sqlite/ext/lsm1/lsm-test/lsmtest5.c
dan 38d6985509 Add test code for LSM to the ext/lsm1/lsm-test directory.
FossilOrigin-Name: bb7436e84a315baf05f00e6cab396017e3f287ea404d32e0cc4f389fa1194dec
2017-06-01 16:13:57 +00:00

634 lines
18 KiB
C

/*
** This file is broken into three semi-autonomous parts:
**
** 1. The database functions.
** 2. The thread wrappers.
** 3. The implementation of the mt1.* tests.
*/
/*************************************************************************
** DATABASE CONTENTS:
**
** The database contains up to N key/value pairs, where N is some large
** number (say 10,000,000). Keys are integer values between 0 and (N-1).
** The value associated with each key is a pseudo-random blob of data.
**
** Key/value pair keys are encoded as the two bytes "k." followed by a
** 10-digit decimal number. i.e. key 45 -> "k.0000000045".
**
** As well as the key/value pairs, the database also contains checksum
** entries. The checksums form a hierarchy - for every F key/value
** entries there is one level 1 checksum. And for each F level 1 checksums
** there is one level 2 checksum. And so on.
**
** Checksum keys are encoded as the two byte "c." followed by the
** checksum level, followed by a 10 digit decimal number containing
** the value of the first key that contributes to the checksum value.
** For example, assuming F==10, the level 1 checksum that spans keys
** 10 to 19 is "c.1.0000000010".
**
** Clients may perform one of two operations on the database: a read
** or a write.
**
** READ OPERATIONS:
**
** A read operation scans a range of F key/value pairs. It computes
** the expected checksum and then compares the computed value to the
** actual value stored in the level 1 checksum entry. It then scans
** the group of F level 1 checksums, and compares the computed checksum
** to the associated level 2 checksum value, and so on until the
** highest level checksum value has been verified.
**
** If a checksum ever fails to match the expected value, the test
** has failed.
**
** WRITE OPERATIONS:
**
** A write operation involves writing (possibly clobbering) a single
** key/value pair. The associated level 1 checksum is then recalculated
** updated. Then the level 2 checksum, and so on until the highest
** level checksum has been modified.
**
** All updates occur inside a single transaction.
**
** INTERFACE:
**
** The interface used by test cases to read and write the db consists
** of type DbParameters and the following functions:
**
** dbReadOperation()
** dbWriteOperation()
*/
#include "lsmtest.h"
typedef struct DbParameters DbParameters;
struct DbParameters {
int nFanout; /* Checksum fanout (F) */
int nKey; /* Size of key space (N) */
};
#define DB_KEY_BYTES (2+5+10+1)
/*
** Argument aBuf[] must point to a buffer at least DB_KEY_BYTES in size.
** This function populates the buffer with a nul-terminated key string
** corresponding to key iKey.
*/
static void dbFormatKey(
DbParameters *pParam,
int iLevel,
int iKey, /* Key value */
char *aBuf /* Write key string here */
){
if( iLevel==0 ){
snprintf(aBuf, DB_KEY_BYTES, "k.%.10d", iKey);
}else{
int f = 1;
int i;
for(i=0; i<iLevel; i++) f = f * pParam->nFanout;
snprintf(aBuf, DB_KEY_BYTES, "c.%d.%.10d", iLevel, f*(iKey/f));
}
}
/*
** Argument aBuf[] must point to a buffer at least DB_KEY_BYTES in size.
** This function populates the buffer with the string representation of
** checksum value iVal.
*/
static void dbFormatCksumValue(u32 iVal, char *aBuf){
snprintf(aBuf, DB_KEY_BYTES, "%.10u", iVal);
}
/*
** Return the highest level of checksum in the database described
** by *pParam.
*/
static int dbMaxLevel(DbParameters *pParam){
int iMax;
int n = 1;
for(iMax=0; n<pParam->nKey; iMax++){
n = n * pParam->nFanout;
}
return iMax;
}
static void dbCksum(
void *pCtx, /* IN/OUT: Pointer to u32 containing cksum */
void *pKey, int nKey, /* Database key. Unused. */
void *pVal, int nVal /* Database value. Checksum this. */
){
u8 *aVal = (u8 *)pVal;
u32 *pCksum = (u32 *)pCtx;
u32 cksum = *pCksum;
int i;
unused_parameter(pKey);
unused_parameter(nKey);
for(i=0; i<nVal; i++){
cksum += (cksum<<3) + (int)aVal[i];
}
*pCksum = cksum;
}
/*
** Compute the value of the checksum stored on level iLevel that contains
** data from key iKey by scanning the pParam->nFanout entries at level
** iLevel-1.
*/
static u32 dbComputeCksum(
DbParameters *pParam, /* Database parameters */
TestDb *pDb, /* Database connection handle */
int iLevel, /* Level of checksum to compute */
int iKey, /* Compute checksum for this key */
int *pRc /* IN/OUT: Error code */
){
u32 cksum = 0;
if( *pRc==0 ){
int nFirst;
int nLast;
int iFirst = 0;
int iLast = 0;
int i;
int f = 1;
char zFirst[DB_KEY_BYTES];
char zLast[DB_KEY_BYTES];
assert( iLevel>=1 );
for(i=0; i<iLevel; i++) f = f * pParam->nFanout;
iFirst = f*(iKey/f);
iLast = iFirst + f - 1;
dbFormatKey(pParam, iLevel-1, iFirst, zFirst);
dbFormatKey(pParam, iLevel-1, iLast, zLast);
nFirst = strlen(zFirst);
nLast = strlen(zLast);
*pRc = tdb_scan(pDb, (u32*)&cksum, 0, zFirst, nFirst, zLast, nLast,dbCksum);
}
return cksum;
}
static void dbReadOperation(
DbParameters *pParam, /* Database parameters */
TestDb *pDb, /* Database connection handle */
void (*xDelay)(void *),
void *pDelayCtx,
int iKey, /* Key to read */
int *pRc /* IN/OUT: Error code */
){
const int iMax = dbMaxLevel(pParam);
int i;
if( tdb_transaction_support(pDb) ) testBegin(pDb, 1, pRc);
for(i=1; *pRc==0 && i<=iMax; i++){
char zCksum[DB_KEY_BYTES];
char zKey[DB_KEY_BYTES];
u32 iCksum = 0;
iCksum = dbComputeCksum(pParam, pDb, i, iKey, pRc);
if( iCksum ){
if( xDelay && i==1 ) xDelay(pDelayCtx);
dbFormatCksumValue(iCksum, zCksum);
dbFormatKey(pParam, i, iKey, zKey);
testFetchStr(pDb, zKey, zCksum, pRc);
}
}
if( tdb_transaction_support(pDb) ) testCommit(pDb, 0, pRc);
}
static int dbWriteOperation(
DbParameters *pParam, /* Database parameters */
TestDb *pDb, /* Database connection handle */
int iKey, /* Key to write to */
const char *zValue, /* Nul-terminated value to write */
int *pRc /* IN/OUT: Error code */
){
const int iMax = dbMaxLevel(pParam);
char zKey[DB_KEY_BYTES];
int i;
int rc;
assert( iKey>=0 && iKey<pParam->nKey );
dbFormatKey(pParam, 0, iKey, zKey);
/* Open a write transaction. This may fail - SQLITE4_BUSY */
if( *pRc==0 && tdb_transaction_support(pDb) ){
rc = tdb_begin(pDb, 2);
if( rc==5 ) return 0;
*pRc = rc;
}
testWriteStr(pDb, zKey, zValue, pRc);
for(i=1; i<=iMax; i++){
char zCksum[DB_KEY_BYTES];
u32 iCksum = 0;
iCksum = dbComputeCksum(pParam, pDb, i, iKey, pRc);
dbFormatCksumValue(iCksum, zCksum);
dbFormatKey(pParam, i, iKey, zKey);
testWriteStr(pDb, zKey, zCksum, pRc);
}
if( tdb_transaction_support(pDb) ) testCommit(pDb, 0, pRc);
return 1;
}
/*************************************************************************
** The following block contains testXXX() functions that implement a
** wrapper around the systems native multi-thread support. There are no
** synchronization primitives - just functions to launch and join
** threads. Wrapper functions are:
**
** testThreadSupport()
**
** testThreadInit()
** testThreadShutdown()
** testThreadLaunch()
** testThreadWait()
**
** testThreadSetHalt()
** testThreadGetHalt()
** testThreadSetResult()
** testThreadGetResult()
**
** testThreadEnterMutex()
** testThreadLeaveMutex()
*/
typedef struct ThreadSet ThreadSet;
#ifdef LSM_MUTEX_PTHREADS
#include <pthread.h>
#include <unistd.h>
typedef struct Thread Thread;
struct Thread {
int rc;
char *zMsg;
pthread_t id;
void (*xMain)(ThreadSet *, int, void *);
void *pCtx;
ThreadSet *pThreadSet;
};
struct ThreadSet {
int bHalt; /* Halt flag */
int nThread; /* Number of threads */
Thread *aThread; /* Array of Thread structures */
pthread_mutex_t mutex; /* Mutex used for cheating */
};
/*
** Return true if this build supports threads, or false otherwise. If
** this function returns false, no other testThreadXXX() functions should
** be called.
*/
static int testThreadSupport(){ return 1; }
/*
** Allocate and return a thread-set handle with enough space allocated
** to handle up to nMax threads. Each call to this function should be
** matched by a call to testThreadShutdown() to delete the object.
*/
static ThreadSet *testThreadInit(int nMax){
int nByte; /* Total space to allocate */
ThreadSet *p; /* Return value */
nByte = sizeof(ThreadSet) + sizeof(struct Thread) * nMax;
p = (ThreadSet *)testMalloc(nByte);
p->nThread = nMax;
p->aThread = (Thread *)&p[1];
pthread_mutex_init(&p->mutex, 0);
return p;
}
/*
** Delete a thread-set object and release all resources held by it.
*/
static void testThreadShutdown(ThreadSet *p){
int i;
for(i=0; i<p->nThread; i++){
testFree(p->aThread[i].zMsg);
}
pthread_mutex_destroy(&p->mutex);
testFree(p);
}
static void *ttMain(void *pArg){
Thread *pThread = (Thread *)pArg;
int iThread;
iThread = (pThread - pThread->pThreadSet->aThread);
pThread->xMain(pThread->pThreadSet, iThread, pThread->pCtx);
return 0;
}
/*
** Launch a new thread.
*/
static int testThreadLaunch(
ThreadSet *p,
int iThread,
void (*xMain)(ThreadSet *, int, void *),
void *pCtx
){
int rc;
Thread *pThread;
assert( iThread>=0 && iThread<p->nThread );
pThread = &p->aThread[iThread];
assert( pThread->pThreadSet==0 );
pThread->xMain = xMain;
pThread->pCtx = pCtx;
pThread->pThreadSet = p;
rc = pthread_create(&pThread->id, 0, ttMain, (void *)pThread);
return rc;
}
/*
** Set the thread-set "halt" flag.
*/
static void testThreadSetHalt(ThreadSet *pThreadSet){
pThreadSet->bHalt = 1;
}
/*
** Return the current value of the thread-set "halt" flag.
*/
static int testThreadGetHalt(ThreadSet *pThreadSet){
return pThreadSet->bHalt;
}
static void testThreadSleep(ThreadSet *pThreadSet, int nMs){
int nRem = nMs;
while( nRem>0 && testThreadGetHalt(pThreadSet)==0 ){
usleep(50000);
nRem -= 50;
}
}
/*
** Wait for all threads launched to finish before returning. If nMs
** is greater than zero, set the "halt" flag to tell all threads
** to halt after waiting nMs milliseconds.
*/
static void testThreadWait(ThreadSet *pThreadSet, int nMs){
int i;
testThreadSleep(pThreadSet, nMs);
testThreadSetHalt(pThreadSet);
for(i=0; i<pThreadSet->nThread; i++){
Thread *pThread = &pThreadSet->aThread[i];
if( pThread->xMain ){
pthread_join(pThread->id, 0);
}
}
}
/*
** Set the result for thread iThread.
*/
static void testThreadSetResult(
ThreadSet *pThreadSet, /* Thread-set handle */
int iThread, /* Set result for this thread */
int rc, /* Result error code */
char *zFmt, /* Result string format */
... /* Result string formatting args... */
){
va_list ap;
testFree(pThreadSet->aThread[iThread].zMsg);
pThreadSet->aThread[iThread].rc = rc;
pThreadSet->aThread[iThread].zMsg = 0;
if( zFmt ){
va_start(ap, zFmt);
pThreadSet->aThread[iThread].zMsg = testMallocVPrintf(zFmt, ap);
va_end(ap);
}
}
/*
** Retrieve the result for thread iThread.
*/
static int testThreadGetResult(
ThreadSet *pThreadSet, /* Thread-set handle */
int iThread, /* Get result for this thread */
const char **pzRes /* OUT: Pointer to result string */
){
if( pzRes ) *pzRes = pThreadSet->aThread[iThread].zMsg;
return pThreadSet->aThread[iThread].rc;
}
/*
** Enter and leave the test case mutex.
*/
#if 0
static void testThreadEnterMutex(ThreadSet *p){
pthread_mutex_lock(&p->mutex);
}
static void testThreadLeaveMutex(ThreadSet *p){
pthread_mutex_unlock(&p->mutex);
}
#endif
#endif
#if !defined(LSM_MUTEX_PTHREADS)
static int testThreadSupport(){ return 0; }
#define testThreadInit(a) 0
#define testThreadShutdown(a)
#define testThreadLaunch(a,b,c,d) 0
#define testThreadWait(a,b)
#define testThreadSetHalt(a)
#define testThreadGetHalt(a) 0
#define testThreadGetResult(a,b,c) 0
#define testThreadSleep(a,b) 0
static void testThreadSetResult(ThreadSet *a, int b, int c, char *d, ...){
unused_parameter(a);
unused_parameter(b);
unused_parameter(c);
unused_parameter(d);
}
#endif
/* End of threads wrapper.
*************************************************************************/
/*************************************************************************
** Below this point is the third part of this file - the implementation
** of the mt1.* tests.
*/
typedef struct Mt1Test Mt1Test;
struct Mt1Test {
DbParameters param; /* Description of database to read/write */
int nReadwrite; /* Number of read/write threads */
int nFastReader; /* Number of fast reader threads */
int nSlowReader; /* Number of slow reader threads */
int nMs; /* How long to run for */
const char *zSystem; /* Database system to test */
};
typedef struct Mt1DelayCtx Mt1DelayCtx;
struct Mt1DelayCtx {
ThreadSet *pSet; /* Threadset to sleep within */
int nMs; /* Sleep in ms */
};
static void xMt1Delay(void *pCtx){
Mt1DelayCtx *p = (Mt1DelayCtx *)pCtx;
testThreadSleep(p->pSet, p->nMs);
}
#define MT1_THREAD_RDWR 0
#define MT1_THREAD_SLOW 1
#define MT1_THREAD_FAST 2
static void xMt1Work(lsm_db *pDb, void *pCtx){
#if 0
char *z = 0;
lsm_info(pDb, LSM_INFO_DB_STRUCTURE, &z);
printf("%s\n", z);
fflush(stdout);
#endif
}
/*
** This is the main() proc for all threads in test case "mt1".
*/
static void mt1Main(ThreadSet *pThreadSet, int iThread, void *pCtx){
Mt1Test *p = (Mt1Test *)pCtx; /* Test parameters */
Mt1DelayCtx delay;
int nRead = 0; /* Number of calls to dbReadOperation() */
int nWrite = 0; /* Number of completed database writes */
int rc = 0; /* Error code */
int iPrng; /* Prng argument variable */
TestDb *pDb; /* Database handle */
int eType;
delay.pSet = pThreadSet;
delay.nMs = 0;
if( iThread<p->nReadwrite ){
eType = MT1_THREAD_RDWR;
}else if( iThread<(p->nReadwrite+p->nFastReader) ){
eType = MT1_THREAD_FAST;
}else{
eType = MT1_THREAD_SLOW;
delay.nMs = (p->nMs / 20);
}
/* Open a new database connection. Initialize the pseudo-random number
** argument based on the thread number. */
iPrng = testPrngValue(iThread);
pDb = testOpen(p->zSystem, 0, &rc);
if( rc==0 ){
tdb_lsm_config_work_hook(pDb, xMt1Work, 0);
}
/* Loop until either an error occurs or some other thread sets the
** halt flag. */
while( rc==0 && testThreadGetHalt(pThreadSet)==0 ){
int iKey;
/* Perform a read operation on an arbitrarily selected key. */
iKey = (testPrngValue(iPrng++) % p->param.nKey);
dbReadOperation(&p->param, pDb, xMt1Delay, (void *)&delay, iKey, &rc);
if( rc ) continue;
nRead++;
/* Attempt to write an arbitrary key value pair (and update the associated
** checksum entries). dbWriteOperation() returns 1 if the write is
** successful, or 0 if it failed with an LSM_BUSY error. */
if( eType==MT1_THREAD_RDWR ){
char aValue[50];
char aRnd[25];
iKey = (testPrngValue(iPrng++) % p->param.nKey);
testPrngString(iPrng, aRnd, sizeof(aRnd));
iPrng += sizeof(aRnd);
snprintf(aValue, sizeof(aValue), "%d.%s", iThread, aRnd);
nWrite += dbWriteOperation(&p->param, pDb, iKey, aValue, &rc);
}
}
testClose(&pDb);
/* If an error has occured, set the thread error code and the threadset
** halt flag to tell the other test threads to halt. Otherwise, set the
** thread error code to 0 and post a message with the number of read
** and write operations completed. */
if( rc ){
testThreadSetResult(pThreadSet, iThread, rc, 0);
testThreadSetHalt(pThreadSet);
}else{
testThreadSetResult(pThreadSet, iThread, 0, "r/w: %d/%d", nRead, nWrite);
}
}
static void do_test_mt1(
const char *zSystem, /* Database system name */
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
Mt1Test aTest[] = {
/* param, nReadwrite, nFastReader, nSlowReader, nMs, zSystem */
{ {10, 1000}, 4, 0, 0, 10000, 0 },
{ {10, 1000}, 4, 4, 2, 100000, 0 },
{ {10, 100000}, 4, 0, 0, 10000, 0 },
{ {10, 100000}, 4, 4, 2, 100000, 0 },
};
int i;
for(i=0; *pRc==0 && i<ArraySize(aTest); i++){
Mt1Test *p = &aTest[i];
int bRun = testCaseBegin(pRc, zPattern,
"mt1.%s.db=%d,%d.ms=%d.rdwr=%d.fast=%d.slow=%d",
zSystem, p->param.nFanout, p->param.nKey,
p->nMs, p->nReadwrite, p->nFastReader, p->nSlowReader
);
if( bRun ){
TestDb *pDb;
ThreadSet *pSet;
int iThread;
int nThread;
p->zSystem = zSystem;
pDb = testOpen(zSystem, 1, pRc);
nThread = p->nReadwrite + p->nFastReader + p->nSlowReader;
pSet = testThreadInit(nThread);
for(iThread=0; *pRc==0 && iThread<nThread; iThread++){
testThreadLaunch(pSet, iThread, mt1Main, (void *)p);
}
testThreadWait(pSet, p->nMs);
for(iThread=0; *pRc==0 && iThread<nThread; iThread++){
*pRc = testThreadGetResult(pSet, iThread, 0);
}
testCaseFinish(*pRc);
for(iThread=0; *pRc==0 && iThread<nThread; iThread++){
const char *zMsg = 0;
*pRc = testThreadGetResult(pSet, iThread, &zMsg);
printf(" Info: thread %d (%d): %s\n", iThread, *pRc, zMsg);
}
testThreadShutdown(pSet);
testClose(&pDb);
}
}
}
void test_mt(
const char *zSystem, /* Database system name */
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
if( testThreadSupport()==0 ) return;
do_test_mt1(zSystem, zPattern, pRc);
}