this also fixes passing of params > 16 bytes. In riscv
they aren't passed by value on stack, but via reference (and
because callees are allowed to modify by-ref params the caller must
allocate an own copy per call).
This fixes the stdarg parts of 73_arm.c.
like long double (16 bytes) and structs. Not completely
correct, but 73_arm64 somewhat works now (when the stdarg part
is disabled), though with some errors. What's definitely incorrect
is arguments of a mixed int/float struct. I'm using VT_LDOUBLE
(which conveniently has to be placed in a int-reg-pair) to load/store
structure arguments of size > 8 and <= 16, and that can lead to
overreads.
for 101_cleanup we need 256kb stack (with the associated problem
of needing a larger prologue/epilogue) as well as jumps out of
range for the 21bit offsets (exactly for second part of the prologue).
* support loading sym addresses from GOT: important for weak syms,
fixes 104_inline. This is still incomplete, it only works
for taking the sym address, not for directly loading/storing into
such symbols (i.e. not for VT_LVAL)
* another op: '%'
* ELF flags: add EF_RISCV_FLOAT_ABI_DOUBLE, which is our ABI.
fixes 95_bitfields. loading 64bit constants is suboptimal
right now. int32_t shifts really need to use the W form,
otherwise 'x << 24 >> 24' doesn't extract the low 8 bits.
long double on risc-v is 128bit, but there are no registers
for that type (without the Q ISA extension). They are passed
like two 64bit integers values (with an exception for varargs,
where it's an aligned register pair). This all requires some
hacks in generic code as otherwise RC_FLOAT regs are tried for
holding values of long double type, but we need a RC_INT register
pair. This really could all use some cleanup for all archs.
This doesn't implement any conversions of operations for long
double, but it's enough to get 70_floating_point_literals working.
* more ops: umod and udiv
* large immediates: suboptimal code, e.g. when loading
0xffffffffU (which is what a cast from long to int does).
tests2 work up to 67_macro_concat.
* load/store of FP ops
* load/store from symbols, VT_LLOCAL, some with large addend
* load of VT_JMP result
* calls with many args (stack slots)
* calls with FP args
* more operations: and/or/xor/div
* register indirect loads and stores
* load of local addresses
* indirect calls (uses ra as temporary reg if necessary)
* operations *, -, <<
* gen_cvt_sxtw: is not needed in most cases, let's see
tests2 runs until (incl) 09_do_while.
* implement compares, gtst and gsym/gjmp and add
* implement stores (simple cases)
* fix arg passing with more than one register arg, fix
loads to not always use 8byte loads
* add some predefined macros: __riscv, __riscv_xlen,
__SIZEOF_POINTER__ (needed by glibc header)
The first 5 tests of tests2 run now.
this is enough to let me link a tcctest.c compiled by GCC
using some current debian sid riscv64 system. It needs
linking against libgcc.a for various floating point TFmode
routines. The result runs.
the uninitialized cumofs was leading to random sizes for
the memset when initializing local structures, potentially
leading to segfaults from it. Only a problem with GNU
designated initializers, which we didn't test very well.
See testcase.
- libtcc.c/tccpp.c: fix -U option for multiple input files
- libtcc: remove decl of tcc_add_crt() for PE
- tcc.h: define __i386__ and __x86_64__ for msvc
- tcc.h: undef __attribute__ for __TINYC__ on gnu/linux platforms
- tccelf.c: disable prepare_dynamic_rel unless x86/x64
- tccpe.c: construct rather than predefine PE section flags
- tccpp.c: (alt.) fix access of dead stack variable after error/longjmp
- x86_64-gen.c: fix func_alloca chain for nocode_wanted
- tccpp.c/tccgen.c: improve file:line info for inline functions
- winapi/winnt.h: correct position for DECLSPEC_ALIGN attribute
- win32/lib/crt: simplify top exception handler (needed for signal)
- arm64-gen.c: remove dprintf left from VT_CMP commit
- tccgen.c: limit binary scan with gcase to > 8 (= smaller code)
- tccgen.c: call save_regs(4) in gen_opl for cmp-ops (see test in tcctest.c)
This removes a spurious \r at $gcc_{major,minor} in configure on cygwin.
Details:
The EOL output of conftest.exe for windows was \r\n . Now it's only \n .
The output of conftest is used with sh command substitutions which trim
trailing newlines, but not all windows shells consider \r\n as newline.
E.g. msys2 and busybox (for windows) were designed for tight integration
with windows apps and their shells do trim \r\n, but cygwin sh is closer
to POSIX and trims only \n - leaving \r at the string.
Adds a tool `ppif` at configure which can test preprocessor conditions
even when $cc is a cross compiler to any foreign platform.
Currently used only to identify i386 or x86_64 (including when cross
compiling) as a mini-demonstration.
Hopefully will be used in the future to test more compiler features
and/or replace uname-related tests with more accurate results.
A more automatic approach to code suppression (aka. nocode_wanted)
The simple rules are:
- Clear 'nocode_wanted' at (im/explicit) label IF it was used
- Set 'nocode_wanted' after unconditional jumps
Also in order to test this then I did add the "function might
return no value" warning, and then to make that work again I
did add the __attribute__((noreturn)).
Also moved the look ahead label check into the type parser
to gain a little speed.
Example:
int a = 1;
void f(void)
{
int a = 2;
{
extern int a; // = 1 !!
....
To get this (more) correctly there is a new function to copy
syms between local to global stacks.
Also, this patch changes the meaning of VT_EXTERN back
to the simpler and IMO more useful notion of
DECLARED but not (yet) DEFINED.
and that for both variables and functions. That is, VT_EXTERN
in tcc doesn't have to do with the keyword 'extern' necessarily.
Also this patch does allow
int x[];
as alias for
extern int x[];
(as do gcc and msvc)
new glibc really can't avoid it anymore, so let's provide it.
I've tried doing it only on systems that possibly are glibc
based. (For others it would be harmless as it simply wouldn't
be picked up from libtcc1.a)
... which IMO are:
1) files don't need a _test suffix because all files in
the directory are tests ;)
2) we test the BEHAVIOR of the program, rather than its
binary bit contents.
Ok, but nobody said a test can't use two files ;)
(where the 104+_ construct is meant to prevent the file
from being picked up by the makefile as a test on its own).
Previously test 104 used a combination of *nix tools and system() calls
to emulate a `sh` script, which required split code paths for windows
due to different shell and different absolute path representation.
Also, it used a hardcoded tcc binary path, didn't set locale for sort.
Now the tools are used from a `sh` script which the program generates
and invokes, tmp files are at CWD and no conversion is required, tcc
path is taken from Makefile (exported), and `sort` uses LC_ALL=C.