);
}
} else {
err = UC_ERR_ARG;
}
break;
}
default:
err = UC_ERR_ARG;
break;
}
va_end(args);
return err;
}
#ifdef UNICORN_TRACER
uc_tracer *get_tracer()
{
static uc_tracer tracer;
return &tracer;
}
void trace_start(uc_tracer *tracer, trace_loc loc)
{
tracer->starts[loc] = get_clock();
}
void trace_end(uc_tracer *tracer, trace_loc loc, const char *fmt, ...)
{
va_list args;
int64_t end = get_clock();
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, "%.6fus\n",
(double)(end - tracer->starts[loc]) / (double)(1000));
}
#endif