Add test code for LSM to the ext/lsm1/lsm-test directory.

FossilOrigin-Name: bb7436e84a315baf05f00e6cab396017e3f287ea404d32e0cc4f389fa1194dec
This commit is contained in:
dan 2017-06-01 16:13:57 +00:00
parent 16b7dcc717
commit 38d6985509
28 changed files with 11034 additions and 20 deletions

View File

@ -1,10 +1,12 @@
#!/usr/bin/make
#
# This is a temporary makefile for use during experimental development.
# Replace with something more portable, if the experiments actually work out.
# This Makefile is designed for use with main.mk in the root directory of
# this project. After including main.mk, the users makefile should contain:
#
# LSMDIR=$(TOP)/ext/lsm1/
# include $(LSMDIR)/Makefile
#
# The most useful targets are [lsmtest] and [lsm.so].
#
CC = gcc
CFLAGS =-g -fPIC -Wall -I. -I../..
LSMOBJ = \
lsm_ckpt.o \
@ -18,17 +20,35 @@ LSMOBJ = \
lsm_str.o \
lsm_tree.o \
lsm_unix.o \
lsm_win32.o \
lsm_varint.o \
lsm_vtab.o
LSMHDR = \
lsm.h \
lsmInt.h
$(LSMDIR)/lsm.h \
$(LSMDIR)/lsmInt.h
all: lsm.so
LSMTESTSRC = $(LSMDIR)/lsm-test/lsmtest1.c $(LSMDIR)/lsm-test/lsmtest2.c \
$(LSMDIR)/lsm-test/lsmtest3.c $(LSMDIR)/lsm-test/lsmtest4.c \
$(LSMDIR)/lsm-test/lsmtest5.c $(LSMDIR)/lsm-test/lsmtest6.c \
$(LSMDIR)/lsm-test/lsmtest7.c $(LSMDIR)/lsm-test/lsmtest8.c \
$(LSMDIR)/lsm-test/lsmtest9.c \
$(LSMDIR)/lsm-test/lsmtest_datasource.c \
$(LSMDIR)/lsm-test/lsmtest_func.c $(LSMDIR)/lsm-test/lsmtest_io.c \
$(LSMDIR)/lsm-test/lsmtest_main.c $(LSMDIR)/lsm-test/lsmtest_mem.c \
$(LSMDIR)/lsm-test/lsmtest_tdb.c $(LSMDIR)/lsm-test/lsmtest_tdb3.c \
$(LSMDIR)/lsm-test/lsmtest_util.c
# all: lsm.so
lsm.so: $(LSMOBJ)
$(CC) $(CFLAGS) -shared -o lsm.so $(LSMOBJ)
$(TCCX) $(CFLAGS) -shared -o lsm.so $(LSMOBJ)
%.o: $(LSMDIR)/%.c $(LSMHDR)
$(TCCX) -I$(LSMDIR) $(CFLAGS) -c $<
lsmtest$(EXE): $(LSMOBJ) $(LSMTESTSRC) $(LSMTESTHDR)
# $(TCPPX) -c $(TOP)/lsm-test/lsmtest_tdb2.cc
$(TCCX) -I$(LSMDIR) $(LSMTESTSRC) $(LSMOBJ) -o lsmtest$(EXE) $(THREADLIB) -lsqlite3
%.o: %.c $(LSMHDR)
$(CC) $(CFLAGS) -c $<

40
ext/lsm1/lsm-test/README Normal file
View File

@ -0,0 +1,40 @@
Organization of test case files:
lsmtest1.c: Data tests. Tests that perform many inserts and deletes on a
database file, then verify that the contents of the database can
be queried.
lsmtest2.c: Crash tests. Tests that attempt to verify that the database
recovers correctly following an application or system crash.
lsmtest3.c: Rollback tests. Tests that focus on the explicit rollback of
transactions and sub-transactions.
lsmtest4.c: Multi-client tests.
lsmtest5.c: Multi-client tests with a different thread for each client.
lsmtest6.c: OOM injection tests.
lsmtest7.c: API tests.
lsmtest8.c: Writer crash tests. Tests in this file attempt to verify that
the system recovers and other clients proceed unaffected if
a process fails in the middle of a write transaction.
The difference from lsmtest2.c is that this file tests
live-recovery (recovery from a failure that occurs while other
clients are still running) whereas lsmtest2.c tests recovery
from a system or power failure.
lsmtest9.c: More data tests. These focus on testing that calling
lsm_work(nMerge=1) to compact the database does not corrupt it.
In other words, that databases containing block-redirects
can be read and written.

263
ext/lsm1/lsm-test/lsmtest.h Normal file
View File

@ -0,0 +1,263 @@
#ifndef __WRAPPER_INT_H_
#define __WRAPPER_INT_H_
#include "lsmtest_tdb.h"
#include "sqlite3.h"
#include "lsm.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _LSM_INT_H
typedef unsigned int u32;
typedef unsigned char u8;
typedef long long int i64;
typedef unsigned long long int u64;
#endif
#define ArraySize(x) ((int)(sizeof(x) / sizeof((x)[0])))
#define MIN(x,y) ((x)<(y) ? (x) : (y))
#define MAX(x,y) ((x)>(y) ? (x) : (y))
#define unused_parameter(x) (void)(x)
#define TESTDB_DEFAULT_PAGE_SIZE 4096
#define TESTDB_DEFAULT_CACHE_SIZE 2048
/*
** Ideally, these should be in wrapper.c. But they are here instead so that
** they can be used by the C++ database wrappers in wrapper2.cc.
*/
typedef struct DatabaseMethods DatabaseMethods;
struct TestDb {
DatabaseMethods const *pMethods; /* Database methods */
const char *zLibrary; /* Library name for tdb_open() */
};
struct DatabaseMethods {
int (*xClose)(TestDb *);
int (*xWrite)(TestDb *, void *, int , void *, int);
int (*xDelete)(TestDb *, void *, int);
int (*xDeleteRange)(TestDb *, void *, int, void *, int);
int (*xFetch)(TestDb *, void *, int, void **, int *);
int (*xScan)(TestDb *, void *, int, void *, int, void *, int,
void (*)(void *, void *, int , void *, int)
);
int (*xBegin)(TestDb *, int);
int (*xCommit)(TestDb *, int);
int (*xRollback)(TestDb *, int);
};
/*
** Functions in wrapper2.cc (a C++ source file). wrapper2.cc contains the
** wrapper for Kyoto Cabinet. Kyoto cabinet has a C API, but
** the primary interface is the C++ API.
*/
int test_kc_open(const char*, const char *zFilename, int bClear, TestDb **ppDb);
int test_kc_close(TestDb *);
int test_kc_write(TestDb *, void *, int , void *, int);
int test_kc_delete(TestDb *, void *, int);
int test_kc_delete_range(TestDb *, void *, int, void *, int);
int test_kc_fetch(TestDb *, void *, int, void **, int *);
int test_kc_scan(TestDb *, void *, int, void *, int, void *, int,
void (*)(void *, void *, int , void *, int)
);
int test_mdb_open(const char*, const char *zFile, int bClear, TestDb **ppDb);
int test_mdb_close(TestDb *);
int test_mdb_write(TestDb *, void *, int , void *, int);
int test_mdb_delete(TestDb *, void *, int);
int test_mdb_fetch(TestDb *, void *, int, void **, int *);
int test_mdb_scan(TestDb *, void *, int, void *, int, void *, int,
void (*)(void *, void *, int , void *, int)
);
/*
** Functions in wrapper3.c. This file contains the tdb wrapper for lsm.
** The wrapper for lsm is a bit more involved than the others, as it
** includes code for a couple of different lsm configurations, and for
** various types of fault injection and robustness testing.
*/
int test_lsm_open(const char*, const char *zFile, int bClear, TestDb **ppDb);
int test_lsm_lomem_open(const char*, const char*, int bClear, TestDb **ppDb);
int test_lsm_zip_open(const char*, const char*, int bClear, TestDb **ppDb);
int test_lsm_small_open(const char*, const char*, int bClear, TestDb **ppDb);
int test_lsm_mt2(const char*, const char *zFile, int bClear, TestDb **ppDb);
int test_lsm_mt3(const char*, const char *zFile, int bClear, TestDb **ppDb);
int tdb_lsm_configure(lsm_db *, const char *);
/* Functions in lsmtest_tdb4.c */
int test_bt_open(const char*, const char *zFile, int bClear, TestDb **ppDb);
int test_fbt_open(const char*, const char *zFile, int bClear, TestDb **ppDb);
int test_fbts_open(const char*, const char *zFile, int bClear, TestDb **ppDb);
/* Functions in testutil.c. */
int testPrngInit(void);
u32 testPrngValue(u32 iVal);
void testPrngArray(u32 iVal, u32 *aOut, int nOut);
void testPrngString(u32 iVal, char *aOut, int nOut);
void testErrorInit(int argc, char **);
void testPrintError(const char *zFormat, ...);
void testPrintUsage(const char *zArgs);
void testPrintFUsage(const char *zFormat, ...);
void testTimeInit(void);
int testTimeGet(void);
/* Functions in testmem.c. */
void testMallocInstall(lsm_env *pEnv);
void testMallocUninstall(lsm_env *pEnv);
void testMallocCheck(lsm_env *pEnv, int *, int *, FILE *);
void testMallocOom(lsm_env *pEnv, int, int, void(*)(void*), void *);
void testMallocOomEnable(lsm_env *pEnv, int);
/* lsmtest.c */
TestDb *testOpen(const char *zSystem, int, int *pRc);
void testReopen(TestDb **ppDb, int *pRc);
void testClose(TestDb **ppDb);
void testFetch(TestDb *, void *, int, void *, int, int *);
void testWrite(TestDb *, void *, int, void *, int, int *);
void testDelete(TestDb *, void *, int, int *);
void testDeleteRange(TestDb *, void *, int, void *, int, int *);
void testWriteStr(TestDb *, const char *, const char *zVal, int *pRc);
void testFetchStr(TestDb *, const char *, const char *, int *pRc);
void testBegin(TestDb *pDb, int iTrans, int *pRc);
void testCommit(TestDb *pDb, int iTrans, int *pRc);
void test_failed(void);
char *testMallocPrintf(const char *zFormat, ...);
char *testMallocVPrintf(const char *zFormat, va_list ap);
int testGlobMatch(const char *zPattern, const char *zStr);
void testScanCompare(TestDb *, TestDb *, int, void *, int, void *, int, int *);
void testFetchCompare(TestDb *, TestDb *, void *, int, int *);
void *testMalloc(int);
void *testMallocCopy(void *pCopy, int nByte);
void *testRealloc(void *, int);
void testFree(void *);
/* lsmtest_bt.c */
int do_bt(int nArg, char **azArg);
/* testio.c */
int testVfsConfigureDb(TestDb *pDb);
/* testfunc.c */
int do_show(int nArg, char **azArg);
int do_work(int nArg, char **azArg);
/* testio.c */
int do_io(int nArg, char **azArg);
/* lsmtest2.c */
void do_crash_test(const char *zPattern, int *pRc);
int do_rollback_test(int nArg, char **azArg);
/* test3.c */
void test_rollback(const char *zSystem, const char *zPattern, int *pRc);
/* test4.c */
void test_mc(const char *zSystem, const char *zPattern, int *pRc);
/* test5.c */
void test_mt(const char *zSystem, const char *zPattern, int *pRc);
/* lsmtest6.c */
void test_oom(const char *zPattern, int *pRc);
void testDeleteLsmdb(const char *zFile);
void testSaveDb(const char *zFile, const char *zAuxExt);
void testRestoreDb(const char *zFile, const char *zAuxExt);
void testCopyLsmdb(const char *zFrom, const char *zTo);
/* lsmtest7.c */
void test_api(const char *zPattern, int *pRc);
/* lsmtest8.c */
void do_writer_crash_test(const char *zPattern, int *pRc);
/*************************************************************************
** Interface to functionality in test_datasource.c.
*/
typedef struct Datasource Datasource;
typedef struct DatasourceDefn DatasourceDefn;
struct DatasourceDefn {
int eType; /* A TEST_DATASOURCE_* value */
int nMinKey; /* Minimum key size */
int nMaxKey; /* Maximum key size */
int nMinVal; /* Minimum value size */
int nMaxVal; /* Maximum value size */
};
#define TEST_DATASOURCE_RANDOM 1
#define TEST_DATASOURCE_SEQUENCE 2
char *testDatasourceName(const DatasourceDefn *);
Datasource *testDatasourceNew(const DatasourceDefn *);
void testDatasourceFree(Datasource *);
void testDatasourceEntry(Datasource *, int, void **, int *, void **, int *);
/* End of test_datasource.c interface.
*************************************************************************/
void testWriteDatasource(TestDb *, Datasource *, int, int *);
void testWriteDatasourceRange(TestDb *, Datasource *, int, int, int *);
void testDeleteDatasource(TestDb *, Datasource *, int, int *);
void testDeleteDatasourceRange(TestDb *, Datasource *, int, int, int *);
/* test1.c */
void test_data_1(const char *, const char *, int *pRc);
void test_data_2(const char *, const char *, int *pRc);
void test_data_3(const char *, const char *, int *pRc);
void testDbContents(TestDb *, Datasource *, int, int, int, int, int, int *);
void testCaseProgress(int, int, int, int *);
int testCaseNDot(void);
void testCompareDb(Datasource *, int, int, TestDb *, TestDb *, int *);
int testControlDb(TestDb **ppDb);
typedef struct CksumDb CksumDb;
CksumDb *testCksumArrayNew(Datasource *, int, int, int);
char *testCksumArrayGet(CksumDb *, int);
void testCksumArrayFree(CksumDb *);
void testCaseStart(int *pRc, char *zFmt, ...);
void testCaseFinish(int rc);
void testCaseSkip(void);
int testCaseBegin(int *, const char *, const char *, ...);
#define TEST_CKSUM_BYTES 29
int testCksumDatabase(TestDb *pDb, char *zOut);
int testCountDatabase(TestDb *pDb);
void testCompareInt(int, int, int *);
void testCompareStr(const char *z1, const char *z2, int *pRc);
/* lsmtest9.c */
void test_data_4(const char *, const char *, int *pRc);
/*
** Similar to the Tcl_GetIndexFromObjStruct() Tcl library function.
*/
#define testArgSelect(w,x,y,z) testArgSelectX(w,x,sizeof(w[0]),y,z)
int testArgSelectX(void *, const char *, int, const char *, int *);
#ifdef __cplusplus
} /* End of the 'extern "C"' block */
#endif
#endif

View File

@ -0,0 +1,621 @@
#include "lsmtest.h"
#define DATA_SEQUENTIAL TEST_DATASOURCE_SEQUENCE
#define DATA_RANDOM TEST_DATASOURCE_RANDOM
typedef struct Datatest1 Datatest1;
typedef struct Datatest2 Datatest2;
/*
** An instance of the following structure contains parameters used to
** customize the test function in this file. Test procedure:
**
** 1. Create a data-source based on the "datasource definition" vars.
**
** 2. Insert nRow key value pairs into the database.
**
** 3. Delete all keys from the database. Deletes are done in the same
** order as the inserts.
**
** During steps 2 and 3 above, after each Datatest1.nVerify inserts or
** deletes, the following:
**
** a. Run Datasource.nTest key lookups and check the results are as expected.
**
** b. If Datasource.bTestScan is true, run a handful (8) of range
** queries (scanning forwards and backwards). Check that the results
** are as expected.
**
** c. Close and reopen the database. Then run (a) and (b) again.
*/
struct Datatest1 {
/* Datasource definition */
DatasourceDefn defn;
/* Test procedure parameters */
int nRow; /* Number of rows to insert then delete */
int nVerify; /* How often to verify the db contents */
int nTest; /* Number of keys to test (0==all) */
int bTestScan; /* True to do scan tests */
};
/*
** An instance of the following data structure is used to describe the
** second type of test case in this file. The chief difference between
** these tests and those described by Datatest1 is that these tests also
** experiment with range-delete operations. Tests proceed as follows:
**
** 1. Open the datasource described by Datatest2.defn.
**
** 2. Open a connection on an empty database.
**
** 3. Do this Datatest2.nIter times:
**
** a) Insert Datatest2.nWrite key-value pairs from the datasource.
**
** b) Select two pseudo-random keys and use them as the start
** and end points of a range-delete operation.
**
** c) Verify that the contents of the database are as expected (see
** below for details).
**
** d) Close and then reopen the database handle.
**
** e) Verify that the contents of the database are still as expected.
**
** The inserts and range deletes are run twice - once on the database being
** tested and once using a control system (sqlite3, kc etc. - something that
** works). In order to verify that the contents of the db being tested are
** correct, the test runs a bunch of scans and lookups on both the test and
** control databases. If the results are the same, the test passes.
*/
struct Datatest2 {
DatasourceDefn defn;
int nRange;
int nWrite; /* Number of writes per iteration */
int nIter; /* Total number of iterations to run */
};
/*
** Generate a unique name for the test case pTest with database system
** zSystem.
*/
static char *getName(const char *zSystem, Datatest1 *pTest){
char *zRet;
char *zData;
zData = testDatasourceName(&pTest->defn);
zRet = testMallocPrintf("data.%s.%s.%d.%d",
zSystem, zData, pTest->nRow, pTest->nVerify
);
testFree(zData);
return zRet;
}
int testControlDb(TestDb **ppDb){
#ifdef HAVE_KYOTOCABINET
return tdb_open("kyotocabinet", "tmp.db", 1, ppDb);
#else
return tdb_open("sqlite3", ":memory:", 1, ppDb);
#endif
}
void testDatasourceFetch(
TestDb *pDb, /* Database handle */
Datasource *pData,
int iKey,
int *pRc /* IN/OUT: Error code */
){
void *pKey; int nKey; /* Database key to query for */
void *pVal; int nVal; /* Expected result of query */
testDatasourceEntry(pData, iKey, &pKey, &nKey, &pVal, &nVal);
testFetch(pDb, pKey, nKey, pVal, nVal, pRc);
}
/*
** This function is called to test that the contents of database pDb
** are as expected. In this case, expected is defined as containing
** key-value pairs iFirst through iLast, inclusive, from data source
** pData. In other words, a loop like the following could be used to
** construct a database with identical contents from scratch.
**
** for(i=iFirst; i<=iLast; i++){
** testDatasourceEntry(pData, i, &pKey, &nKey, &pVal, &nVal);
** // insert (pKey, nKey) -> (pVal, nVal) into database
** }
**
** The key domain consists of keys 0 to (nRow-1), inclusive, from
** data source pData. For both scan and lookup tests, keys are selected
** pseudo-randomly from within this set.
**
** This function runs nLookupTest lookup tests and nScanTest scan tests.
**
** A lookup test consists of selecting a key from the domain and querying
** pDb for it. The test fails if the presence of the key and, if present,
** the associated value do not match the expectations defined above.
**
** A scan test involves selecting a key from the domain and running
** the following queries:
**
** 1. Scan all keys equal to or greater than the key, in ascending order.
** 2. Scan all keys equal to or smaller than the key, in descending order.
**
** Additionally, if nLookupTest is greater than zero, the following are
** run once:
**
** 1. Scan all keys in the db, in ascending order.
** 2. Scan all keys in the db, in descending order.
**
** As you would assume, the test fails if the returned values do not match
** expectations.
*/
void testDbContents(
TestDb *pDb, /* Database handle being tested */
Datasource *pData, /* pDb contains data from here */
int nRow, /* Size of key domain */
int iFirst, /* Index of first key from pData in pDb */
int iLast, /* Index of last key from pData in pDb */
int nLookupTest, /* Number of lookup tests to run */
int nScanTest, /* Number of scan tests to run */
int *pRc /* IN/OUT: Error code */
){
int j;
int rc = *pRc;
if( rc==0 && nScanTest ){
TestDb *pDb2 = 0;
/* Open a control db (i.e. one that we assume works) */
rc = testControlDb(&pDb2);
for(j=iFirst; rc==0 && j<=iLast; j++){
void *pKey; int nKey; /* Database key to insert */
void *pVal; int nVal; /* Database value to insert */
testDatasourceEntry(pData, j, &pKey, &nKey, &pVal, &nVal);
rc = tdb_write(pDb2, pKey, nKey, pVal, nVal);
}
if( rc==0 ){
int iKey1;
int iKey2;
void *pKey1; int nKey1; /* Start key */
void *pKey2; int nKey2; /* Final key */
iKey1 = testPrngValue((iFirst<<8) + (iLast<<16)) % nRow;
iKey2 = testPrngValue((iLast<<8) + (iFirst<<16)) % nRow;
testDatasourceEntry(pData, iKey1, &pKey2, &nKey1, 0, 0);
pKey1 = testMalloc(nKey1+1);
memcpy(pKey1, pKey2, nKey1+1);
testDatasourceEntry(pData, iKey2, &pKey2, &nKey2, 0, 0);
testScanCompare(pDb2, pDb, 0, 0, 0, 0, 0, &rc);
testScanCompare(pDb2, pDb, 0, 0, 0, pKey2, nKey2, &rc);
testScanCompare(pDb2, pDb, 0, pKey1, nKey1, 0, 0, &rc);
testScanCompare(pDb2, pDb, 0, pKey1, nKey1, pKey2, nKey2, &rc);
testScanCompare(pDb2, pDb, 1, 0, 0, 0, 0, &rc);
testScanCompare(pDb2, pDb, 1, 0, 0, pKey2, nKey2, &rc);
testScanCompare(pDb2, pDb, 1, pKey1, nKey1, 0, 0, &rc);
testScanCompare(pDb2, pDb, 1, pKey1, nKey1, pKey2, nKey2, &rc);
testFree(pKey1);
}
tdb_close(pDb2);
}
/* Test some lookups. */
for(j=0; rc==0 && j<nLookupTest; j++){
int iKey; /* Datasource key to test */
void *pKey; int nKey; /* Database key to query for */
void *pVal; int nVal; /* Expected result of query */
if( nLookupTest>=nRow ){
iKey = j;
}else{
iKey = testPrngValue(j + (iFirst<<8) + (iLast<<16)) % nRow;
}
testDatasourceEntry(pData, iKey, &pKey, &nKey, &pVal, &nVal);
if( iFirst>iKey || iKey>iLast ){
pVal = 0;
nVal = -1;
}
testFetch(pDb, pKey, nKey, pVal, nVal, &rc);
}
*pRc = rc;
}
/*
** This function should be called during long running test cases to output
** the progress dots (...) to stdout.
*/
void testCaseProgress(int i, int n, int nDot, int *piDot){
int iDot = *piDot;
while( iDot < ( ((nDot*2+1) * i) / (n*2) ) ){
printf(".");
fflush(stdout);
iDot++;
}
*piDot = iDot;
}
int testCaseNDot(void){ return 20; }
#if 0
static void printScanCb(
void *pCtx, void *pKey, int nKey, void *pVal, int nVal
){
printf("%s\n", (char *)pKey);
fflush(stdout);
}
#endif
static void doDataTest1(
const char *zSystem, /* Database system to test */
Datatest1 *p, /* Structure containing test parameters */
int *pRc /* OUT: Error code */
){
int i;
int iDot;
int rc = LSM_OK;
Datasource *pData;
TestDb *pDb;
/* Start the test case, open a database and allocate the datasource. */
pDb = testOpen(zSystem, 1, &rc);
pData = testDatasourceNew(&p->defn);
i = 0;
iDot = 0;
while( rc==LSM_OK && i<p->nRow ){
/* Insert some data */
testWriteDatasourceRange(pDb, pData, i, p->nVerify, &rc);
i += p->nVerify;
/* Check that the db content is correct. */
testDbContents(pDb, pData, p->nRow, 0, i-1, p->nTest, p->bTestScan, &rc);
/* Close and reopen the database. */
testReopen(&pDb, &rc);
/* Check that the db content is still correct. */
testDbContents(pDb, pData, p->nRow, 0, i-1, p->nTest, p->bTestScan, &rc);
/* Update the progress dots... */
testCaseProgress(i, p->nRow, testCaseNDot()/2, &iDot);
}
i = 0;
iDot = 0;
while( rc==LSM_OK && i<p->nRow ){
/* Delete some entries */
testDeleteDatasourceRange(pDb, pData, i, p->nVerify, &rc);
i += p->nVerify;
/* Check that the db content is correct. */
testDbContents(pDb, pData, p->nRow, i, p->nRow-1,p->nTest,p->bTestScan,&rc);
/* Close and reopen the database. */
testReopen(&pDb, &rc);
/* Check that the db content is still correct. */
testDbContents(pDb, pData, p->nRow, i, p->nRow-1,p->nTest,p->bTestScan,&rc);
/* Update the progress dots... */
testCaseProgress(i, p->nRow, testCaseNDot()/2, &iDot);
}
/* Free the datasource, close the database and finish the test case. */
testDatasourceFree(pData);
tdb_close(pDb);
testCaseFinish(rc);
*pRc = rc;
}
void test_data_1(
const char *zSystem, /* Database system name */
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
Datatest1 aTest[] = {
{ {DATA_RANDOM, 500,600, 1000,2000}, 1000, 100, 10, 0},
{ {DATA_RANDOM, 20,25, 100,200}, 1000, 250, 1000, 1},
{ {DATA_RANDOM, 8,10, 100,200}, 1000, 250, 1000, 1},
{ {DATA_RANDOM, 8,10, 10,20}, 1000, 250, 1000, 1},
{ {DATA_RANDOM, 8,10, 1000,2000}, 1000, 250, 1000, 1},
{ {DATA_RANDOM, 8,100, 10000,20000}, 100, 25, 100, 1},
{ {DATA_RANDOM, 80,100, 10,20}, 1000, 250, 1000, 1},
{ {DATA_RANDOM, 5000,6000, 10,20}, 100, 25, 100, 1},
{ {DATA_SEQUENTIAL, 5,10, 10,20}, 1000, 250, 1000, 1},
{ {DATA_SEQUENTIAL, 5,10, 100,200}, 1000, 250, 1000, 1},
{ {DATA_SEQUENTIAL, 5,10, 1000,2000}, 1000, 250, 1000, 1},
{ {DATA_SEQUENTIAL, 5,100, 10000,20000}, 100, 25, 100, 1},
{ {DATA_RANDOM, 10,10, 100,100}, 100000, 1000, 100, 0},
{ {DATA_SEQUENTIAL, 10,10, 100,100}, 100000, 1000, 100, 0},
};
int i;
for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
char *zName = getName(zSystem, &aTest[i]);
if( testCaseBegin(pRc, zPattern, "%s", zName) ){
doDataTest1(zSystem, &aTest[i], pRc);
}
testFree(zName);
}
}
void testCompareDb(
Datasource *pData,
int nData,
int iSeed,
TestDb *pControl,
TestDb *pDb,
int *pRc
){
int i;
static int nCall = 0;
nCall++;
testScanCompare(pControl, pDb, 0, 0, 0, 0, 0, pRc);
testScanCompare(pControl, pDb, 1, 0, 0, 0, 0, pRc);
if( *pRc==0 ){
int iKey1;
int iKey2;
void *pKey1; int nKey1; /* Start key */
void *pKey2; int nKey2; /* Final key */
iKey1 = testPrngValue(iSeed) % nData;
iKey2 = testPrngValue(iSeed+1) % nData;
testDatasourceEntry(pData, iKey1, &pKey2, &nKey1, 0, 0);
pKey1 = testMalloc(nKey1+1);
memcpy(pKey1, pKey2, nKey1+1);
testDatasourceEntry(pData, iKey2, &pKey2, &nKey2, 0, 0);
testScanCompare(pControl, pDb, 0, 0, 0, pKey2, nKey2, pRc);
testScanCompare(pControl, pDb, 0, pKey1, nKey1, 0, 0, pRc);
testScanCompare(pControl, pDb, 0, pKey1, nKey1, pKey2, nKey2, pRc);
testScanCompare(pControl, pDb, 1, 0, 0, pKey2, nKey2, pRc);
testScanCompare(pControl, pDb, 1, pKey1, nKey1, 0, 0, pRc);
testScanCompare(pControl, pDb, 1, pKey1, nKey1, pKey2, nKey2, pRc);
testFree(pKey1);
}
for(i=0; i<nData && *pRc==0; i++){
void *pKey; int nKey;
testDatasourceEntry(pData, i, &pKey, &nKey, 0, 0);
testFetchCompare(pControl, pDb, pKey, nKey, pRc);
}
}
static void doDataTest2(
const char *zSystem, /* Database system to test */
Datatest2 *p, /* Structure containing test parameters */
int *pRc /* OUT: Error code */
){
TestDb *pDb;
TestDb *pControl;
Datasource *pData;
int i;
int rc = LSM_OK;
int iDot = 0;
/* Start the test case, open a database and allocate the datasource. */
pDb = testOpen(zSystem, 1, &rc);
pData = testDatasourceNew(&p->defn);
rc = testControlDb(&pControl);
if( tdb_lsm(pDb) ){
int nBuf = 32 * 1024 * 1024;
lsm_config(tdb_lsm(pDb), LSM_CONFIG_AUTOFLUSH, &nBuf);
}
for(i=0; rc==0 && i<p->nIter; i++){
void *pKey1; int nKey1;
void *pKey2; int nKey2;
int ii;
int nRange = MIN(p->nIter*p->nWrite, p->nRange);
for(ii=0; rc==0 && ii<p->nWrite; ii++){
int iKey = (i*p->nWrite + ii) % p->nRange;
testWriteDatasource(pControl, pData, iKey, &rc);
testWriteDatasource(pDb, pData, iKey, &rc);
}
testDatasourceEntry(pData, i+1000000, &pKey1, &nKey1, 0, 0);
pKey1 = testMallocCopy(pKey1, nKey1);
testDatasourceEntry(pData, i+2000000, &pKey2, &nKey2, 0, 0);
testDeleteRange(pDb, pKey1, nKey1, pKey2, nKey2, &rc);
testDeleteRange(pControl, pKey1, nKey1, pKey2, nKey2, &rc);
testFree(pKey1);
testCompareDb(pData, nRange, i, pControl, pDb, &rc);
testReopen(&pDb, &rc);
testCompareDb(pData, nRange, i, pControl, pDb, &rc);
/* Update the progress dots... */
testCaseProgress(i, p->nIter, testCaseNDot(), &iDot);
}
testClose(&pDb);
testClose(&pControl);
testDatasourceFree(pData);
testCaseFinish(rc);
*pRc = rc;
}
static char *getName2(const char *zSystem, Datatest2 *pTest){
char *zRet;
char *zData;
zData = testDatasourceName(&pTest->defn);
zRet = testMallocPrintf("data2.%s.%s.%d.%d.%d",
zSystem, zData, pTest->nRange, pTest->nWrite, pTest->nIter
);
testFree(zData);
return zRet;
}
void test_data_2(
const char *zSystem, /* Database system name */
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
Datatest2 aTest[] = {
/* defn, nRange, nWrite, nIter */
{ {DATA_RANDOM, 20,25, 100,200}, 10000, 10, 50 },
{ {DATA_RANDOM, 20,25, 100,200}, 10000, 200, 50 },
{ {DATA_RANDOM, 20,25, 100,200}, 100, 10, 1000 },
{ {DATA_RANDOM, 20,25, 100,200}, 100, 200, 50 },
};
int i;
for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
char *zName = getName2(zSystem, &aTest[i]);
if( testCaseBegin(pRc, zPattern, "%s", zName) ){
doDataTest2(zSystem, &aTest[i], pRc);
}
testFree(zName);
}
}
/*************************************************************************
** Test case data3.*
*/
typedef struct Datatest3 Datatest3;
struct Datatest3 {
int nRange; /* Keys are between 1 and this value, incl. */
int nIter; /* Number of iterations */
int nWrite; /* Number of writes per iteration */
int nDelete; /* Number of deletes per iteration */
int nValMin; /* Minimum value size for writes */
int nValMax; /* Maximum value size for writes */
};
void testPutU32(u8 *aBuf, u32 iVal){
aBuf[0] = (iVal >> 24) & 0xFF;
aBuf[1] = (iVal >> 16) & 0xFF;
aBuf[2] = (iVal >> 8) & 0xFF;
aBuf[3] = (iVal >> 0) & 0xFF;
}
void dt3PutKey(u8 *aBuf, int iKey){
assert( iKey<100000 && iKey>=0 );
sprintf((char *)aBuf, "%.5d", iKey);
}
static void doDataTest3(
const char *zSystem, /* Database system to test */
Datatest3 *p, /* Structure containing test parameters */
int *pRc /* OUT: Error code */
){
int iDot = 0;
int rc = *pRc;
TestDb *pDb;
u8 *abPresent; /* Array of boolean */
char *aVal; /* Buffer to hold values */
int i;
u32 iSeq = 10; /* prng counter */
abPresent = (u8 *)testMalloc(p->nRange+1);
aVal = (char *)testMalloc(p->nValMax+1);
pDb = testOpen(zSystem, 1, &rc);
for(i=0; i<p->nIter && rc==0; i++){
int ii;
testCaseProgress(i, p->nIter, testCaseNDot(), &iDot);
/* Perform nWrite inserts */
for(ii=0; ii<p->nWrite; ii++){
u8 aKey[6];
u32 iKey;
int nVal;
iKey = (testPrngValue(iSeq++) % p->nRange) + 1;
nVal = (testPrngValue(iSeq++) % (p->nValMax - p->nValMin)) + p->nValMin;
testPrngString(testPrngValue(iSeq++), aVal, nVal);
dt3PutKey(aKey, iKey);
testWrite(pDb, aKey, sizeof(aKey)-1, aVal, nVal, &rc);
abPresent[iKey] = 1;
}
/* Perform nDelete deletes */
for(ii=0; ii<p->nDelete; ii++){
u8 aKey1[6];
u8 aKey2[6];
u32 iKey;
iKey = (testPrngValue(iSeq++) % p->nRange) + 1;
dt3PutKey(aKey1, iKey-1);
dt3PutKey(aKey2, iKey+1);
testDeleteRange(pDb, aKey1, sizeof(aKey1)-1, aKey2, sizeof(aKey2)-1, &rc);
abPresent[iKey] = 0;
}
testReopen(&pDb, &rc);
for(ii=1; rc==0 && ii<=p->nRange; ii++){
int nDbVal;
void *pDbVal;
u8 aKey[6];
int dbrc;
dt3PutKey(aKey, ii);
dbrc = tdb_fetch(pDb, aKey, sizeof(aKey)-1, &pDbVal, &nDbVal);
testCompareInt(0, dbrc, &rc);
if( abPresent[ii] ){
testCompareInt(1, (nDbVal>0), &rc);
}else{
testCompareInt(1, (nDbVal<0), &rc);
}
}
}
testClose(&pDb);
testCaseFinish(rc);
*pRc = rc;
}
static char *getName3(const char *zSystem, Datatest3 *p){
return testMallocPrintf("data3.%s.%d.%d.%d.%d.(%d..%d)",
zSystem, p->nRange, p->nIter, p->nWrite, p->nDelete,
p->nValMin, p->nValMax
);
}
void test_data_3(
const char *zSystem, /* Database system name */
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
Datatest3 aTest[] = {
/* nRange, nIter, nWrite, nDelete, nValMin, nValMax */
{ 100, 1000, 5, 5, 50, 100 },
{ 100, 1000, 2, 2, 5, 10 },
};
int i;
for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
char *zName = getName3(zSystem, &aTest[i]);
if( testCaseBegin(pRc, zPattern, "%s", zName) ){
doDataTest3(zSystem, &aTest[i], pRc);
}
testFree(zName);
}
}

View File

@ -0,0 +1,485 @@
/*
** This file contains tests related to recovery following application
** and system crashes (power failures) while writing to the database.
*/
#include "lsmtest.h"
/*
** Structure used by testCksumDatabase() to accumulate checksum values in.
*/
typedef struct Cksum Cksum;
struct Cksum {
int nRow;
int cksum1;
int cksum2;
};
/*
** tdb_scan() callback used by testCksumDatabase()
*/
static void scanCksumDb(
void *pCtx,
void *pKey, int nKey,
void *pVal, int nVal
){
Cksum *p = (Cksum *)pCtx;
int i;
p->nRow++;
for(i=0; i<nKey; i++){
p->cksum1 += ((u8 *)pKey)[i];
p->cksum2 += p->cksum1;
}
for(i=0; i<nVal; i++){
p->cksum1 += ((u8 *)pVal)[i];
p->cksum2 += p->cksum1;
}
}
/*
** tdb_scan() callback used by testCountDatabase()
*/
static void scanCountDb(
void *pCtx,
void *pKey, int nKey,
void *pVal, int nVal
){
Cksum *p = (Cksum *)pCtx;
p->nRow++;
unused_parameter(pKey);
unused_parameter(nKey);
unused_parameter(pVal);
unused_parameter(nVal);
}
/*
** Iterate through the entire contents of database pDb. Write a checksum
** string based on the db contents into buffer zOut before returning. A
** checksum string is at most 29 (TEST_CKSUM_BYTES) bytes in size:
**
** * 32-bit integer (10 bytes)
** * 1 space (1 byte)
** * 32-bit hex (8 bytes)
** * 1 space (1 byte)
** * 32-bit hex (8 bytes)
** * nul-terminator (1 byte)
**
** The number of entries in the database is returned.
*/
int testCksumDatabase(
TestDb *pDb, /* Database handle */
char *zOut /* Buffer to write checksum to */
){
Cksum cksum;
memset(&cksum, 0, sizeof(Cksum));
tdb_scan(pDb, (void *)&cksum, 0, 0, 0, 0, 0, scanCksumDb);
sprintf(zOut, "%d %x %x",
cksum.nRow, (u32)cksum.cksum1, (u32)cksum.cksum2
);
assert( strlen(zOut)<TEST_CKSUM_BYTES );
return cksum.nRow;
}
int testCountDatabase(TestDb *pDb){
Cksum cksum;
memset(&cksum, 0, sizeof(Cksum));
tdb_scan(pDb, (void *)&cksum, 0, 0, 0, 0, 0, scanCountDb);
return cksum.nRow;
}
/*
** This function is a no-op if *pRc is not 0 when it is called.
**
** Otherwise, the two nul-terminated strings z1 and z1 are compared. If
** they are the same, the function returns without doing anything. Otherwise,
** an error message is printed, *pRc is set to 1 and the test_failed()
** function called.
*/
void testCompareStr(const char *z1, const char *z2, int *pRc){
if( *pRc==0 ){
if( strcmp(z1, z2) ){
testPrintError("testCompareStr: \"%s\" != \"%s\"\n", z1, z2);
*pRc = 1;
test_failed();
}
}
}
/*
** This function is a no-op if *pRc is not 0 when it is called.
**
** Otherwise, the two integers i1 and i2 are compared. If they are equal,
** the function returns without doing anything. Otherwise, an error message
** is printed, *pRc is set to 1 and the test_failed() function called.
*/
void testCompareInt(int i1, int i2, int *pRc){
if( *pRc==0 && i1!=i2 ){
testPrintError("testCompareInt: %d != %d\n", i1, i2);
*pRc = 1;
test_failed();
}
}
void testCaseStart(int *pRc, char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
vprintf(zFmt, ap);
printf(" ...");
va_end(ap);
*pRc = 0;
fflush(stdout);
}
/*
** This function is a no-op if *pRc is non-zero when it is called. Zero
** is returned in this case.
**
** Otherwise, the zFmt (a printf style format string) and following arguments
** are used to create a test case name. If zPattern is NULL or a glob pattern
** that matches the test case name, 1 is returned and the test case started.
** Otherwise, zero is returned and the test case does not start.
*/
int testCaseBegin(int *pRc, const char *zPattern, const char *zFmt, ...){
int res = 0;
if( *pRc==0 ){
char *zTest;
va_list ap;
va_start(ap, zFmt);
zTest = testMallocVPrintf(zFmt, ap);
va_end(ap);
if( zPattern==0 || testGlobMatch(zPattern, zTest) ){
printf("%-50s ...", zTest);
res = 1;
}
testFree(zTest);
fflush(stdout);
}
return res;
}
void testCaseFinish(int rc){
if( rc==0 ){
printf("Ok\n");
}else{
printf("FAILED\n");
}
fflush(stdout);
}
void testCaseSkip(){
printf("Skipped\n");
}
void testSetupSavedLsmdb(
const char *zCfg,
const char *zFile,
Datasource *pData,
int nRow,
int *pRc
){
if( *pRc==0 ){
int rc;
TestDb *pDb;
rc = tdb_lsm_open(zCfg, zFile, 1, &pDb);
if( rc==0 ){
testWriteDatasourceRange(pDb, pData, 0, nRow, &rc);
testClose(&pDb);
if( rc==0 ) testSaveDb(zFile, "log");
}
*pRc = rc;
}
}
/*
** This function is a no-op if *pRc is non-zero when it is called.
**
** Open the LSM database identified by zFile and compute its checksum
** (a string, as returned by testCksumDatabase()). If the checksum is
** identical to zExpect1 or, if it is not NULL, zExpect2, the test passes.
** Otherwise, print an error message and set *pRc to 1.
*/
static void testCompareCksumLsmdb(
const char *zFile, /* Path to LSM database */
int bCompress, /* True if db is compressed */
const char *zExpect1, /* Expected checksum 1 */
const char *zExpect2, /* Expected checksum 2 (or NULL) */
int *pRc /* IN/OUT: Test case error code */
){
if( *pRc==0 ){
char zCksum[TEST_CKSUM_BYTES];
TestDb *pDb;
*pRc = tdb_lsm_open((bCompress?"compression=1 mmap=0":""), zFile, 0, &pDb);
testCksumDatabase(pDb, zCksum);
testClose(&pDb);
if( *pRc==0 ){
int r1 = 0;
int r2 = -1;
r1 = strcmp(zCksum, zExpect1);
if( zExpect2 ) r2 = strcmp(zCksum, zExpect2);
if( r1 && r2 ){
if( zExpect2 ){
testPrintError("testCompareCksumLsmdb: \"%s\" != (\"%s\" OR \"%s\")",
zCksum, zExpect1, zExpect2
);
}else{
testPrintError("testCompareCksumLsmdb: \"%s\" != \"%s\"",
zCksum, zExpect1
);
}
*pRc = 1;
test_failed();
}
}
}
}
static void testCompareCksumBtdb(
const char *zFile, /* Path to LSM database */
const char *zExpect1, /* Expected checksum 1 */
const char *zExpect2, /* Expected checksum 2 (or NULL) */
int *pRc /* IN/OUT: Test case error code */
){
if( *pRc==0 ){
char zCksum[TEST_CKSUM_BYTES];
TestDb *pDb;
*pRc = tdb_open("bt", zFile, 0, &pDb);
testCksumDatabase(pDb, zCksum);
testClose(&pDb);
if( *pRc==0 ){
int r1 = 0;
int r2 = -1;
r1 = strcmp(zCksum, zExpect1);
if( zExpect2 ) r2 = strcmp(zCksum, zExpect2);
if( r1 && r2 ){
if( zExpect2 ){
testPrintError("testCompareCksumLsmdb: \"%s\" != (\"%s\" OR \"%s\")",
zCksum, zExpect1, zExpect2
);
}else{
testPrintError("testCompareCksumLsmdb: \"%s\" != \"%s\"",
zCksum, zExpect1
);
}
*pRc = 1;
test_failed();
}
}
}
}
/* Above this point are reusable test routines. Not clear that they
** should really be in this file.
*************************************************************************/
/*
** This test verifies that if a system crash occurs while doing merge work
** on the db, no data is lost.
*/
static void crash_test1(int bCompress, int *pRc){
const char *DBNAME = "testdb.lsm";
const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 200, 200};
const int nRow = 5000; /* Database size */
const int nIter = 200; /* Number of test iterations */
const int nWork = 20; /* Maximum lsm_work() calls per iteration */
const int nPage = 15; /* Pages per lsm_work call */
int i;
int iDot = 0;
Datasource *pData;
CksumDb *pCksumDb;
TestDb *pDb;
char *zCfg;
const char *azConfig[2] = {
"page_size=1024 block_size=65536 autoflush=16384 safety=2 mmap=0",
"page_size=1024 block_size=65536 autoflush=16384 safety=2 "
" compression=1 mmap=0"
};
assert( bCompress==0 || bCompress==1 );
/* Allocate datasource. And calculate the expected checksums. */
pData = testDatasourceNew(&defn);
pCksumDb = testCksumArrayNew(pData, nRow, nRow, 1);
/* Setup and save the initial database. */
zCfg = testMallocPrintf("%s automerge=7", azConfig[bCompress]);
testSetupSavedLsmdb(zCfg, DBNAME, pData, 5000, pRc);
testFree(zCfg);
for(i=0; i<nIter && *pRc==0; i++){
int iWork;
int testrc = 0;
testCaseProgress(i, nIter, testCaseNDot(), &iDot);
/* Restore and open the database. */
testRestoreDb(DBNAME, "log");
testrc = tdb_lsm_open(azConfig[bCompress], DBNAME, 0, &pDb);
assert( testrc==0 );
/* Call lsm_work() on the db */
tdb_lsm_prepare_sync_crash(pDb, 1 + (i%(nWork*2)));
for(iWork=0; testrc==0 && iWork<nWork; iWork++){
int nWrite = 0;
lsm_db *db = tdb_lsm(pDb);
testrc = lsm_work(db, 0, nPage, &nWrite);
assert( testrc!=0 || nWrite>0 );
if( testrc==0 ) testrc = lsm_checkpoint(db, 0);
}
tdb_close(pDb);
/* Check that the database content is still correct */
testCompareCksumLsmdb(DBNAME,
bCompress, testCksumArrayGet(pCksumDb, nRow), 0, pRc);
}
testCksumArrayFree(pCksumDb);
testDatasourceFree(pData);
}
/*
** This test verifies that if a system crash occurs while committing a
** transaction to the log file, no earlier transactions are lost or damaged.
*/
static void crash_test2(int bCompress, int *pRc){
const char *DBNAME = "testdb.lsm";
const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 1000, 1000};
const int nIter = 200;
const int nInsert = 20;
int i;
int iDot = 0;
Datasource *pData;
CksumDb *pCksumDb;
TestDb *pDb;
/* Allocate datasource. And calculate the expected checksums. */
pData = testDatasourceNew(&defn);
pCksumDb = testCksumArrayNew(pData, 100, 100+nInsert, 1);
/* Setup and save the initial database. */
testSetupSavedLsmdb("", DBNAME, pData, 100, pRc);
for(i=0; i<nIter && *pRc==0; i++){
int iIns;
int testrc = 0;
testCaseProgress(i, nIter, testCaseNDot(), &iDot);
/* Restore and open the database. */
testRestoreDb(DBNAME, "log");
testrc = tdb_lsm_open("safety=2", DBNAME, 0, &pDb);
assert( testrc==0 );
/* Insert nInsert records into the database. Crash midway through. */
tdb_lsm_prepare_sync_crash(pDb, 1 + (i%(nInsert+2)));
for(iIns=0; iIns<nInsert; iIns++){
void *pKey; int nKey;
void *pVal; int nVal;
testDatasourceEntry(pData, 100+iIns, &pKey, &nKey, &pVal, &nVal);
testrc = tdb_write(pDb, pKey, nKey, pVal, nVal);
if( testrc ) break;
}
tdb_close(pDb);
/* Check that no data was lost when the system crashed. */
testCompareCksumLsmdb(DBNAME, bCompress,
testCksumArrayGet(pCksumDb, 100 + iIns),
testCksumArrayGet(pCksumDb, 100 + iIns + 1),
pRc
);
}
testDatasourceFree(pData);
testCksumArrayFree(pCksumDb);
}
/*
** This test verifies that if a system crash occurs when checkpointing
** the database, data is not lost (assuming that any writes not synced
** to the db have been synced into the log file).
*/
static void crash_test3(int bCompress, int *pRc){
const char *DBNAME = "testdb.lsm";
const int nIter = 100;
const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 1000, 1000};
int i;
int iDot = 0;
Datasource *pData;
CksumDb *pCksumDb;
TestDb *pDb;
/* Allocate datasource. And calculate the expected checksums. */
pData = testDatasourceNew(&defn);
pCksumDb = testCksumArrayNew(pData, 110, 150, 10);
/* Setup and save the initial database. */
testSetupSavedLsmdb("", DBNAME, pData, 100, pRc);
for(i=0; i<nIter && *pRc==0; i++){
int iOpen;
testCaseProgress(i, nIter, testCaseNDot(), &iDot);
testRestoreDb(DBNAME, "log");
for(iOpen=0; iOpen<5; iOpen++){
/* Open the database. Insert 10 more records. */
pDb = testOpen("lsm", 0, pRc);
testWriteDatasourceRange(pDb, pData, 100+iOpen*10, 10, pRc);
/* Schedule a crash simulation then close the db. */
tdb_lsm_prepare_sync_crash(pDb, 1 + (i%2));
tdb_close(pDb);
/* Open the database and check that the crash did not cause any
** data loss. */
testCompareCksumLsmdb(DBNAME, bCompress,
testCksumArrayGet(pCksumDb, 110 + iOpen*10), 0,
pRc
);
}
}
testDatasourceFree(pData);
testCksumArrayFree(pCksumDb);
}
void do_crash_test(const char *zPattern, int *pRc){
struct Test {
const char *zTest;
void (*x)(int, int *);
int bCompress;
} aTest [] = {
{ "crash.lsm.1", crash_test1, 0 },
{ "crash.lsm_zip.1", crash_test1, 1 },
{ "crash.lsm.2", crash_test2, 0 },
{ "crash.lsm.3", crash_test3, 0 },
};
int i;
for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
struct Test *p = &aTest[i];
if( testCaseBegin(pRc, zPattern, "%s", p->zTest) ){
p->x(p->bCompress, pRc);
testCaseFinish(*pRc);
}
}
}

View File

@ -0,0 +1,238 @@
/*
** This file contains tests related to the explicit rollback of database
** transactions and sub-transactions.
*/
/*
** Repeat 2000 times (until the db contains 100,000 entries):
**
** 1. Open a transaction and insert 500 rows, opening a nested
** sub-transaction each 100 rows.
**
** 2. Roll back to each sub-transaction savepoint. Check the database
** checksum looks Ok.
**
** 3. Every second iteration, roll back the main transaction. Check the
** db checksum is correct. Every other iteration, commit the main
** transaction (increasing the size of the db by 100 rows).
*/
#include "lsmtest.h"
struct CksumDb {
int nFirst;
int nLast;
int nStep;
char **azCksum;
};
CksumDb *testCksumArrayNew(
Datasource *pData,
int nFirst,
int nLast,
int nStep
){
TestDb *pDb;
CksumDb *pRet;
int i;
int nEntry;
int rc = 0;
assert( nLast>=nFirst && ((nLast-nFirst)%nStep)==0 );
pRet = malloc(sizeof(CksumDb));
memset(pRet, 0, sizeof(CksumDb));
pRet->nFirst = nFirst;
pRet->nLast = nLast;
pRet->nStep = nStep;
nEntry = 1 + ((nLast - nFirst) / nStep);
/* Allocate space so that azCksum is an array of nEntry pointers to
** buffers each TEST_CKSUM_BYTES in size. */
pRet->azCksum = (char **)malloc(nEntry * (sizeof(char *) + TEST_CKSUM_BYTES));
for(i=0; i<nEntry; i++){
char *pStart = (char *)(&pRet->azCksum[nEntry]);
pRet->azCksum[i] = &pStart[i * TEST_CKSUM_BYTES];
}
tdb_open("lsm", "tempdb.lsm", 1, &pDb);
testWriteDatasourceRange(pDb, pData, 0, nFirst, &rc);
for(i=0; i<nEntry; i++){
testCksumDatabase(pDb, pRet->azCksum[i]);
if( i==nEntry ) break;
testWriteDatasourceRange(pDb, pData, nFirst+i*nStep, nStep, &rc);
}
tdb_close(pDb);
return pRet;
}
char *testCksumArrayGet(CksumDb *p, int nRow){
int i;
assert( nRow>=p->nFirst );
assert( nRow<=p->nLast );
assert( ((nRow-p->nFirst) % p->nStep)==0 );
i = (nRow - p->nFirst) / p->nStep;
return p->azCksum[i];
}
void testCksumArrayFree(CksumDb *p){
free(p->azCksum);
memset(p, 0x55, sizeof(*p));
free(p);
}
/* End of CksumDb code.
**************************************************************************/
/*
** Test utility function. Write key-value pair $i from datasource pData
** into database pDb.
*/
void testWriteDatasource(TestDb *pDb, Datasource *pData, int i, int *pRc){
void *pKey; int nKey;
void *pVal; int nVal;
testDatasourceEntry(pData, i, &pKey, &nKey, &pVal, &nVal);
testWrite(pDb, pKey, nKey, pVal, nVal, pRc);
}
/*
** Test utility function. Delete datasource pData key $i from database pDb.
*/
void testDeleteDatasource(TestDb *pDb, Datasource *pData, int i, int *pRc){
void *pKey; int nKey;
testDatasourceEntry(pData, i, &pKey, &nKey, 0, 0);
testDelete(pDb, pKey, nKey, pRc);
}
/*
** This function inserts nWrite key/value pairs into database pDb - the
** nWrite key value pairs starting at iFirst from data source pData.
*/
void testWriteDatasourceRange(
TestDb *pDb, /* Database to write to */
Datasource *pData, /* Data source to read values from */
int iFirst, /* Index of first key/value pair */
int nWrite, /* Number of key/value pairs to write */
int *pRc /* IN/OUT: Error code */
){
int i;
for(i=0; i<nWrite; i++){
testWriteDatasource(pDb, pData, iFirst+i, pRc);
}
}
void testDeleteDatasourceRange(
TestDb *pDb, /* Database to write to */
Datasource *pData, /* Data source to read keys from */
int iFirst, /* Index of first key */
int nWrite, /* Number of keys to delete */
int *pRc /* IN/OUT: Error code */
){
int i;
for(i=0; i<nWrite; i++){
testDeleteDatasource(pDb, pData, iFirst+i, pRc);
}
}
static char *getName(const char *zSystem){
char *zRet;
zRet = testMallocPrintf("rollback.%s", zSystem);
return zRet;
}
static int rollback_test_1(
const char *zSystem,
Datasource *pData
){
const int nRepeat = 100;
TestDb *pDb;
int rc;
int i;
CksumDb *pCksum;
char *zName;
zName = getName(zSystem);
testCaseStart(&rc, zName);
testFree(zName);
pCksum = testCksumArrayNew(pData, 0, nRepeat*100, 100);
pDb = 0;
rc = tdb_open(zSystem, 0, 1, &pDb);
if( pDb && tdb_transaction_support(pDb)==0 ){
testCaseSkip();
goto skip_rollback_test;
}
for(i=0; i<nRepeat && rc==0; i++){
char zCksum[TEST_CKSUM_BYTES];
int nCurrent = (((i+1)/2) * 100);
int nDbRow;
int iTrans;
/* Check that the database is the expected size. */
nDbRow = testCountDatabase(pDb);
testCompareInt(nCurrent, nDbRow, &rc);
for(iTrans=2; iTrans<=6 && rc==0; iTrans++){
tdb_begin(pDb, iTrans);
testWriteDatasourceRange(pDb, pData, nCurrent, 100, &rc);
nCurrent += 100;
}
testCksumDatabase(pDb, zCksum);
testCompareStr(zCksum, testCksumArrayGet(pCksum, nCurrent), &rc);
for(iTrans=6; iTrans>2 && rc==0; iTrans--){
tdb_rollback(pDb, iTrans);
nCurrent -= 100;
testCksumDatabase(pDb, zCksum);
testCompareStr(zCksum, testCksumArrayGet(pCksum, nCurrent), &rc);
}
if( i%2 ){
tdb_rollback(pDb, 0);
nCurrent -= 100;
testCksumDatabase(pDb, zCksum);
testCompareStr(zCksum, testCksumArrayGet(pCksum, nCurrent), &rc);
}else{
tdb_commit(pDb, 0);
}
}
testCaseFinish(rc);
skip_rollback_test:
tdb_close(pDb);
testCksumArrayFree(pCksum);
return rc;
}
void test_rollback(
const char *zSystem,
const char *zPattern,
int *pRc
){
if( *pRc==0 ){
int bRun = 1;
if( zPattern ){
char *zName = getName(zSystem);
bRun = testGlobMatch(zPattern, zName);
testFree(zName);
}
if( bRun ){
DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 10, 15, 50, 100 };
Datasource *pData = testDatasourceNew(&defn);
*pRc = rollback_test_1(zSystem, pData);
testDatasourceFree(pData);
}
}
}

View File

@ -0,0 +1,127 @@
/*
** This file contains test cases involving multiple database clients.
*/
#include "lsmtest.h"
/*
** The following code implements test cases "mc1.*".
**
** This test case uses one writer and $nReader readers. All connections
** are driven by a single thread. All connections are opened at the start
** of the test and remain open until the test is finished.
**
** The test consists of $nStep steps. Each step the following is performed:
**
** 1. The writer inserts $nWriteStep records into the db.
**
** 2. The writer checks that the contents of the db are as expected.
**
** 3. Each reader that currently has an open read transaction also checks
** that the contents of the db are as expected (according to the snapshot
** the read transaction is reading - see below).
**
** After step 1, reader 1 opens a read transaction. After step 2, reader
** 2 opens a read transaction, and so on. At step ($nReader+1), reader 1
** closes the current read transaction and opens a new one. And so on.
** The result is that at step N (for N > $nReader), there exists a reader
** with an open read transaction reading the snapshot committed following
** steps (N-$nReader-1) to N.
*/
typedef struct Mctest Mctest;
struct Mctest {
DatasourceDefn defn; /* Datasource to use */
int nStep; /* Total number of steps in test */
int nWriteStep; /* Number of rows to insert each step */
int nReader; /* Number of read connections */
};
static void do_mc_test(
const char *zSystem, /* Database system to test */
Mctest *pTest,
int *pRc /* IN/OUT: return code */
){
const int nDomain = pTest->nStep * pTest->nWriteStep;
Datasource *pData; /* Source of data */
TestDb *pDb; /* First database connection (writer) */
int iReader; /* Used to iterate through aReader */
int iStep; /* Current step in test */
int iDot = 0; /* Current step in test */
/* Array of reader connections */
struct Reader {
TestDb *pDb; /* Connection handle */
int iLast; /* Current snapshot contains keys 0..iLast */
} *aReader;
/* Create a data source */
pData = testDatasourceNew(&pTest->defn);
/* Open the writer connection */
pDb = testOpen(zSystem, 1, pRc);
/* Allocate aReader */
aReader = (struct Reader *)testMalloc(sizeof(aReader[0]) * pTest->nReader);
for(iReader=0; iReader<pTest->nReader; iReader++){
aReader[iReader].pDb = testOpen(zSystem, 0, pRc);
}
for(iStep=0; iStep<pTest->nStep; iStep++){
int iLast;
int iBegin; /* Start read trans using aReader[iBegin] */
/* Insert nWriteStep more records into the database */
int iFirst = iStep*pTest->nWriteStep;
testWriteDatasourceRange(pDb, pData, iFirst, pTest->nWriteStep, pRc);
/* Check that the db is Ok according to the writer */
iLast = (iStep+1) * pTest->nWriteStep - 1;
testDbContents(pDb, pData, nDomain, 0, iLast, iLast, 1, pRc);
/* Have reader (iStep % nReader) open a read transaction here. */
iBegin = (iStep % pTest->nReader);
if( iBegin<iStep ) tdb_commit(aReader[iBegin].pDb, 0);
tdb_begin(aReader[iBegin].pDb, 1);
aReader[iBegin].iLast = iLast;
/* Check that the db is Ok for each open reader */
for(iReader=0; iReader<pTest->nReader && aReader[iReader].iLast; iReader++){
iLast = aReader[iReader].iLast;
testDbContents(
aReader[iReader].pDb, pData, nDomain, 0, iLast, iLast, 1, pRc
);
}
/* Report progress */
testCaseProgress(iStep, pTest->nStep, testCaseNDot(), &iDot);
}
/* Close all readers */
for(iReader=0; iReader<pTest->nReader; iReader++){
testClose(&aReader[iReader].pDb);
}
testFree(aReader);
/* Close the writer-connection and free the datasource */
testClose(&pDb);
testDatasourceFree(pData);
}
void test_mc(
const char *zSystem, /* Database system name */
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
int i;
Mctest aTest[] = {
{ { TEST_DATASOURCE_RANDOM, 10,10, 100,100 }, 100, 10, 5 },
};
for(i=0; i<ArraySize(aTest); i++){
if( testCaseBegin(pRc, zPattern, "mc1.%s.%d", zSystem, i) ){
do_mc_test(zSystem, &aTest[i], pRc);
testCaseFinish(*pRc);
}
}
}

View File

@ -0,0 +1,633 @@
/*
** This file is broken into three semi-autonomous parts:
**
** 1. The database functions.
** 2. The thread wrappers.
** 3. The implementation of the mt1.* tests.
*/
/*************************************************************************
** DATABASE CONTENTS:
**
** The database contains up to N key/value pairs, where N is some large
** number (say 10,000,000). Keys are integer values between 0 and (N-1).
** The value associated with each key is a pseudo-random blob of data.
**
** Key/value pair keys are encoded as the two bytes "k." followed by a
** 10-digit decimal number. i.e. key 45 -> "k.0000000045".
**
** As well as the key/value pairs, the database also contains checksum
** entries. The checksums form a hierarchy - for every F key/value
** entries there is one level 1 checksum. And for each F level 1 checksums
** there is one level 2 checksum. And so on.
**
** Checksum keys are encoded as the two byte "c." followed by the
** checksum level, followed by a 10 digit decimal number containing
** the value of the first key that contributes to the checksum value.
** For example, assuming F==10, the level 1 checksum that spans keys
** 10 to 19 is "c.1.0000000010".
**
** Clients may perform one of two operations on the database: a read
** or a write.
**
** READ OPERATIONS:
**
** A read operation scans a range of F key/value pairs. It computes
** the expected checksum and then compares the computed value to the
** actual value stored in the level 1 checksum entry. It then scans
** the group of F level 1 checksums, and compares the computed checksum
** to the associated level 2 checksum value, and so on until the
** highest level checksum value has been verified.
**
** If a checksum ever fails to match the expected value, the test
** has failed.
**
** WRITE OPERATIONS:
**
** A write operation involves writing (possibly clobbering) a single
** key/value pair. The associated level 1 checksum is then recalculated
** updated. Then the level 2 checksum, and so on until the highest
** level checksum has been modified.
**
** All updates occur inside a single transaction.
**
** INTERFACE:
**
** The interface used by test cases to read and write the db consists
** of type DbParameters and the following functions:
**
** dbReadOperation()
** dbWriteOperation()
*/
#include "lsmtest.h"
typedef struct DbParameters DbParameters;
struct DbParameters {
int nFanout; /* Checksum fanout (F) */
int nKey; /* Size of key space (N) */
};
#define DB_KEY_BYTES (2+5+10+1)
/*
** Argument aBuf[] must point to a buffer at least DB_KEY_BYTES in size.
** This function populates the buffer with a nul-terminated key string
** corresponding to key iKey.
*/
static void dbFormatKey(
DbParameters *pParam,
int iLevel,
int iKey, /* Key value */
char *aBuf /* Write key string here */
){
if( iLevel==0 ){
snprintf(aBuf, DB_KEY_BYTES, "k.%.10d", iKey);
}else{
int f = 1;
int i;
for(i=0; i<iLevel; i++) f = f * pParam->nFanout;
snprintf(aBuf, DB_KEY_BYTES, "c.%d.%.10d", iLevel, f*(iKey/f));
}
}
/*
** Argument aBuf[] must point to a buffer at least DB_KEY_BYTES in size.
** This function populates the buffer with the string representation of
** checksum value iVal.
*/
static void dbFormatCksumValue(u32 iVal, char *aBuf){
snprintf(aBuf, DB_KEY_BYTES, "%.10u", iVal);
}
/*
** Return the highest level of checksum in the database described
** by *pParam.
*/
static int dbMaxLevel(DbParameters *pParam){
int iMax;
int n = 1;
for(iMax=0; n<pParam->nKey; iMax++){
n = n * pParam->nFanout;
}
return iMax;
}
static void dbCksum(
void *pCtx, /* IN/OUT: Pointer to u32 containing cksum */
void *pKey, int nKey, /* Database key. Unused. */
void *pVal, int nVal /* Database value. Checksum this. */
){
u8 *aVal = (u8 *)pVal;
u32 *pCksum = (u32 *)pCtx;
u32 cksum = *pCksum;
int i;
unused_parameter(pKey);
unused_parameter(nKey);
for(i=0; i<nVal; i++){
cksum += (cksum<<3) + (int)aVal[i];
}
*pCksum = cksum;
}
/*
** Compute the value of the checksum stored on level iLevel that contains
** data from key iKey by scanning the pParam->nFanout entries at level
** iLevel-1.
*/
static u32 dbComputeCksum(
DbParameters *pParam, /* Database parameters */
TestDb *pDb, /* Database connection handle */
int iLevel, /* Level of checksum to compute */
int iKey, /* Compute checksum for this key */
int *pRc /* IN/OUT: Error code */
){
u32 cksum = 0;
if( *pRc==0 ){
int nFirst;
int nLast;
int iFirst = 0;
int iLast = 0;
int i;
int f = 1;
char zFirst[DB_KEY_BYTES];
char zLast[DB_KEY_BYTES];
assert( iLevel>=1 );
for(i=0; i<iLevel; i++) f = f * pParam->nFanout;
iFirst = f*(iKey/f);
iLast = iFirst + f - 1;
dbFormatKey(pParam, iLevel-1, iFirst, zFirst);
dbFormatKey(pParam, iLevel-1, iLast, zLast);
nFirst = strlen(zFirst);
nLast = strlen(zLast);
*pRc = tdb_scan(pDb, (u32*)&cksum, 0, zFirst, nFirst, zLast, nLast,dbCksum);
}
return cksum;
}
static void dbReadOperation(
DbParameters *pParam, /* Database parameters */
TestDb *pDb, /* Database connection handle */
void (*xDelay)(void *),
void *pDelayCtx,
int iKey, /* Key to read */
int *pRc /* IN/OUT: Error code */
){
const int iMax = dbMaxLevel(pParam);
int i;
if( tdb_transaction_support(pDb) ) testBegin(pDb, 1, pRc);
for(i=1; *pRc==0 && i<=iMax; i++){
char zCksum[DB_KEY_BYTES];
char zKey[DB_KEY_BYTES];
u32 iCksum = 0;
iCksum = dbComputeCksum(pParam, pDb, i, iKey, pRc);
if( iCksum ){
if( xDelay && i==1 ) xDelay(pDelayCtx);
dbFormatCksumValue(iCksum, zCksum);
dbFormatKey(pParam, i, iKey, zKey);
testFetchStr(pDb, zKey, zCksum, pRc);
}
}
if( tdb_transaction_support(pDb) ) testCommit(pDb, 0, pRc);
}
static int dbWriteOperation(
DbParameters *pParam, /* Database parameters */
TestDb *pDb, /* Database connection handle */
int iKey, /* Key to write to */
const char *zValue, /* Nul-terminated value to write */
int *pRc /* IN/OUT: Error code */
){
const int iMax = dbMaxLevel(pParam);
char zKey[DB_KEY_BYTES];
int i;
int rc;
assert( iKey>=0 && iKey<pParam->nKey );
dbFormatKey(pParam, 0, iKey, zKey);
/* Open a write transaction. This may fail - SQLITE4_BUSY */
if( *pRc==0 && tdb_transaction_support(pDb) ){
rc = tdb_begin(pDb, 2);
if( rc==5 ) return 0;
*pRc = rc;
}
testWriteStr(pDb, zKey, zValue, pRc);
for(i=1; i<=iMax; i++){
char zCksum[DB_KEY_BYTES];
u32 iCksum = 0;
iCksum = dbComputeCksum(pParam, pDb, i, iKey, pRc);
dbFormatCksumValue(iCksum, zCksum);
dbFormatKey(pParam, i, iKey, zKey);
testWriteStr(pDb, zKey, zCksum, pRc);
}
if( tdb_transaction_support(pDb) ) testCommit(pDb, 0, pRc);
return 1;
}
/*************************************************************************
** The following block contains testXXX() functions that implement a
** wrapper around the systems native multi-thread support. There are no
** synchronization primitives - just functions to launch and join
** threads. Wrapper functions are:
**
** testThreadSupport()
**
** testThreadInit()
** testThreadShutdown()
** testThreadLaunch()
** testThreadWait()
**
** testThreadSetHalt()
** testThreadGetHalt()
** testThreadSetResult()
** testThreadGetResult()
**
** testThreadEnterMutex()
** testThreadLeaveMutex()
*/
typedef struct ThreadSet ThreadSet;
#ifdef LSM_MUTEX_PTHREADS
#include <pthread.h>
#include <unistd.h>
typedef struct Thread Thread;
struct Thread {
int rc;
char *zMsg;
pthread_t id;
void (*xMain)(ThreadSet *, int, void *);
void *pCtx;
ThreadSet *pThreadSet;
};
struct ThreadSet {
int bHalt; /* Halt flag */
int nThread; /* Number of threads */
Thread *aThread; /* Array of Thread structures */
pthread_mutex_t mutex; /* Mutex used for cheating */
};
/*
** Return true if this build supports threads, or false otherwise. If
** this function returns false, no other testThreadXXX() functions should
** be called.
*/
static int testThreadSupport(){ return 1; }
/*
** Allocate and return a thread-set handle with enough space allocated
** to handle up to nMax threads. Each call to this function should be
** matched by a call to testThreadShutdown() to delete the object.
*/
static ThreadSet *testThreadInit(int nMax){
int nByte; /* Total space to allocate */
ThreadSet *p; /* Return value */
nByte = sizeof(ThreadSet) + sizeof(struct Thread) * nMax;
p = (ThreadSet *)testMalloc(nByte);
p->nThread = nMax;
p->aThread = (Thread *)&p[1];
pthread_mutex_init(&p->mutex, 0);
return p;
}
/*
** Delete a thread-set object and release all resources held by it.
*/
static void testThreadShutdown(ThreadSet *p){
int i;
for(i=0; i<p->nThread; i++){
testFree(p->aThread[i].zMsg);
}
pthread_mutex_destroy(&p->mutex);
testFree(p);
}
static void *ttMain(void *pArg){
Thread *pThread = (Thread *)pArg;
int iThread;
iThread = (pThread - pThread->pThreadSet->aThread);
pThread->xMain(pThread->pThreadSet, iThread, pThread->pCtx);
return 0;
}
/*
** Launch a new thread.
*/
static int testThreadLaunch(
ThreadSet *p,
int iThread,
void (*xMain)(ThreadSet *, int, void *),
void *pCtx
){
int rc;
Thread *pThread;
assert( iThread>=0 && iThread<p->nThread );
pThread = &p->aThread[iThread];
assert( pThread->pThreadSet==0 );
pThread->xMain = xMain;
pThread->pCtx = pCtx;
pThread->pThreadSet = p;
rc = pthread_create(&pThread->id, 0, ttMain, (void *)pThread);
return rc;
}
/*
** Set the thread-set "halt" flag.
*/
static void testThreadSetHalt(ThreadSet *pThreadSet){
pThreadSet->bHalt = 1;
}
/*
** Return the current value of the thread-set "halt" flag.
*/
static int testThreadGetHalt(ThreadSet *pThreadSet){
return pThreadSet->bHalt;
}
static void testThreadSleep(ThreadSet *pThreadSet, int nMs){
int nRem = nMs;
while( nRem>0 && testThreadGetHalt(pThreadSet)==0 ){
usleep(50000);
nRem -= 50;
}
}
/*
** Wait for all threads launched to finish before returning. If nMs
** is greater than zero, set the "halt" flag to tell all threads
** to halt after waiting nMs milliseconds.
*/
static void testThreadWait(ThreadSet *pThreadSet, int nMs){
int i;
testThreadSleep(pThreadSet, nMs);
testThreadSetHalt(pThreadSet);
for(i=0; i<pThreadSet->nThread; i++){
Thread *pThread = &pThreadSet->aThread[i];
if( pThread->xMain ){
pthread_join(pThread->id, 0);
}
}
}
/*
** Set the result for thread iThread.
*/
static void testThreadSetResult(
ThreadSet *pThreadSet, /* Thread-set handle */
int iThread, /* Set result for this thread */
int rc, /* Result error code */
char *zFmt, /* Result string format */
... /* Result string formatting args... */
){
va_list ap;
testFree(pThreadSet->aThread[iThread].zMsg);
pThreadSet->aThread[iThread].rc = rc;
pThreadSet->aThread[iThread].zMsg = 0;
if( zFmt ){
va_start(ap, zFmt);
pThreadSet->aThread[iThread].zMsg = testMallocVPrintf(zFmt, ap);
va_end(ap);
}
}
/*
** Retrieve the result for thread iThread.
*/
static int testThreadGetResult(
ThreadSet *pThreadSet, /* Thread-set handle */
int iThread, /* Get result for this thread */
const char **pzRes /* OUT: Pointer to result string */
){
if( pzRes ) *pzRes = pThreadSet->aThread[iThread].zMsg;
return pThreadSet->aThread[iThread].rc;
}
/*
** Enter and leave the test case mutex.
*/
#if 0
static void testThreadEnterMutex(ThreadSet *p){
pthread_mutex_lock(&p->mutex);
}
static void testThreadLeaveMutex(ThreadSet *p){
pthread_mutex_unlock(&p->mutex);
}
#endif
#endif
#if !defined(LSM_MUTEX_PTHREADS)
static int testThreadSupport(){ return 0; }
#define testThreadInit(a) 0
#define testThreadShutdown(a)
#define testThreadLaunch(a,b,c,d) 0
#define testThreadWait(a,b)
#define testThreadSetHalt(a)
#define testThreadGetHalt(a) 0
#define testThreadGetResult(a,b,c) 0
#define testThreadSleep(a,b) 0
static void testThreadSetResult(ThreadSet *a, int b, int c, char *d, ...){
unused_parameter(a);
unused_parameter(b);
unused_parameter(c);
unused_parameter(d);
}
#endif
/* End of threads wrapper.
*************************************************************************/
/*************************************************************************
** Below this point is the third part of this file - the implementation
** of the mt1.* tests.
*/
typedef struct Mt1Test Mt1Test;
struct Mt1Test {
DbParameters param; /* Description of database to read/write */
int nReadwrite; /* Number of read/write threads */
int nFastReader; /* Number of fast reader threads */
int nSlowReader; /* Number of slow reader threads */
int nMs; /* How long to run for */
const char *zSystem; /* Database system to test */
};
typedef struct Mt1DelayCtx Mt1DelayCtx;
struct Mt1DelayCtx {
ThreadSet *pSet; /* Threadset to sleep within */
int nMs; /* Sleep in ms */
};
static void xMt1Delay(void *pCtx){
Mt1DelayCtx *p = (Mt1DelayCtx *)pCtx;
testThreadSleep(p->pSet, p->nMs);
}
#define MT1_THREAD_RDWR 0
#define MT1_THREAD_SLOW 1
#define MT1_THREAD_FAST 2
static void xMt1Work(lsm_db *pDb, void *pCtx){
#if 0
char *z = 0;
lsm_info(pDb, LSM_INFO_DB_STRUCTURE, &z);
printf("%s\n", z);
fflush(stdout);
#endif
}
/*
** This is the main() proc for all threads in test case "mt1".
*/
static void mt1Main(ThreadSet *pThreadSet, int iThread, void *pCtx){
Mt1Test *p = (Mt1Test *)pCtx; /* Test parameters */
Mt1DelayCtx delay;
int nRead = 0; /* Number of calls to dbReadOperation() */
int nWrite = 0; /* Number of completed database writes */
int rc = 0; /* Error code */
int iPrng; /* Prng argument variable */
TestDb *pDb; /* Database handle */
int eType;
delay.pSet = pThreadSet;
delay.nMs = 0;
if( iThread<p->nReadwrite ){
eType = MT1_THREAD_RDWR;
}else if( iThread<(p->nReadwrite+p->nFastReader) ){
eType = MT1_THREAD_FAST;
}else{
eType = MT1_THREAD_SLOW;
delay.nMs = (p->nMs / 20);
}
/* Open a new database connection. Initialize the pseudo-random number
** argument based on the thread number. */
iPrng = testPrngValue(iThread);
pDb = testOpen(p->zSystem, 0, &rc);
if( rc==0 ){
tdb_lsm_config_work_hook(pDb, xMt1Work, 0);
}
/* Loop until either an error occurs or some other thread sets the
** halt flag. */
while( rc==0 && testThreadGetHalt(pThreadSet)==0 ){
int iKey;
/* Perform a read operation on an arbitrarily selected key. */
iKey = (testPrngValue(iPrng++) % p->param.nKey);
dbReadOperation(&p->param, pDb, xMt1Delay, (void *)&delay, iKey, &rc);
if( rc ) continue;
nRead++;
/* Attempt to write an arbitrary key value pair (and update the associated
** checksum entries). dbWriteOperation() returns 1 if the write is
** successful, or 0 if it failed with an LSM_BUSY error. */
if( eType==MT1_THREAD_RDWR ){
char aValue[50];
char aRnd[25];
iKey = (testPrngValue(iPrng++) % p->param.nKey);
testPrngString(iPrng, aRnd, sizeof(aRnd));
iPrng += sizeof(aRnd);
snprintf(aValue, sizeof(aValue), "%d.%s", iThread, aRnd);
nWrite += dbWriteOperation(&p->param, pDb, iKey, aValue, &rc);
}
}
testClose(&pDb);
/* If an error has occured, set the thread error code and the threadset
** halt flag to tell the other test threads to halt. Otherwise, set the
** thread error code to 0 and post a message with the number of read
** and write operations completed. */
if( rc ){
testThreadSetResult(pThreadSet, iThread, rc, 0);
testThreadSetHalt(pThreadSet);
}else{
testThreadSetResult(pThreadSet, iThread, 0, "r/w: %d/%d", nRead, nWrite);
}
}
static void do_test_mt1(
const char *zSystem, /* Database system name */
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
Mt1Test aTest[] = {
/* param, nReadwrite, nFastReader, nSlowReader, nMs, zSystem */
{ {10, 1000}, 4, 0, 0, 10000, 0 },
{ {10, 1000}, 4, 4, 2, 100000, 0 },
{ {10, 100000}, 4, 0, 0, 10000, 0 },
{ {10, 100000}, 4, 4, 2, 100000, 0 },
};
int i;
for(i=0; *pRc==0 && i<ArraySize(aTest); i++){
Mt1Test *p = &aTest[i];
int bRun = testCaseBegin(pRc, zPattern,
"mt1.%s.db=%d,%d.ms=%d.rdwr=%d.fast=%d.slow=%d",
zSystem, p->param.nFanout, p->param.nKey,
p->nMs, p->nReadwrite, p->nFastReader, p->nSlowReader
);
if( bRun ){
TestDb *pDb;
ThreadSet *pSet;
int iThread;
int nThread;
p->zSystem = zSystem;
pDb = testOpen(zSystem, 1, pRc);
nThread = p->nReadwrite + p->nFastReader + p->nSlowReader;
pSet = testThreadInit(nThread);
for(iThread=0; *pRc==0 && iThread<nThread; iThread++){
testThreadLaunch(pSet, iThread, mt1Main, (void *)p);
}
testThreadWait(pSet, p->nMs);
for(iThread=0; *pRc==0 && iThread<nThread; iThread++){
*pRc = testThreadGetResult(pSet, iThread, 0);
}
testCaseFinish(*pRc);
for(iThread=0; *pRc==0 && iThread<nThread; iThread++){
const char *zMsg = 0;
*pRc = testThreadGetResult(pSet, iThread, &zMsg);
printf(" Info: thread %d (%d): %s\n", iThread, *pRc, zMsg);
}
testThreadShutdown(pSet);
testClose(&pDb);
}
}
}
void test_mt(
const char *zSystem, /* Database system name */
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
if( testThreadSupport()==0 ) return;
do_test_mt1(zSystem, zPattern, pRc);
}

View File

@ -0,0 +1,660 @@
#include "lsmtest.h"
typedef struct OomTest OomTest;
struct OomTest {
lsm_env *pEnv;
int iNext; /* Next value to pass to testMallocOom() */
int nFail; /* Number of OOM events injected */
int bEnable;
int rc; /* Test case error code */
};
static void testOomStart(OomTest *p){
memset(p, 0, sizeof(OomTest));
p->iNext = 1;
p->bEnable = 1;
p->nFail = 1;
p->pEnv = tdb_lsm_env();
}
static void xOomHook(OomTest *p){
p->nFail++;
}
static int testOomContinue(OomTest *p){
if( p->rc!=0 || (p->iNext>1 && p->nFail==0) ){
return 0;
}
p->nFail = 0;
testMallocOom(p->pEnv, p->iNext, 0, (void (*)(void*))xOomHook, (void *)p);
return 1;
}
static void testOomEnable(OomTest *p, int bEnable){
p->bEnable = bEnable;
testMallocOomEnable(p->pEnv, bEnable);
}
static void testOomNext(OomTest *p){
p->iNext++;
}
static int testOomHit(OomTest *p){
return (p->nFail>0);
}
static int testOomFinish(OomTest *p){
return p->rc;
}
static void testOomAssert(OomTest *p, int bVal){
if( bVal==0 ){
test_failed();
p->rc = 1;
}
}
/*
** Test that the error code matches the state of the OomTest object passed
** as the first argument. Specifically, check that rc is LSM_NOMEM if an
** OOM error has already been injected, or LSM_OK if not.
*/
static void testOomAssertRc(OomTest *p, int rc){
testOomAssert(p, rc==LSM_OK || rc==LSM_NOMEM);
testOomAssert(p, testOomHit(p)==(rc==LSM_NOMEM) || p->bEnable==0 );
}
static void testOomOpen(
OomTest *pOom,
const char *zName,
lsm_db **ppDb,
int *pRc
){
if( *pRc==LSM_OK ){
int rc;
rc = lsm_new(tdb_lsm_env(), ppDb);
if( rc==LSM_OK ) rc = lsm_open(*ppDb, zName);
testOomAssertRc(pOom, rc);
*pRc = rc;
}
}
static void testOomFetch(
OomTest *pOom,
lsm_db *pDb,
void *pKey, int nKey,
void *pVal, int nVal,
int *pRc
){
testOomAssertRc(pOom, *pRc);
if( *pRc==LSM_OK ){
lsm_cursor *pCsr;
int rc;
rc = lsm_csr_open(pDb, &pCsr);
if( rc==LSM_OK ) rc = lsm_csr_seek(pCsr, pKey, nKey, 0);
testOomAssertRc(pOom, rc);
if( rc==LSM_OK ){
const void *p; int n;
testOomAssert(pOom, lsm_csr_valid(pCsr));
rc = lsm_csr_key(pCsr, &p, &n);
testOomAssertRc(pOom, rc);
testOomAssert(pOom, rc!=LSM_OK || (n==nKey && memcmp(pKey, p, nKey)==0) );
}
if( rc==LSM_OK ){
const void *p; int n;
testOomAssert(pOom, lsm_csr_valid(pCsr));
rc = lsm_csr_value(pCsr, &p, &n);
testOomAssertRc(pOom, rc);
testOomAssert(pOom, rc!=LSM_OK || (n==nVal && memcmp(pVal, p, nVal)==0) );
}
lsm_csr_close(pCsr);
*pRc = rc;
}
}
static void testOomWrite(
OomTest *pOom,
lsm_db *pDb,
void *pKey, int nKey,
void *pVal, int nVal,
int *pRc
){
testOomAssertRc(pOom, *pRc);
if( *pRc==LSM_OK ){
int rc;
rc = lsm_insert(pDb, pKey, nKey, pVal, nVal);
testOomAssertRc(pOom, rc);
*pRc = rc;
}
}
static void testOomFetchStr(
OomTest *pOom,
lsm_db *pDb,
const char *zKey,
const char *zVal,
int *pRc
){
int nKey = strlen(zKey);
int nVal = strlen(zVal);
testOomFetch(pOom, pDb, (void *)zKey, nKey, (void *)zVal, nVal, pRc);
}
static void testOomFetchData(
OomTest *pOom,
lsm_db *pDb,
Datasource *pData,
int iKey,
int *pRc
){
void *pKey; int nKey;
void *pVal; int nVal;
testDatasourceEntry(pData, iKey, &pKey, &nKey, &pVal, &nVal);
testOomFetch(pOom, pDb, pKey, nKey, pVal, nVal, pRc);
}
static void testOomWriteStr(
OomTest *pOom,
lsm_db *pDb,
const char *zKey,
const char *zVal,
int *pRc
){
int nKey = strlen(zKey);
int nVal = strlen(zVal);
testOomWrite(pOom, pDb, (void *)zKey, nKey, (void *)zVal, nVal, pRc);
}
static void testOomWriteData(
OomTest *pOom,
lsm_db *pDb,
Datasource *pData,
int iKey,
int *pRc
){
void *pKey; int nKey;
void *pVal; int nVal;
testDatasourceEntry(pData, iKey, &pKey, &nKey, &pVal, &nVal);
testOomWrite(pOom, pDb, pKey, nKey, pVal, nVal, pRc);
}
static void testOomScan(
OomTest *pOom,
lsm_db *pDb,
int bReverse,
const void *pKey, int nKey,
int nScan,
int *pRc
){
if( *pRc==0 ){
int rc;
int iScan = 0;
lsm_cursor *pCsr;
int (*xAdvance)(lsm_cursor *);
rc = lsm_csr_open(pDb, &pCsr);
testOomAssertRc(pOom, rc);
if( rc==LSM_OK ){
if( bReverse ){
rc = lsm_csr_seek(pCsr, pKey, nKey, LSM_SEEK_LE);
xAdvance = lsm_csr_prev;
}else{
rc = lsm_csr_seek(pCsr, pKey, nKey, LSM_SEEK_GE);
xAdvance = lsm_csr_next;
}
}
testOomAssertRc(pOom, rc);
while( rc==LSM_OK && lsm_csr_valid(pCsr) && iScan<nScan ){
const void *p; int n;
rc = lsm_csr_key(pCsr, &p, &n);
testOomAssertRc(pOom, rc);
if( rc==LSM_OK ){
rc = lsm_csr_value(pCsr, &p, &n);
testOomAssertRc(pOom, rc);
}
if( rc==LSM_OK ){
rc = xAdvance(pCsr);
testOomAssertRc(pOom, rc);
}
iScan++;
}
lsm_csr_close(pCsr);
*pRc = rc;
}
}
#define LSMTEST6_TESTDB "testdb.lsm"
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
void testDeleteLsmdb(const char *zFile){
char *zLog = testMallocPrintf("%s-log", zFile);
char *zShm = testMallocPrintf("%s-shm", zFile);
unlink(zFile);
unlink(zLog);
unlink(zShm);
testFree(zLog);
testFree(zShm);
}
static void copy_file(const char *zFrom, const char *zTo){
if( access(zFrom, F_OK) ){
unlink(zTo);
}else{
int fd1;
int fd2;
off_t sz;
off_t i;
struct stat buf;
u8 *aBuf;
fd1 = open(zFrom, O_RDONLY, 0644);
fd2 = open(zTo, O_RDWR | O_CREAT, 0644);
fstat(fd1, &buf);
sz = buf.st_size;
ftruncate(fd2, sz);
aBuf = testMalloc(4096);
for(i=0; i<sz; i+=4096){
int nByte = MIN(4096, sz - i);
read(fd1, aBuf, nByte);
write(fd2, aBuf, nByte);
}
testFree(aBuf);
close(fd1);
close(fd2);
}
}
void testCopyLsmdb(const char *zFrom, const char *zTo){
char *zLog1 = testMallocPrintf("%s-log", zFrom);
char *zLog2 = testMallocPrintf("%s-log", zTo);
char *zShm1 = testMallocPrintf("%s-shm", zFrom);
char *zShm2 = testMallocPrintf("%s-shm", zTo);
unlink(zShm2);
unlink(zLog2);
unlink(zTo);
copy_file(zFrom, zTo);
copy_file(zLog1, zLog2);
copy_file(zShm1, zShm2);
testFree(zLog1); testFree(zLog2); testFree(zShm1); testFree(zShm2);
}
/*
** File zFile is the path to a database. This function makes backups
** of the database file and its log as follows:
**
** cp $(zFile) $(zFile)-save
** cp $(zFile)-$(zAux) $(zFile)-save-$(zAux)
**
** Function testRestoreDb() can be used to copy the files back in the
** other direction.
*/
void testSaveDb(const char *zFile, const char *zAux){
char *zLog = testMallocPrintf("%s-%s", zFile, zAux);
char *zFileSave = testMallocPrintf("%s-save", zFile);
char *zLogSave = testMallocPrintf("%s-%s-save", zFile, zAux);
unlink(zFileSave);
unlink(zLogSave);
copy_file(zFile, zFileSave);
copy_file(zLog, zLogSave);
testFree(zLog); testFree(zFileSave); testFree(zLogSave);
}
/*
** File zFile is the path to a database. This function restores
** a backup of the database made by a previous call to testSaveDb().
** Specifically, it does the equivalent of:
**
** cp $(zFile)-save $(zFile)
** cp $(zFile)-save-$(zAux) $(zFile)-$(zAux)
*/
void testRestoreDb(const char *zFile, const char *zAux){
char *zLog = testMallocPrintf("%s-%s", zFile, zAux);
char *zFileSave = testMallocPrintf("%s-save", zFile);
char *zLogSave = testMallocPrintf("%s-%s-save", zFile, zAux);
copy_file(zFileSave, zFile);
copy_file(zLogSave, zLog);
testFree(zLog); testFree(zFileSave); testFree(zLogSave);
}
static int lsmWriteStr(lsm_db *pDb, const char *zKey, const char *zVal){
int nKey = strlen(zKey);
int nVal = strlen(zVal);
return lsm_insert(pDb, (void *)zKey, nKey, (void *)zVal, nVal);
}
static void setup_delete_db(){
testDeleteLsmdb(LSMTEST6_TESTDB);
}
/*
** Create a small database. With the following content:
**
** "one" -> "one"
** "two" -> "four"
** "three" -> "nine"
** "four" -> "sixteen"
** "five" -> "twentyfive"
** "six" -> "thirtysix"
** "seven" -> "fourtynine"
** "eight" -> "sixtyfour"
*/
static void setup_populate_db(){
const char *azStr[] = {
"one", "one",
"two", "four",
"three", "nine",
"four", "sixteen",
"five", "twentyfive",
"six", "thirtysix",
"seven", "fourtynine",
"eight", "sixtyfour",
};
int rc;
int ii;
lsm_db *pDb;
testDeleteLsmdb(LSMTEST6_TESTDB);
rc = lsm_new(tdb_lsm_env(), &pDb);
if( rc==LSM_OK ) rc = lsm_open(pDb, LSMTEST6_TESTDB);
for(ii=0; rc==LSM_OK && ii<ArraySize(azStr); ii+=2){
rc = lsmWriteStr(pDb, azStr[ii], azStr[ii+1]);
}
lsm_close(pDb);
testSaveDb(LSMTEST6_TESTDB, "log");
assert( rc==LSM_OK );
}
static Datasource *getDatasource(void){
const DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 10, 15, 200, 250 };
return testDatasourceNew(&defn);
}
/*
** Set up a database file with the following properties:
**
** * Page size is 1024 bytes.
** * Block size is 64 KB.
** * Contains 5000 key-value pairs starting at 0 from the
** datasource returned getDatasource().
*/
static void setup_populate_db2(){
Datasource *pData;
int ii;
int rc;
int nBlocksize = 64*1024;
int nPagesize = 1024;
int nWritebuffer = 4*1024;
lsm_db *pDb;
testDeleteLsmdb(LSMTEST6_TESTDB);
rc = lsm_new(tdb_lsm_env(), &pDb);
if( rc==LSM_OK ) rc = lsm_open(pDb, LSMTEST6_TESTDB);
lsm_config(pDb, LSM_CONFIG_BLOCK_SIZE, &nBlocksize);
lsm_config(pDb, LSM_CONFIG_PAGE_SIZE, &nPagesize);
lsm_config(pDb, LSM_CONFIG_AUTOFLUSH, &nWritebuffer);
pData = getDatasource();
for(ii=0; rc==LSM_OK && ii<5000; ii++){
void *pKey; int nKey;
void *pVal; int nVal;
testDatasourceEntry(pData, ii, &pKey, &nKey, &pVal, &nVal);
lsm_insert(pDb, pKey, nKey, pVal, nVal);
}
testDatasourceFree(pData);
lsm_close(pDb);
testSaveDb(LSMTEST6_TESTDB, "log");
assert( rc==LSM_OK );
}
/*
** Test the results of OOM conditions in lsm_new().
*/
static void simple_oom_1(OomTest *pOom){
int rc;
lsm_db *pDb;
rc = lsm_new(tdb_lsm_env(), &pDb);
testOomAssertRc(pOom, rc);
lsm_close(pDb);
}
/*
** Test the results of OOM conditions in lsm_open().
*/
static void simple_oom_2(OomTest *pOom){
int rc;
lsm_db *pDb;
rc = lsm_new(tdb_lsm_env(), &pDb);
if( rc==LSM_OK ){
rc = lsm_open(pDb, "testdb.lsm");
}
testOomAssertRc(pOom, rc);
lsm_close(pDb);
}
/*
** Test the results of OOM conditions in simple fetch operations.
*/
static void simple_oom_3(OomTest *pOom){
int rc = LSM_OK;
lsm_db *pDb;
testOomOpen(pOom, LSMTEST6_TESTDB, &pDb, &rc);
testOomFetchStr(pOom, pDb, "four", "sixteen", &rc);
testOomFetchStr(pOom, pDb, "seven", "fourtynine", &rc);
testOomFetchStr(pOom, pDb, "one", "one", &rc);
testOomFetchStr(pOom, pDb, "eight", "sixtyfour", &rc);
lsm_close(pDb);
}
/*
** Test the results of OOM conditions in simple write operations.
*/
static void simple_oom_4(OomTest *pOom){
int rc = LSM_OK;
lsm_db *pDb;
testDeleteLsmdb(LSMTEST6_TESTDB);
testOomOpen(pOom, LSMTEST6_TESTDB, &pDb, &rc);
testOomWriteStr(pOom, pDb, "123", "onetwothree", &rc);
testOomWriteStr(pOom, pDb, "456", "fourfivesix", &rc);
testOomWriteStr(pOom, pDb, "789", "seveneightnine", &rc);
testOomWriteStr(pOom, pDb, "123", "teneleventwelve", &rc);
testOomWriteStr(pOom, pDb, "456", "fourteenfifteensixteen", &rc);
lsm_close(pDb);
}
static void simple_oom_5(OomTest *pOom){
Datasource *pData = getDatasource();
int rc = LSM_OK;
lsm_db *pDb;
testRestoreDb(LSMTEST6_TESTDB, "log");
testOomOpen(pOom, LSMTEST6_TESTDB, &pDb, &rc);
testOomFetchData(pOom, pDb, pData, 3333, &rc);
testOomFetchData(pOom, pDb, pData, 0, &rc);
testOomFetchData(pOom, pDb, pData, 4999, &rc);
lsm_close(pDb);
testDatasourceFree(pData);
}
static void simple_oom_6(OomTest *pOom){
Datasource *pData = getDatasource();
int rc = LSM_OK;
lsm_db *pDb;
testRestoreDb(LSMTEST6_TESTDB, "log");
testOomOpen(pOom, LSMTEST6_TESTDB, &pDb, &rc);
testOomWriteData(pOom, pDb, pData, 5000, &rc);
testOomWriteData(pOom, pDb, pData, 5001, &rc);
testOomWriteData(pOom, pDb, pData, 5002, &rc);
testOomFetchData(pOom, pDb, pData, 5001, &rc);
testOomFetchData(pOom, pDb, pData, 1234, &rc);
lsm_close(pDb);
testDatasourceFree(pData);
}
static void simple_oom_7(OomTest *pOom){
Datasource *pData = getDatasource();
int rc = LSM_OK;
lsm_db *pDb;
testRestoreDb(LSMTEST6_TESTDB, "log");
testOomOpen(pOom, LSMTEST6_TESTDB, &pDb, &rc);
testOomScan(pOom, pDb, 0, "abc", 3, 20, &rc);
lsm_close(pDb);
testDatasourceFree(pData);
}
static void simple_oom_8(OomTest *pOom){
Datasource *pData = getDatasource();
int rc = LSM_OK;
lsm_db *pDb;
testRestoreDb(LSMTEST6_TESTDB, "log");
testOomOpen(pOom, LSMTEST6_TESTDB, &pDb, &rc);
testOomScan(pOom, pDb, 1, "xyz", 3, 20, &rc);
lsm_close(pDb);
testDatasourceFree(pData);
}
/*
** This test case has two clients connected to a database. The first client
** hits an OOM while writing to the database. Check that the second
** connection is still able to query the db following the OOM.
*/
static void simple_oom2_1(OomTest *pOom){
const int nRecord = 100; /* Number of records initially in db */
const int nIns = 10; /* Number of records inserted with OOM */
Datasource *pData = getDatasource();
int rc = LSM_OK;
lsm_db *pDb1;
lsm_db *pDb2;
int i;
testDeleteLsmdb(LSMTEST6_TESTDB);
/* Open the two connections. Initialize the in-memory tree so that it
** contains 100 records. Do all this with OOM injection disabled. */
testOomEnable(pOom, 0);
testOomOpen(pOom, LSMTEST6_TESTDB, &pDb1, &rc);
testOomOpen(pOom, LSMTEST6_TESTDB, &pDb2, &rc);
for(i=0; i<nRecord; i++){
testOomWriteData(pOom, pDb1, pData, i, &rc);
}
testOomEnable(pOom, 1);
assert( rc==0 );
/* Insert 10 more records using pDb1. Stop when an OOM is encountered. */
for(i=nRecord; i<nRecord+nIns; i++){
testOomWriteData(pOom, pDb1, pData, i, &rc);
if( rc ) break;
}
testOomAssertRc(pOom, rc);
/* Switch off OOM injection. Write a few rows using pDb2. Then check
** that the database may be successfully queried. */
testOomEnable(pOom, 0);
rc = 0;
for(; i<nRecord+nIns && rc==0; i++){
testOomWriteData(pOom, pDb2, pData, i, &rc);
}
for(i=0; i<nRecord+nIns; i++) testOomFetchData(pOom, pDb2, pData, i, &rc);
testOomEnable(pOom, 1);
lsm_close(pDb1);
lsm_close(pDb2);
testDatasourceFree(pData);
}
static void do_test_oom1(const char *zPattern, int *pRc){
struct SimpleOom {
const char *zName;
void (*xSetup)(void);
void (*xFunc)(OomTest *);
} aSimple[] = {
{ "oom1.lsm.1", setup_delete_db, simple_oom_1 },
{ "oom1.lsm.2", setup_delete_db, simple_oom_2 },
{ "oom1.lsm.3", setup_populate_db, simple_oom_3 },
{ "oom1.lsm.4", setup_delete_db, simple_oom_4 },
{ "oom1.lsm.5", setup_populate_db2, simple_oom_5 },
{ "oom1.lsm.6", setup_populate_db2, simple_oom_6 },
{ "oom1.lsm.7", setup_populate_db2, simple_oom_7 },
{ "oom1.lsm.8", setup_populate_db2, simple_oom_8 },
{ "oom2.lsm.1", setup_delete_db, simple_oom2_1 },
};
int i;
for(i=0; i<ArraySize(aSimple); i++){
if( *pRc==0 && testCaseBegin(pRc, zPattern, "%s", aSimple[i].zName) ){
OomTest t;
if( aSimple[i].xSetup ){
aSimple[i].xSetup();
}
for(testOomStart(&t); testOomContinue(&t); testOomNext(&t)){
aSimple[i].xFunc(&t);
}
printf("(%d injections).", t.iNext-2);
testCaseFinish( (*pRc = testOomFinish(&t)) );
testMallocOom(tdb_lsm_env(), 0, 0, 0, 0);
}
}
}
void test_oom(
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
do_test_oom1(zPattern, pRc);
}

View File

@ -0,0 +1,206 @@
#include "lsmtest.h"
/*
** Test that the rules for when lsm_csr_next() and lsm_csr_prev() are
** enforced. Specifically:
**
** * Both functions always return LSM_MISUSE if the cursor is at EOF
** when they are called.
**
** * lsm_csr_next() may only be used after lsm_csr_seek(LSM_SEEK_GE) or
** lsm_csr_first().
**
** * lsm_csr_prev() may only be used after lsm_csr_seek(LSM_SEEK_LE) or
** lsm_csr_last().
*/
static void do_test_api1_lsm(lsm_db *pDb, int *pRc){
int ret;
lsm_cursor *pCsr;
lsm_cursor *pCsr2;
int nKey;
const void *pKey;
ret = lsm_csr_open(pDb, &pCsr);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_next(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_prev(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_seek(pCsr, "jjj", 3, LSM_SEEK_GE);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_next(pCsr);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_prev(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_seek(pCsr, "jjj", 3, LSM_SEEK_LE);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_next(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_prev(pCsr);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_seek(pCsr, "jjj", 3, LSM_SEEK_LEFAST);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_next(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_prev(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_key(pCsr, &pKey, &nKey);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_open(pDb, &pCsr2);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_seek(pCsr2, pKey, nKey, LSM_SEEK_EQ);
testCompareInt(LSM_OK, ret, pRc);
testCompareInt(1, lsm_csr_valid(pCsr2), pRc);
ret = lsm_csr_next(pCsr2);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_prev(pCsr2);
testCompareInt(LSM_MISUSE, ret, pRc);
lsm_csr_close(pCsr2);
ret = lsm_csr_first(pCsr);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_next(pCsr);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_prev(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_last(pCsr);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_prev(pCsr);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_next(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_first(pCsr);
while( lsm_csr_valid(pCsr) ){
ret = lsm_csr_next(pCsr);
testCompareInt(LSM_OK, ret, pRc);
}
ret = lsm_csr_next(pCsr);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_prev(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
ret = lsm_csr_last(pCsr);
while( lsm_csr_valid(pCsr) ){
ret = lsm_csr_prev(pCsr);
testCompareInt(LSM_OK, ret, pRc);
}
ret = lsm_csr_prev(pCsr);
testCompareInt(LSM_OK, ret, pRc);
ret = lsm_csr_next(pCsr);
testCompareInt(LSM_MISUSE, ret, pRc);
lsm_csr_close(pCsr);
}
static void do_test_api1(const char *zPattern, int *pRc){
if( testCaseBegin(pRc, zPattern, "api1.lsm") ){
const DatasourceDefn defn = { TEST_DATASOURCE_RANDOM, 10, 15, 200, 250 };
Datasource *pData;
TestDb *pDb;
int rc = 0;
pDb = testOpen("lsm_lomem", 1, &rc);
pData = testDatasourceNew(&defn);
testWriteDatasourceRange(pDb, pData, 0, 1000, pRc);
do_test_api1_lsm(tdb_lsm(pDb), pRc);
testDatasourceFree(pData);
testClose(&pDb);
testCaseFinish(*pRc);
}
}
static lsm_db *newLsmConnection(
const char *zDb,
int nPgsz,
int nBlksz,
int *pRc
){
lsm_db *db = 0;
if( *pRc==0 ){
int n1 = nPgsz;
int n2 = nBlksz;
*pRc = lsm_new(tdb_lsm_env(), &db);
if( *pRc==0 ){
if( n1 ) lsm_config(db, LSM_CONFIG_PAGE_SIZE, &n1);
if( n2 ) lsm_config(db, LSM_CONFIG_BLOCK_SIZE, &n2);
*pRc = lsm_open(db, "testdb.lsm");
}
}
return db;
}
static void testPagesize(lsm_db *db, int nPgsz, int nBlksz, int *pRc){
if( *pRc==0 ){
int n1 = 0;
int n2 = 0;
lsm_config(db, LSM_CONFIG_PAGE_SIZE, &n1);
lsm_config(db, LSM_CONFIG_BLOCK_SIZE, &n2);
testCompareInt(n1, nPgsz, pRc);
testCompareInt(n2, nBlksz, pRc);
}
}
/*
** Test case "api2" tests that the default page and block sizes of a
** database may only be modified before lsm_open() is called. And that
** after lsm_open() is called lsm_config() may be used to read the
** actual page and block size of the db.
*/
static void do_test_api2(const char *zPattern, int *pRc){
if( *pRc==0 && testCaseBegin(pRc, zPattern, "api2.lsm") ){
lsm_db *db1 = 0;
lsm_db *db2 = 0;
testDeleteLsmdb("testdb.lsm");
db1 = newLsmConnection("testdb.lsm", 0, 0, pRc);
testPagesize(db1, 4096, 2*1024*1024, pRc);
db2 = newLsmConnection("testdb.lsm", 1024, 64*1024, pRc);
testPagesize(db2, 4096, 2*1024*1024, pRc);
lsm_close(db1);
lsm_close(db2);
testDeleteLsmdb("testdb.lsm");
db1 = newLsmConnection("testdb.lsm", 1024, 64*1024, pRc);
testPagesize(db1, 1024, 64*1024, pRc);
db2 = newLsmConnection("testdb.lsm", 0, 0, pRc);
testPagesize(db2, 1024, 64*1024, pRc);
lsm_close(db1);
lsm_close(db2);
testDeleteLsmdb("testdb.lsm");
db1 = newLsmConnection("testdb.lsm", 8192, 1*1024*1024, pRc);
testPagesize(db1, 8192, 1*1024*1024, pRc);
db2 = newLsmConnection("testdb.lsm", 1024, 64*1024, pRc);
testPagesize(db2, 8192, 1*1024*1024, pRc);
lsm_close(db1);
lsm_close(db2);
testCaseFinish(*pRc);
}
}
void test_api(
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
do_test_api1(zPattern, pRc);
do_test_api2(zPattern, pRc);
}

View File

@ -0,0 +1,322 @@
/*
** This file contains test cases to verify that "live-recovery" following
** a mid-transaction failure of a writer process.
*/
/*
** This test file includes lsmInt.h to get access to the definition of the
** ShmHeader structure. This is required to cause strategic damage to the
** shared memory header as part of recovery testing.
*/
#include "lsmInt.h"
#include "lsmtest.h"
typedef struct SetupStep SetupStep;
struct SetupStep {
int bFlush; /* Flush to disk and checkpoint */
int iInsStart; /* First key-value from ds to insert */
int nIns; /* Number of rows to insert */
int iDelStart; /* First key from ds to delete */
int nDel; /* Number of rows to delete */
};
static void doSetupStep(
TestDb *pDb,
Datasource *pData,
const SetupStep *pStep,
int *pRc
){
testWriteDatasourceRange(pDb, pData, pStep->iInsStart, pStep->nIns, pRc);
testDeleteDatasourceRange(pDb, pData, pStep->iDelStart, pStep->nDel, pRc);
if( *pRc==0 ){
int nSave = -1;
int nBuf = 64;
lsm_db *db = tdb_lsm(pDb);
lsm_config(db, LSM_CONFIG_AUTOFLUSH, &nSave);
lsm_config(db, LSM_CONFIG_AUTOFLUSH, &nBuf);
lsm_begin(db, 1);
lsm_commit(db, 0);
lsm_config(db, LSM_CONFIG_AUTOFLUSH, &nSave);
*pRc = lsm_work(db, 0, 0, 0);
if( *pRc==0 ){
*pRc = lsm_checkpoint(db, 0);
}
}
}
static void doSetupStepArray(
TestDb *pDb,
Datasource *pData,
const SetupStep *aStep,
int nStep
){
int i;
for(i=0; i<nStep; i++){
int rc = 0;
doSetupStep(pDb, pData, &aStep[i], &rc);
assert( rc==0 );
}
}
static void setupDatabase1(TestDb *pDb, Datasource **ppData){
const SetupStep aStep[] = {
{ 0, 1, 2000, 0, 0 },
{ 1, 0, 0, 0, 0 },
{ 0, 10001, 1000, 0, 0 },
};
const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 12, 16, 100, 500};
Datasource *pData;
pData = testDatasourceNew(&defn);
doSetupStepArray(pDb, pData, aStep, ArraySize(aStep));
if( ppData ){
*ppData = pData;
}else{
testDatasourceFree(pData);
}
}
#include <stdio.h>
void testReadFile(const char *zFile, int iOff, void *pOut, int nByte, int *pRc){
if( *pRc==0 ){
FILE *fd;
fd = fopen(zFile, "r");
if( fd==0 ){
*pRc = 1;
}else{
if( 0!=fseek(fd, iOff, SEEK_SET) ){
*pRc = 1;
}else{
if( nByte!=fread(pOut, 1, nByte, fd) ){
*pRc = 1;
}
}
fclose(fd);
}
}
}
void testWriteFile(
const char *zFile,
int iOff,
void *pOut,
int nByte,
int *pRc
){
if( *pRc==0 ){
FILE *fd;
fd = fopen(zFile, "r+");
if( fd==0 ){
*pRc = 1;
}else{
if( 0!=fseek(fd, iOff, SEEK_SET) ){
*pRc = 1;
}else{
if( nByte!=fwrite(pOut, 1, nByte, fd) ){
*pRc = 1;
}
}
fclose(fd);
}
}
}
static ShmHeader *getShmHeader(const char *zDb){
int rc = 0;
char *zShm = testMallocPrintf("%s-shm", zDb);
ShmHeader *pHdr;
pHdr = testMalloc(sizeof(ShmHeader));
testReadFile(zShm, 0, (void *)pHdr, sizeof(ShmHeader), &rc);
assert( rc==0 );
return pHdr;
}
/*
** This function makes a copy of the three files associated with LSM
** database zDb (i.e. if zDb is "test.db", it makes copies of "test.db",
** "test.db-log" and "test.db-shm").
**
** It then opens a new database connection to the copy with the xLock() call
** instrumented so that it appears that some other process already connected
** to the db (holding a shared lock on DMS2). This prevents recovery from
** running. Then:
**
** 1) Check that the checksum of the database is zCksum.
** 2) Write a few keys to the database. Then delete the same keys.
** 3) Check that the checksum is zCksum.
** 4) Flush the db to disk and run a checkpoint.
** 5) Check once more that the checksum is still zCksum.
*/
static void doLiveRecovery(const char *zDb, const char *zCksum, int *pRc){
const DatasourceDefn defn = {TEST_DATASOURCE_RANDOM, 20, 25, 100, 500};
Datasource *pData;
const char *zCopy = "testcopy.lsm";
char zCksum2[TEST_CKSUM_BYTES];
TestDb *pDb = 0;
int rc;
pData = testDatasourceNew(&defn);
testCopyLsmdb(zDb, zCopy);
rc = tdb_lsm_open("test_no_recovery=1", zCopy, 0, &pDb);
if( rc==0 ){
ShmHeader *pHdr;
lsm_db *db;
testCksumDatabase(pDb, zCksum2);
testCompareStr(zCksum, zCksum2, &rc);
testWriteDatasourceRange(pDb, pData, 1, 10, &rc);
testDeleteDatasourceRange(pDb, pData, 1, 10, &rc);
/* Test that the two tree-headers are now consistent. */
pHdr = getShmHeader(zCopy);
if( rc==0 && memcmp(&pHdr->hdr1, &pHdr->hdr2, sizeof(pHdr->hdr1)) ){
rc = 1;
}
testFree(pHdr);
if( rc==0 ){
int nBuf = 64;
db = tdb_lsm(pDb);
lsm_config(db, LSM_CONFIG_AUTOFLUSH, &nBuf);
lsm_begin(db, 1);
lsm_commit(db, 0);
rc = lsm_work(db, 0, 0, 0);
}
testCksumDatabase(pDb, zCksum2);
testCompareStr(zCksum, zCksum2, &rc);
}
testDatasourceFree(pData);
testClose(&pDb);
testDeleteLsmdb(zCopy);
*pRc = rc;
}
static void doWriterCrash1(int *pRc){
const int nWrite = 2000;
const int nStep = 10;
const int iWriteStart = 20000;
int rc = 0;
TestDb *pDb = 0;
Datasource *pData = 0;
rc = tdb_lsm_open("autowork=0", "testdb.lsm", 1, &pDb);
if( rc==0 ){
int iDot = 0;
char zCksum[TEST_CKSUM_BYTES];
int i;
setupDatabase1(pDb, &pData);
testCksumDatabase(pDb, zCksum);
testBegin(pDb, 2, &rc);
for(i=0; rc==0 && i<nWrite; i+=nStep){
testCaseProgress(i, nWrite, testCaseNDot(), &iDot);
testWriteDatasourceRange(pDb, pData, iWriteStart+i, nStep, &rc);
doLiveRecovery("testdb.lsm", zCksum, &rc);
}
}
testCommit(pDb, 0, &rc);
testClose(&pDb);
testDatasourceFree(pData);
*pRc = rc;
}
/*
** This test case verifies that inconsistent tree-headers in shared-memory
** are resolved correctly.
*/
static void doWriterCrash2(int *pRc){
int rc = 0;
TestDb *pDb = 0;
Datasource *pData = 0;
rc = tdb_lsm_open("autowork=0", "testdb.lsm", 1, &pDb);
if( rc==0 ){
ShmHeader *pHdr1;
ShmHeader *pHdr2;
char zCksum1[TEST_CKSUM_BYTES];
char zCksum2[TEST_CKSUM_BYTES];
pHdr1 = testMalloc(sizeof(ShmHeader));
pHdr2 = testMalloc(sizeof(ShmHeader));
setupDatabase1(pDb, &pData);
/* Grab a copy of the shared-memory header. And the db checksum */
testReadFile("testdb.lsm-shm", 0, (void *)pHdr1, sizeof(ShmHeader), &rc);
testCksumDatabase(pDb, zCksum1);
/* Modify the database */
testBegin(pDb, 2, &rc);
testWriteDatasourceRange(pDb, pData, 30000, 200, &rc);
testCommit(pDb, 0, &rc);
/* Grab a second copy of the shared-memory header. And the db checksum */
testReadFile("testdb.lsm-shm", 0, (void *)pHdr2, sizeof(ShmHeader), &rc);
testCksumDatabase(pDb, zCksum2);
doLiveRecovery("testdb.lsm", zCksum2, &rc);
/* If both tree-headers are valid, tree-header-1 is used. */
memcpy(&pHdr2->hdr1, &pHdr1->hdr1, sizeof(pHdr1->hdr1));
pHdr2->bWriter = 1;
testWriteFile("testdb.lsm-shm", 0, (void *)pHdr2, sizeof(ShmHeader), &rc);
doLiveRecovery("testdb.lsm", zCksum1, &rc);
/* If both tree-headers are valid, tree-header-1 is used. */
memcpy(&pHdr2->hdr1, &pHdr2->hdr2, sizeof(pHdr1->hdr1));
memcpy(&pHdr2->hdr2, &pHdr1->hdr1, sizeof(pHdr1->hdr1));
pHdr2->bWriter = 1;
testWriteFile("testdb.lsm-shm", 0, (void *)pHdr2, sizeof(ShmHeader), &rc);
doLiveRecovery("testdb.lsm", zCksum2, &rc);
/* If tree-header 1 is invalid, tree-header-2 is used */
memcpy(&pHdr2->hdr2, &pHdr2->hdr1, sizeof(pHdr1->hdr1));
pHdr2->hdr1.aCksum[0] = 5;
pHdr2->hdr1.aCksum[0] = 6;
pHdr2->bWriter = 1;
testWriteFile("testdb.lsm-shm", 0, (void *)pHdr2, sizeof(ShmHeader), &rc);
doLiveRecovery("testdb.lsm", zCksum2, &rc);
/* If tree-header 2 is invalid, tree-header-1 is used */
memcpy(&pHdr2->hdr1, &pHdr2->hdr2, sizeof(pHdr1->hdr1));
pHdr2->hdr2.aCksum[0] = 5;
pHdr2->hdr2.aCksum[0] = 6;
pHdr2->bWriter = 1;
testWriteFile("testdb.lsm-shm", 0, (void *)pHdr2, sizeof(ShmHeader), &rc);
doLiveRecovery("testdb.lsm", zCksum2, &rc);
testFree(pHdr1);
testFree(pHdr2);
testClose(&pDb);
}
*pRc = rc;
}
void do_writer_crash_test(const char *zPattern, int *pRc){
struct Test {
const char *zName;
void (*xFunc)(int *);
} aTest[] = {
{ "writercrash1.lsm", doWriterCrash1 },
{ "writercrash2.lsm", doWriterCrash2 },
};
int i;
for(i=0; i<ArraySize(aTest); i++){
struct Test *p = &aTest[i];
if( testCaseBegin(pRc, zPattern, p->zName) ){
p->xFunc(pRc);
testCaseFinish(*pRc);
}
}
}

View File

@ -0,0 +1,138 @@
#include "lsmtest.h"
#define DATA_SEQUENTIAL TEST_DATASOURCE_SEQUENCE
#define DATA_RANDOM TEST_DATASOURCE_RANDOM
typedef struct Datatest4 Datatest4;
/*
** Test overview:
**
** 1. Insert (Datatest4.nRec) records into a database.
**
** 2. Repeat (Datatest4.nRepeat) times:
**
** 2a. Delete 2/3 of the records in the database.
**
** 2b. Run lsm_work(nMerge=1).
**
** 2c. Insert as many records as were deleted in 2a.
**
** 2d. Check database content is as expected.
**
** 2e. If (Datatest4.bReopen) is true, close and reopen the database.
*/
struct Datatest4 {
/* Datasource definition */
DatasourceDefn defn;
int nRec;
int nRepeat;
int bReopen;
};
static void doDataTest4(
const char *zSystem, /* Database system to test */
Datatest4 *p, /* Structure containing test parameters */
int *pRc /* OUT: Error code */
){
lsm_db *db = 0;
TestDb *pDb;
TestDb *pControl;
Datasource *pData;
int i;
int rc = 0;
int iDot = 0;
int nRecOn3 = (p->nRec / 3);
int iData = 0;
/* Start the test case, open a database and allocate the datasource. */
rc = testControlDb(&pControl);
pDb = testOpen(zSystem, 1, &rc);
pData = testDatasourceNew(&p->defn);
if( rc==0 ) db = tdb_lsm(pDb);
testWriteDatasourceRange(pControl, pData, iData, nRecOn3*3, &rc);
testWriteDatasourceRange(pDb, pData, iData, nRecOn3*3, &rc);
for(i=0; rc==0 && i<p->nRepeat; i++){
testDeleteDatasourceRange(pControl, pData, iData, nRecOn3*2, &rc);
testDeleteDatasourceRange(pDb, pData, iData, nRecOn3*2, &rc);
if( db ){
int nDone;
#if 0
fprintf(stderr, "lsm_work() start...\n"); fflush(stderr);
#endif
do {
nDone = 0;
rc = lsm_work(db, 1, (1<<30), &nDone);
}while( rc==0 && nDone>0 );
#if 0
fprintf(stderr, "lsm_work() done...\n"); fflush(stderr);
#endif
}
if( i+1<p->nRepeat ){
iData += (nRecOn3*2);
testWriteDatasourceRange(pControl, pData, iData+nRecOn3, nRecOn3*2, &rc);
testWriteDatasourceRange(pDb, pData, iData+nRecOn3, nRecOn3*2, &rc);
testCompareDb(pData, nRecOn3*3, iData, pControl, pDb, &rc);
/* If Datatest4.bReopen is true, close and reopen the database */
if( p->bReopen ){
testReopen(&pDb, &rc);
if( rc==0 ) db = tdb_lsm(pDb);
}
}
/* Update the progress dots... */
testCaseProgress(i, p->nRepeat, testCaseNDot(), &iDot);
}
testClose(&pDb);
testClose(&pControl);
testDatasourceFree(pData);
testCaseFinish(rc);
*pRc = rc;
}
static char *getName4(const char *zSystem, Datatest4 *pTest){
char *zRet;
char *zData;
zData = testDatasourceName(&pTest->defn);
zRet = testMallocPrintf("data4.%s.%s.%d.%d.%d",
zSystem, zData, pTest->nRec, pTest->nRepeat, pTest->bReopen
);
testFree(zData);
return zRet;
}
void test_data_4(
const char *zSystem, /* Database system name */
const char *zPattern, /* Run test cases that match this pattern */
int *pRc /* IN/OUT: Error code */
){
Datatest4 aTest[] = {
/* defn, nRec, nRepeat, bReopen */
{ {DATA_RANDOM, 20,25, 500,600}, 10000, 10, 0 },
{ {DATA_RANDOM, 20,25, 500,600}, 10000, 10, 1 },
};
int i;
for(i=0; *pRc==LSM_OK && i<ArraySize(aTest); i++){
char *zName = getName4(zSystem, &aTest[i]);
if( testCaseBegin(pRc, zPattern, "%s", zName) ){
doDataTest4(zSystem, &aTest[i], pRc);
}
testFree(zName);
}
}

View File

@ -0,0 +1,75 @@
#include "lsmtest.h"
#include "bt.h"
int do_bt(int nArg, char **azArg){
struct Option {
const char *zName;
int bPgno;
int eOpt;
} aOpt [] = {
{ "dbhdr", 0, BT_INFO_HDRDUMP },
{ "filename", 0, BT_INFO_FILENAME },
{ "block_freelist", 0, BT_INFO_BLOCK_FREELIST },
{ "page_freelist", 0, BT_INFO_PAGE_FREELIST },
{ "filename", 0, BT_INFO_FILENAME },
{ "page", 1, BT_INFO_PAGEDUMP },
{ "page_ascii", 1, BT_INFO_PAGEDUMP_ASCII },
{ "leaks", 0, BT_INFO_PAGE_LEAKS },
{ 0, 0 }
};
int iOpt;
int rc;
bt_info buf;
char *zOpt;
char *zFile;
bt_db *db = 0;
if( nArg<2 ){
testPrintUsage("FILENAME OPTION ...");
return -1;
}
zFile = azArg[0];
zOpt = azArg[1];
rc = testArgSelect(aOpt, "option", zOpt, &iOpt);
if( rc!=0 ) return rc;
if( nArg!=2+aOpt[iOpt].bPgno ){
testPrintFUsage("FILENAME %s %s", zOpt, aOpt[iOpt].bPgno ? "PGNO" : "");
return -4;
}
rc = sqlite4BtNew(sqlite4_env_default(), 0, &db);
if( rc!=SQLITE4_OK ){
testPrintError("sqlite4BtNew() failed: %d", rc);
return -2;
}
rc = sqlite4BtOpen(db, zFile);
if( rc!=SQLITE4_OK ){
testPrintError("sqlite4BtOpen() failed: %d", rc);
return -3;
}
buf.eType = aOpt[iOpt].eOpt;
buf.pgno = 0;
sqlite4_buffer_init(&buf.output, 0);
if( aOpt[iOpt].bPgno ){
buf.pgno = (u32)atoi(azArg[2]);
}
rc = sqlite4BtControl(db, BT_CONTROL_INFO, &buf);
if( rc!=SQLITE4_OK ){
testPrintError("sqlite4BtControl() failed: %d\n", rc);
return -4;
}
printf("%s\n", (char*)buf.output.p);
sqlite4_buffer_clear(&buf.output);
return 0;
}

View File

@ -0,0 +1,96 @@
#include "lsmtest.h"
struct Datasource {
int eType;
int nMinKey;
int nMaxKey;
int nMinVal;
int nMaxVal;
char *aKey;
char *aVal;
};
void testDatasourceEntry(
Datasource *p,
int iData,
void **ppKey, int *pnKey,
void **ppVal, int *pnVal
){
assert( (ppKey==0)==(pnKey==0) );
assert( (ppVal==0)==(pnVal==0) );
if( ppKey ){
int nKey = 0;
switch( p->eType ){
case TEST_DATASOURCE_RANDOM: {
int nRange = (1 + p->nMaxKey - p->nMinKey);
nKey = (int)( testPrngValue((u32)iData) % nRange ) + p->nMinKey;
testPrngString((u32)iData, p->aKey, nKey);
break;
}
case TEST_DATASOURCE_SEQUENCE:
nKey = sprintf(p->aKey, "%012d", iData);
break;
}
*ppKey = p->aKey;
*pnKey = nKey;
}
if( ppVal ){
u32 nVal = testPrngValue((u32)iData)%(1+p->nMaxVal-p->nMinVal)+p->nMinVal;
testPrngString((u32)~iData, p->aVal, (int)nVal);
*ppVal = p->aVal;
*pnVal = (int)nVal;
}
}
void testDatasourceFree(Datasource *p){
testFree(p);
}
/*
** Return a pointer to a nul-terminated string that corresponds to the
** contents of the datasource-definition passed as the first argument.
** The caller should eventually free the returned pointer using testFree().
*/
char *testDatasourceName(const DatasourceDefn *p){
char *zRet;
zRet = testMallocPrintf("%s.(%d-%d).(%d-%d)",
(p->eType==TEST_DATASOURCE_SEQUENCE ? "seq" : "rnd"),
p->nMinKey, p->nMaxKey,
p->nMinVal, p->nMaxVal
);
return zRet;
}
Datasource *testDatasourceNew(const DatasourceDefn *pDefn){
Datasource *p;
int nMinKey;
int nMaxKey;
int nMinVal;
int nMaxVal;
if( pDefn->eType==TEST_DATASOURCE_SEQUENCE ){
nMinKey = 128;
nMaxKey = 128;
}else{
nMinKey = MAX(0, pDefn->nMinKey);
nMaxKey = MAX(nMinKey, pDefn->nMaxKey);
}
nMinVal = MAX(0, pDefn->nMinVal);
nMaxVal = MAX(nMinVal, pDefn->nMaxVal);
p = (Datasource *)testMalloc(sizeof(Datasource) + nMaxKey + nMaxVal + 1);
p->eType = pDefn->eType;
p->nMinKey = nMinKey;
p->nMinVal = nMinVal;
p->nMaxKey = nMaxKey;
p->nMaxVal = nMaxVal;
p->aKey = (char *)&p[1];
p->aVal = &p->aKey[nMaxKey];
return p;
};

View File

@ -0,0 +1,177 @@
#include "lsmtest.h"
int do_work(int nArg, char **azArg){
struct Option {
const char *zName;
} aOpt [] = {
{ "-nmerge" },
{ "-nkb" },
{ 0 }
};
lsm_db *pDb;
int rc;
int i;
const char *zDb;
int nMerge = 1;
int nKB = (1<<30);
if( nArg==0 ) goto usage;
zDb = azArg[nArg-1];
for(i=0; i<(nArg-1); i++){
int iSel;
rc = testArgSelect(aOpt, "option", azArg[i], &iSel);
if( rc ) return rc;
switch( iSel ){
case 0:
i++;
if( i==(nArg-1) ) goto usage;
nMerge = atoi(azArg[i]);
break;
case 1:
i++;
if( i==(nArg-1) ) goto usage;
nKB = atoi(azArg[i]);
break;
}
}
rc = lsm_new(0, &pDb);
if( rc!=LSM_OK ){
testPrintError("lsm_open(): rc=%d\n", rc);
}else{
rc = lsm_open(pDb, zDb);
if( rc!=LSM_OK ){
testPrintError("lsm_open(): rc=%d\n", rc);
}else{
int n = -1;
lsm_config(pDb, LSM_CONFIG_BLOCK_SIZE, &n);
n = n*2;
lsm_config(pDb, LSM_CONFIG_AUTOCHECKPOINT, &n);
rc = lsm_work(pDb, nMerge, nKB, 0);
if( rc!=LSM_OK ){
testPrintError("lsm_work(): rc=%d\n", rc);
}
}
}
if( rc==LSM_OK ){
rc = lsm_checkpoint(pDb, 0);
}
lsm_close(pDb);
return rc;
usage:
testPrintUsage("?-optimize? ?-n N? DATABASE");
return -1;
}
/*
** lsmtest show ?-config LSM-CONFIG? DATABASE ?COMMAND ?PGNO??
*/
int do_show(int nArg, char **azArg){
lsm_db *pDb;
int rc;
const char *zDb;
int eOpt = LSM_INFO_DB_STRUCTURE;
unsigned int iPg = 0;
int bConfig = 0;
const char *zConfig = "";
struct Option {
const char *zName;
int bConfig;
int eOpt;
} aOpt [] = {
{ "array", 0, LSM_INFO_ARRAY_STRUCTURE },
{ "array-pages", 0, LSM_INFO_ARRAY_PAGES },
{ "blocksize", 1, LSM_CONFIG_BLOCK_SIZE },
{ "pagesize", 1, LSM_CONFIG_PAGE_SIZE },
{ "freelist", 0, LSM_INFO_FREELIST },
{ "page-ascii", 0, LSM_INFO_PAGE_ASCII_DUMP },
{ "page-hex", 0, LSM_INFO_PAGE_HEX_DUMP },
{ 0, 0 }
};
char *z = 0;
int iDb = 0; /* Index of DATABASE in azArg[] */
/* Check if there is a "-config" option: */
if( nArg>2 && strlen(azArg[0])>1
&& memcmp(azArg[0], "-config", strlen(azArg[0]))==0
){
zConfig = azArg[1];
iDb = 2;
}
if( nArg<(iDb+1) ) goto usage;
if( nArg>(iDb+1) ){
rc = testArgSelect(aOpt, "option", azArg[iDb+1], &eOpt);
if( rc!=0 ) return rc;
bConfig = aOpt[eOpt].bConfig;
eOpt = aOpt[eOpt].eOpt;
if( (bConfig==0 && eOpt==LSM_INFO_FREELIST)
|| (bConfig==1 && eOpt==LSM_CONFIG_BLOCK_SIZE)
|| (bConfig==1 && eOpt==LSM_CONFIG_PAGE_SIZE)
){
if( nArg!=(iDb+2) ) goto usage;
}else{
if( nArg!=(iDb+3) ) goto usage;
iPg = atoi(azArg[iDb+2]);
}
}
zDb = azArg[iDb];
rc = lsm_new(0, &pDb);
tdb_lsm_configure(pDb, zConfig);
if( rc!=LSM_OK ){
testPrintError("lsm_new(): rc=%d\n", rc);
}else{
rc = lsm_open(pDb, zDb);
if( rc!=LSM_OK ){
testPrintError("lsm_open(): rc=%d\n", rc);
}
}
if( rc==LSM_OK ){
if( bConfig==0 ){
switch( eOpt ){
case LSM_INFO_DB_STRUCTURE:
case LSM_INFO_FREELIST:
rc = lsm_info(pDb, eOpt, &z);
break;
case LSM_INFO_ARRAY_STRUCTURE:
case LSM_INFO_ARRAY_PAGES:
case LSM_INFO_PAGE_ASCII_DUMP:
case LSM_INFO_PAGE_HEX_DUMP:
rc = lsm_info(pDb, eOpt, iPg, &z);
break;
default:
assert( !"no chance" );
}
if( rc==LSM_OK ){
printf("%s\n", z ? z : "");
fflush(stdout);
}
lsm_free(lsm_get_env(pDb), z);
}else{
int iRes = -1;
lsm_config(pDb, eOpt, &iRes);
printf("%d\n", iRes);
fflush(stdout);
}
}
lsm_close(pDb);
return rc;
usage:
testPrintUsage("DATABASE ?array|page-ascii|page-hex PGNO?");
return -1;
}

View File

@ -0,0 +1,254 @@
/*
** SUMMARY
**
** This file implements the 'io' subcommand of the test program. It is used
** for testing the performance of various combinations of write() and fsync()
** system calls. All operations occur on a single file, which may or may not
** exist when a test is started.
**
** A test consists of a series of commands. Each command is either a write
** or an fsync. A write is specified as "<amount>@<offset>", where <amount>
** is the amount of data written, and <offset> is the offset of the file
** to write to. An <amount> or an <offset> is specified as an integer number
** of bytes. Or, if postfixed with a "K", "M" or "G", an integer number of
** KB, MB or GB, respectively. An fsync is simply "S". All commands are
** case-insensitive.
**
** Example test program:
**
** 2M@6M 1492K@4M S 4096@4K S
**
** This program writes 2 MB of data starting at the offset 6MB offset of
** the file, followed by 1492 KB of data written at the 4MB offset of the
** file, followed by a call to fsync(), a write of 4KB of data at byte
** offset 4096, and finally another call to fsync().
**
** Commands may either be specified on the command line (one command per
** command line argument) or read from stdin. Commands read from stdin
** must be separated by white-space.
**
** COMMAND LINE INVOCATION
**
** The sub-command implemented in this file must be invoked with at least
** two arguments - the path to the file to write to and the page-size to
** use for writing. If there are more than two arguments, then each
** subsequent argument is assumed to be a test command. If there are exactly
** two arguments, the test commands are read from stdin.
**
** A write command does not result in a single call to system call write().
** Instead, the specified region is written sequentially using one or
** more calls to write(), each of which writes not more than one page of
** data. For example, if the page-size is 4KB, the command "2M@6M" results
** in 512 calls to write(), each of which writes 4KB of data.
**
** EXAMPLES
**
** Two equivalent examples:
**
** $ lsmtest io testfile.db 4KB 2M@6M 1492K@4M S 4096@4K S
** 3544K written in 129 ms
** $ echo "2M@6M 1492K@4M S 4096@4K S" | lsmtest io testfile.db 4096
** 3544K written in 127 ms
**
*/
#include "lsmtest.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <ctype.h>
typedef struct IoContext IoContext;
struct IoContext {
int fd;
int nWrite;
};
/*
** As isspace(3)
*/
static int safe_isspace(char c){
if( c&0x80) return 0;
return isspace(c);
}
/*
** As isdigit(3)
*/
static int safe_isdigit(char c){
if( c&0x80) return 0;
return isdigit(c);
}
static i64 getNextSize(char *zIn, char **pzOut, int *pRc){
i64 iRet = 0;
if( *pRc==0 ){
char *z = zIn;
if( !safe_isdigit(*z) ){
*pRc = 1;
return 0;
}
/* Process digits */
while( safe_isdigit(*z) ){
iRet = iRet*10 + (*z - '0');
z++;
}
/* Process suffix */
switch( *z ){
case 'k': case 'K':
iRet = iRet * 1024;
z++;
break;
case 'm': case 'M':
iRet = iRet * 1024 * 1024;
z++;
break;
case 'g': case 'G':
iRet = iRet * 1024 * 1024 * 1024;
z++;
break;
}
if( pzOut ) *pzOut = z;
}
return iRet;
}
static int doOneCmd(
IoContext *pCtx,
u8 *aData,
int pgsz,
char *zCmd,
char **pzOut
){
char c;
char *z = zCmd;
while( safe_isspace(*z) ) z++;
c = *z;
if( c==0 ){
if( pzOut ) *pzOut = z;
return 0;
}
if( c=='s' || c=='S' ){
if( pzOut ) *pzOut = &z[1];
return fdatasync(pCtx->fd);
}
if( safe_isdigit(c) ){
i64 iOff = 0;
int nByte = 0;
int rc = 0;
int nPg;
int iPg;
nByte = getNextSize(z, &z, &rc);
if( rc || *z!='@' ) goto bad_command;
z++;
iOff = getNextSize(z, &z, &rc);
if( rc || (safe_isspace(*z)==0 && *z!='\0') ) goto bad_command;
if( pzOut ) *pzOut = z;
nPg = (nByte+pgsz-1) / pgsz;
lseek(pCtx->fd, iOff, SEEK_SET);
for(iPg=0; iPg<nPg; iPg++){
write(pCtx->fd, aData, pgsz);
}
pCtx->nWrite += nByte/1024;
return 0;
}
bad_command:
testPrintError("unrecognized command: %s", zCmd);
return 1;
}
static int readStdin(char **pzOut){
int nAlloc = 128;
char *zOut = 0;
int nOut = 0;
while( !feof(stdin) ){
int nRead;
nAlloc = nAlloc*2;
zOut = realloc(zOut, nAlloc);
nRead = fread(&zOut[nOut], 1, nAlloc-nOut-1, stdin);
if( nRead==0 ) break;
nOut += nRead;
zOut[nOut] = '\0';
}
*pzOut = zOut;
return 0;
}
int do_io(int nArg, char **azArg){
IoContext ctx;
int pgsz;
char *zFile;
char *zPgsz;
int i;
int rc = 0;
char *zStdin = 0;
char *z;
u8 *aData;
memset(&ctx, 0, sizeof(IoContext));
if( nArg<2 ){
testPrintUsage("FILE PGSZ ?CMD-1 ...?");
return -1;
}
zFile = azArg[0];
zPgsz = azArg[1];
pgsz = getNextSize(zPgsz, 0, &rc);
if( pgsz<=0 ){
testPrintError("Ridiculous page size: %d", pgsz);
return -1;
}
aData = malloc(pgsz);
memset(aData, 0x77, pgsz);
ctx.fd = open(zFile, O_RDWR|O_CREAT, 0644);
if( ctx.fd<0 ){
perror("open: ");
return -1;
}
if( nArg==2 ){
readStdin(&zStdin);
testTimeInit();
z = zStdin;
while( *z && rc==0 ){
rc = doOneCmd(&ctx, aData, pgsz, z, &z);
}
}else{
testTimeInit();
for(i=2; i<nArg; i++){
rc = doOneCmd(&ctx, aData, pgsz, azArg[i], 0);
}
}
printf("%dK written in %d ms\n", ctx.nWrite, testTimeGet());
free(zStdin);
close(ctx.fd);
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,409 @@
#include <stdio.h>
#include <assert.h>
#include <string.h>
#define ArraySize(x) ((int)(sizeof(x) / sizeof((x)[0])))
#define MIN(x,y) ((x)<(y) ? (x) : (y))
typedef unsigned int u32;
typedef unsigned char u8;
typedef long long int i64;
typedef unsigned long long int u64;
#if defined(__GLIBC__) && defined(LSM_DEBUG_MEM)
extern int backtrace(void**,int);
extern void backtrace_symbols_fd(void*const*,int,int);
# define TM_BACKTRACE 12
#else
# define backtrace(A,B) 1
# define backtrace_symbols_fd(A,B,C)
#endif
typedef struct TmBlockHdr TmBlockHdr;
typedef struct TmAgg TmAgg;
typedef struct TmGlobal TmGlobal;
struct TmGlobal {
/* Linked list of all currently outstanding allocations. And a table of
** all allocations, past and present, indexed by backtrace() info. */
TmBlockHdr *pFirst;
#ifdef TM_BACKTRACE
TmAgg *aHash[10000];
#endif
/* Underlying malloc/realloc/free functions */
void *(*xMalloc)(int); /* underlying malloc(3) function */
void *(*xRealloc)(void *, int); /* underlying realloc(3) function */
void (*xFree)(void *); /* underlying free(3) function */
/* Mutex to protect pFirst and aHash */
void (*xEnterMutex)(TmGlobal*); /* Call this to enter the mutex */
void (*xLeaveMutex)(TmGlobal*); /* Call this to leave mutex */
void (*xDelMutex)(TmGlobal*); /* Call this to delete mutex */
void *pMutex; /* Mutex handle */
void *xSaveMalloc;
void *xSaveRealloc;
void *xSaveFree;
/* OOM injection scheduling. If nCountdown is greater than zero when a
** malloc attempt is made, it is decremented. If this means nCountdown
** transitions from 1 to 0, then the allocation fails. If bPersist is true
** when this happens, nCountdown is then incremented back to 1 (so that the
** next attempt fails too).
*/
int nCountdown;
int bPersist;
int bEnable;
void (*xHook)(void *);
void *pHookCtx;
};
struct TmBlockHdr {
TmBlockHdr *pNext;
TmBlockHdr *pPrev;
int nByte;
#ifdef TM_BACKTRACE
TmAgg *pAgg;
#endif
u32 iForeGuard;
};
#ifdef TM_BACKTRACE
struct TmAgg {
int nAlloc; /* Number of allocations at this path */
int nByte; /* Total number of bytes allocated */
int nOutAlloc; /* Number of outstanding allocations */
int nOutByte; /* Number of outstanding bytes */
void *aFrame[TM_BACKTRACE]; /* backtrace() output */
TmAgg *pNext; /* Next object in hash-table collision */
};
#endif
#define FOREGUARD 0x80F5E153
#define REARGUARD 0xE4676B53
static const u32 rearguard = REARGUARD;
#define ROUND8(x) (((x)+7)&~7)
#define BLOCK_HDR_SIZE (ROUND8( sizeof(TmBlockHdr) ))
static void lsmtest_oom_error(void){
static int nErr = 0;
nErr++;
}
static void tmEnterMutex(TmGlobal *pTm){
pTm->xEnterMutex(pTm);
}
static void tmLeaveMutex(TmGlobal *pTm){
pTm->xLeaveMutex(pTm);
}
static void *tmMalloc(TmGlobal *pTm, int nByte){
TmBlockHdr *pNew; /* New allocation header block */
u8 *pUser; /* Return value */
int nReq; /* Total number of bytes requested */
assert( sizeof(rearguard)==4 );
nReq = BLOCK_HDR_SIZE + nByte + 4;
pNew = (TmBlockHdr *)pTm->xMalloc(nReq);
memset(pNew, 0, sizeof(TmBlockHdr));
tmEnterMutex(pTm);
assert( pTm->nCountdown>=0 );
assert( pTm->bPersist==0 || pTm->bPersist==1 );
if( pTm->bEnable && pTm->nCountdown==1 ){
/* Simulate an OOM error. */
lsmtest_oom_error();
pTm->xFree(pNew);
pTm->nCountdown = pTm->bPersist;
if( pTm->xHook ) pTm->xHook(pTm->pHookCtx);
pUser = 0;
}else{
if( pTm->bEnable && pTm->nCountdown ) pTm->nCountdown--;
pNew->iForeGuard = FOREGUARD;
pNew->nByte = nByte;
pNew->pNext = pTm->pFirst;
if( pTm->pFirst ){
pTm->pFirst->pPrev = pNew;
}
pTm->pFirst = pNew;
pUser = &((u8 *)pNew)[BLOCK_HDR_SIZE];
memset(pUser, 0x56, nByte);
memcpy(&pUser[nByte], &rearguard, 4);
#ifdef TM_BACKTRACE
{
TmAgg *pAgg;
int i;
u32 iHash = 0;
void *aFrame[TM_BACKTRACE];
memset(aFrame, 0, sizeof(aFrame));
backtrace(aFrame, TM_BACKTRACE);
for(i=0; i<ArraySize(aFrame); i++){
iHash += (u64)(aFrame[i]) + (iHash<<3);
}
iHash = iHash % ArraySize(pTm->aHash);
for(pAgg=pTm->aHash[iHash]; pAgg; pAgg=pAgg->pNext){
if( memcmp(pAgg->aFrame, aFrame, sizeof(aFrame))==0 ) break;
}
if( !pAgg ){
pAgg = (TmAgg *)pTm->xMalloc(sizeof(TmAgg));
memset(pAgg, 0, sizeof(TmAgg));
memcpy(pAgg->aFrame, aFrame, sizeof(aFrame));
pAgg->pNext = pTm->aHash[iHash];
pTm->aHash[iHash] = pAgg;
}
pAgg->nAlloc++;
pAgg->nByte += nByte;
pAgg->nOutAlloc++;
pAgg->nOutByte += nByte;
pNew->pAgg = pAgg;
}
#endif
}
tmLeaveMutex(pTm);
return pUser;
}
static void tmFree(TmGlobal *pTm, void *p){
if( p ){
TmBlockHdr *pHdr;
u8 *pUser = (u8 *)p;
tmEnterMutex(pTm);
pHdr = (TmBlockHdr *)&pUser[BLOCK_HDR_SIZE * -1];
assert( pHdr->iForeGuard==FOREGUARD );
assert( 0==memcmp(&pUser[pHdr->nByte], &rearguard, 4) );
if( pHdr->pPrev ){
assert( pHdr->pPrev->pNext==pHdr );
pHdr->pPrev->pNext = pHdr->pNext;
}else{
assert( pHdr==pTm->pFirst );
pTm->pFirst = pHdr->pNext;
}
if( pHdr->pNext ){
assert( pHdr->pNext->pPrev==pHdr );
pHdr->pNext->pPrev = pHdr->pPrev;
}
#ifdef TM_BACKTRACE
pHdr->pAgg->nOutAlloc--;
pHdr->pAgg->nOutByte -= pHdr->nByte;
#endif
tmLeaveMutex(pTm);
memset(pUser, 0x58, pHdr->nByte);
memset(pHdr, 0x57, sizeof(TmBlockHdr));
pTm->xFree(pHdr);
}
}
static void *tmRealloc(TmGlobal *pTm, void *p, int nByte){
void *pNew;
pNew = tmMalloc(pTm, nByte);
if( pNew && p ){
TmBlockHdr *pHdr;
u8 *pUser = (u8 *)p;
pHdr = (TmBlockHdr *)&pUser[BLOCK_HDR_SIZE * -1];
memcpy(pNew, p, MIN(nByte, pHdr->nByte));
tmFree(pTm, p);
}
return pNew;
}
static void tmMallocOom(
TmGlobal *pTm,
int nCountdown,
int bPersist,
void (*xHook)(void *),
void *pHookCtx
){
assert( nCountdown>=0 );
assert( bPersist==0 || bPersist==1 );
pTm->nCountdown = nCountdown;
pTm->bPersist = bPersist;
pTm->xHook = xHook;
pTm->pHookCtx = pHookCtx;
pTm->bEnable = 1;
}
static void tmMallocOomEnable(
TmGlobal *pTm,
int bEnable
){
pTm->bEnable = bEnable;
}
static void tmMallocCheck(
TmGlobal *pTm,
int *pnLeakAlloc,
int *pnLeakByte,
FILE *pFile
){
TmBlockHdr *pHdr;
int nLeak = 0;
int nByte = 0;
if( pTm==0 ) return;
for(pHdr=pTm->pFirst; pHdr; pHdr=pHdr->pNext){
nLeak++;
nByte += pHdr->nByte;
}
if( pnLeakAlloc ) *pnLeakAlloc = nLeak;
if( pnLeakByte ) *pnLeakByte = nByte;
#ifdef TM_BACKTRACE
if( pFile ){
int i;
fprintf(pFile, "LEAKS\n");
for(i=0; i<ArraySize(pTm->aHash); i++){
TmAgg *pAgg;
for(pAgg=pTm->aHash[i]; pAgg; pAgg=pAgg->pNext){
if( pAgg->nOutAlloc ){
int j;
fprintf(pFile, "%d %d ", pAgg->nOutByte, pAgg->nOutAlloc);
for(j=0; j<TM_BACKTRACE; j++){
fprintf(pFile, "%p ", pAgg->aFrame[j]);
}
fprintf(pFile, "\n");
}
}
}
fprintf(pFile, "\nALLOCATIONS\n");
for(i=0; i<ArraySize(pTm->aHash); i++){
TmAgg *pAgg;
for(pAgg=pTm->aHash[i]; pAgg; pAgg=pAgg->pNext){
int j;
fprintf(pFile, "%d %d ", pAgg->nByte, pAgg->nAlloc);
for(j=0; j<TM_BACKTRACE; j++) fprintf(pFile, "%p ", pAgg->aFrame[j]);
fprintf(pFile, "\n");
}
}
}
#else
(void)pFile;
#endif
}
#include "lsm.h"
#include "stdlib.h"
typedef struct LsmMutex LsmMutex;
struct LsmMutex {
lsm_env *pEnv;
lsm_mutex *pMutex;
};
static void tmLsmMutexEnter(TmGlobal *pTm){
LsmMutex *p = (LsmMutex *)pTm->pMutex;
p->pEnv->xMutexEnter(p->pMutex);
}
static void tmLsmMutexLeave(TmGlobal *pTm){
LsmMutex *p = (LsmMutex *)(pTm->pMutex);
p->pEnv->xMutexLeave(p->pMutex);
}
static void tmLsmMutexDel(TmGlobal *pTm){
LsmMutex *p = (LsmMutex *)pTm->pMutex;
pTm->xFree(p);
}
static void *tmLsmMalloc(int n){ return malloc(n); }
static void tmLsmFree(void *ptr){ free(ptr); }
static void *tmLsmRealloc(void *ptr, int n){ return realloc(ptr, n); }
static void *tmLsmEnvMalloc(lsm_env *p, int n){
return tmMalloc((TmGlobal *)(p->pMemCtx), n);
}
static void tmLsmEnvFree(lsm_env *p, void *ptr){
tmFree((TmGlobal *)(p->pMemCtx), ptr);
}
static void *tmLsmEnvRealloc(lsm_env *p, void *ptr, int n){
return tmRealloc((TmGlobal *)(p->pMemCtx), ptr, n);
}
void testMallocInstall(lsm_env *pEnv){
TmGlobal *pGlobal;
LsmMutex *pMutex;
assert( pEnv->pMemCtx==0 );
/* Allocate and populate a TmGlobal structure. */
pGlobal = (TmGlobal *)tmLsmMalloc(sizeof(TmGlobal));
memset(pGlobal, 0, sizeof(TmGlobal));
pGlobal->xMalloc = tmLsmMalloc;
pGlobal->xRealloc = tmLsmRealloc;
pGlobal->xFree = tmLsmFree;
pMutex = (LsmMutex *)pGlobal->xMalloc(sizeof(LsmMutex));
pMutex->pEnv = pEnv;
pEnv->xMutexStatic(pEnv, LSM_MUTEX_HEAP, &pMutex->pMutex);
pGlobal->xEnterMutex = tmLsmMutexEnter;
pGlobal->xLeaveMutex = tmLsmMutexLeave;
pGlobal->xDelMutex = tmLsmMutexDel;
pGlobal->pMutex = (void *)pMutex;
pGlobal->xSaveMalloc = (void *)pEnv->xMalloc;
pGlobal->xSaveRealloc = (void *)pEnv->xRealloc;
pGlobal->xSaveFree = (void *)pEnv->xFree;
/* Set up pEnv to the use the new TmGlobal */
pEnv->pMemCtx = (void *)pGlobal;
pEnv->xMalloc = tmLsmEnvMalloc;
pEnv->xRealloc = tmLsmEnvRealloc;
pEnv->xFree = tmLsmEnvFree;
}
void testMallocUninstall(lsm_env *pEnv){
TmGlobal *p = (TmGlobal *)pEnv->pMemCtx;
pEnv->pMemCtx = 0;
if( p ){
pEnv->xMalloc = (void *(*)(lsm_env*, int))(p->xSaveMalloc);
pEnv->xRealloc = (void *(*)(lsm_env*, void*, int))(p->xSaveRealloc);
pEnv->xFree = (void (*)(lsm_env*, void*))(p->xSaveFree);
p->xDelMutex(p);
tmLsmFree(p);
}
}
void testMallocCheck(
lsm_env *pEnv,
int *pnLeakAlloc,
int *pnLeakByte,
FILE *pFile
){
if( pEnv->pMemCtx==0 ){
*pnLeakAlloc = 0;
*pnLeakByte = 0;
}else{
tmMallocCheck((TmGlobal *)(pEnv->pMemCtx), pnLeakAlloc, pnLeakByte, pFile);
}
}
void testMallocOom(
lsm_env *pEnv,
int nCountdown,
int bPersist,
void (*xHook)(void *),
void *pHookCtx
){
TmGlobal *pTm = (TmGlobal *)(pEnv->pMemCtx);
tmMallocOom(pTm, nCountdown, bPersist, xHook, pHookCtx);
}
void testMallocOomEnable(lsm_env *pEnv, int bEnable){
TmGlobal *pTm = (TmGlobal *)(pEnv->pMemCtx);
tmMallocOomEnable(pTm, bEnable);
}

View File

@ -0,0 +1,827 @@
/*
** This program attempts to test the correctness of some facets of the
** LSM database library. Specifically, that the contents of the database
** are maintained correctly during a series of inserts and deletes.
*/
#include "lsmtest_tdb.h"
#include "lsm.h"
#include "lsmtest.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include <stdio.h>
typedef struct SqlDb SqlDb;
static int error_transaction_function(TestDb *p, int iLevel){
unused_parameter(p);
unused_parameter(iLevel);
return -1;
}
/*************************************************************************
** Begin wrapper for LevelDB.
*/
#ifdef HAVE_LEVELDB
#include <leveldb/c.h>
typedef struct LevelDb LevelDb;
struct LevelDb {
TestDb base;
leveldb_t *db;
leveldb_options_t *pOpt;
leveldb_writeoptions_t *pWriteOpt;
leveldb_readoptions_t *pReadOpt;
char *pVal;
};
static int test_leveldb_close(TestDb *pTestDb){
LevelDb *pDb = (LevelDb *)pTestDb;
leveldb_close(pDb->db);
leveldb_writeoptions_destroy(pDb->pWriteOpt);
leveldb_readoptions_destroy(pDb->pReadOpt);
leveldb_options_destroy(pDb->pOpt);
free(pDb->pVal);
free(pDb);
return 0;
}
static int test_leveldb_write(
TestDb *pTestDb,
void *pKey,
int nKey,
void *pVal,
int nVal
){
LevelDb *pDb = (LevelDb *)pTestDb;
char *zErr = 0;
leveldb_put(pDb->db, pDb->pWriteOpt, pKey, nKey, pVal, nVal, &zErr);
return (zErr!=0);
}
static int test_leveldb_delete(TestDb *pTestDb, void *pKey, int nKey){
LevelDb *pDb = (LevelDb *)pTestDb;
char *zErr = 0;
leveldb_delete(pDb->db, pDb->pWriteOpt, pKey, nKey, &zErr);
return (zErr!=0);
}
static int test_leveldb_fetch(
TestDb *pTestDb,
void *pKey,
int nKey,
void **ppVal,
int *pnVal
){
LevelDb *pDb = (LevelDb *)pTestDb;
char *zErr = 0;
size_t nVal = 0;
if( pKey==0 ) return 0;
free(pDb->pVal);
pDb->pVal = leveldb_get(pDb->db, pDb->pReadOpt, pKey, nKey, &nVal, &zErr);
*ppVal = (void *)(pDb->pVal);
if( pDb->pVal==0 ){
*pnVal = -1;
}else{
*pnVal = (int)nVal;
}
return (zErr!=0);
}
static int test_leveldb_scan(
TestDb *pTestDb,
void *pCtx,
int bReverse,
void *pKey1, int nKey1, /* Start of search */
void *pKey2, int nKey2, /* End of search */
void (*xCallback)(void *, void *, int , void *, int)
){
LevelDb *pDb = (LevelDb *)pTestDb;
leveldb_iterator_t *iter;
iter = leveldb_create_iterator(pDb->db, pDb->pReadOpt);
if( bReverse==0 ){
if( pKey1 ){
leveldb_iter_seek(iter, pKey1, nKey1);
}else{
leveldb_iter_seek_to_first(iter);
}
}else{
if( pKey2 ){
leveldb_iter_seek(iter, pKey2, nKey2);
if( leveldb_iter_valid(iter)==0 ){
leveldb_iter_seek_to_last(iter);
}else{
const char *k; size_t n;
int res;
k = leveldb_iter_key(iter, &n);
res = memcmp(k, pKey2, MIN(n, nKey2));
if( res==0 ) res = n - nKey2;
assert( res>=0 );
if( res>0 ){
leveldb_iter_prev(iter);
}
}
}else{
leveldb_iter_seek_to_last(iter);
}
}
while( leveldb_iter_valid(iter) ){
const char *k; size_t n;
const char *v; size_t n2;
int res;
k = leveldb_iter_key(iter, &n);
if( bReverse==0 && pKey2 ){
res = memcmp(k, pKey2, MIN(n, nKey2));
if( res==0 ) res = n - nKey2;
if( res>0 ) break;
}
if( bReverse!=0 && pKey1 ){
res = memcmp(k, pKey1, MIN(n, nKey1));
if( res==0 ) res = n - nKey1;
if( res<0 ) break;
}
v = leveldb_iter_value(iter, &n2);
xCallback(pCtx, (void *)k, n, (void *)v, n2);
if( bReverse==0 ){
leveldb_iter_next(iter);
}else{
leveldb_iter_prev(iter);
}
}
leveldb_iter_destroy(iter);
return 0;
}
static int test_leveldb_open(
const char *zSpec,
const char *zFilename,
int bClear,
TestDb **ppDb
){
static const DatabaseMethods LeveldbMethods = {
test_leveldb_close,
test_leveldb_write,
test_leveldb_delete,
0,
test_leveldb_fetch,
test_leveldb_scan,
error_transaction_function,
error_transaction_function,
error_transaction_function
};
LevelDb *pLevelDb;
char *zErr = 0;
if( bClear ){
char *zCmd = sqlite3_mprintf("rm -rf %s\n", zFilename);
system(zCmd);
sqlite3_free(zCmd);
}
pLevelDb = (LevelDb *)malloc(sizeof(LevelDb));
memset(pLevelDb, 0, sizeof(LevelDb));
pLevelDb->pOpt = leveldb_options_create();
leveldb_options_set_create_if_missing(pLevelDb->pOpt, 1);
pLevelDb->pWriteOpt = leveldb_writeoptions_create();
pLevelDb->pReadOpt = leveldb_readoptions_create();
pLevelDb->db = leveldb_open(pLevelDb->pOpt, zFilename, &zErr);
if( zErr ){
test_leveldb_close((TestDb *)pLevelDb);
*ppDb = 0;
return 1;
}
*ppDb = (TestDb *)pLevelDb;
pLevelDb->base.pMethods = &LeveldbMethods;
return 0;
}
#endif /* HAVE_LEVELDB */
/*
** End wrapper for LevelDB.
*************************************************************************/
#ifdef HAVE_KYOTOCABINET
static int kc_close(TestDb *pTestDb){
return test_kc_close(pTestDb);
}
static int kc_write(
TestDb *pTestDb,
void *pKey,
int nKey,
void *pVal,
int nVal
){
return test_kc_write(pTestDb, pKey, nKey, pVal, nVal);
}
static int kc_delete(TestDb *pTestDb, void *pKey, int nKey){
return test_kc_delete(pTestDb, pKey, nKey);
}
static int kc_delete_range(
TestDb *pTestDb,
void *pKey1, int nKey1,
void *pKey2, int nKey2
){
return test_kc_delete_range(pTestDb, pKey1, nKey1, pKey2, nKey2);
}
static int kc_fetch(
TestDb *pTestDb,
void *pKey,
int nKey,
void **ppVal,
int *pnVal
){
if( pKey==0 ) return LSM_OK;
return test_kc_fetch(pTestDb, pKey, nKey, ppVal, pnVal);
}
static int kc_scan(
TestDb *pTestDb,
void *pCtx,
int bReverse,
void *pFirst, int nFirst,
void *pLast, int nLast,
void (*xCallback)(void *, void *, int , void *, int)
){
return test_kc_scan(
pTestDb, pCtx, bReverse, pFirst, nFirst, pLast, nLast, xCallback
);
}
static int kc_open(
const char *zSpec,
const char *zFilename,
int bClear,
TestDb **ppDb
){
static const DatabaseMethods KcdbMethods = {
kc_close,
kc_write,
kc_delete,
kc_delete_range,
kc_fetch,
kc_scan,
error_transaction_function,
error_transaction_function,
error_transaction_function
};
int rc;
TestDb *pTestDb = 0;
rc = test_kc_open(zFilename, bClear, &pTestDb);
if( rc!=0 ){
*ppDb = 0;
return rc;
}
pTestDb->pMethods = &KcdbMethods;
*ppDb = pTestDb;
return 0;
}
#endif /* HAVE_KYOTOCABINET */
/*
** End wrapper for Kyoto cabinet.
*************************************************************************/
#ifdef HAVE_MDB
static int mdb_close(TestDb *pTestDb){
return test_mdb_close(pTestDb);
}
static int mdb_write(
TestDb *pTestDb,
void *pKey,
int nKey,
void *pVal,
int nVal
){
return test_mdb_write(pTestDb, pKey, nKey, pVal, nVal);
}
static int mdb_delete(TestDb *pTestDb, void *pKey, int nKey){
return test_mdb_delete(pTestDb, pKey, nKey);
}
static int mdb_fetch(
TestDb *pTestDb,
void *pKey,
int nKey,
void **ppVal,
int *pnVal
){
if( pKey==0 ) return LSM_OK;
return test_mdb_fetch(pTestDb, pKey, nKey, ppVal, pnVal);
}
static int mdb_scan(
TestDb *pTestDb,
void *pCtx,
int bReverse,
void *pFirst, int nFirst,
void *pLast, int nLast,
void (*xCallback)(void *, void *, int , void *, int)
){
return test_mdb_scan(
pTestDb, pCtx, bReverse, pFirst, nFirst, pLast, nLast, xCallback
);
}
static int mdb_open(
const char *zSpec,
const char *zFilename,
int bClear,
TestDb **ppDb
){
static const DatabaseMethods KcdbMethods = {
mdb_close,
mdb_write,
mdb_delete,
0,
mdb_fetch,
mdb_scan,
error_transaction_function,
error_transaction_function,
error_transaction_function
};
int rc;
TestDb *pTestDb = 0;
rc = test_mdb_open(zSpec, zFilename, bClear, &pTestDb);
if( rc!=0 ){
*ppDb = 0;
return rc;
}
pTestDb->pMethods = &KcdbMethods;
*ppDb = pTestDb;
return 0;
}
#endif /* HAVE_MDB */
/*************************************************************************
** Begin wrapper for SQLite.
*/
/*
** nOpenTrans:
** The number of open nested transactions, in the same sense as used
** by the tdb_begin/commit/rollback and SQLite 4 KV interfaces. If this
** value is 0, there are no transactions open at all. If it is 1, then
** there is a read transaction. If it is 2 or greater, then there are
** (nOpenTrans-1) nested write transactions open.
*/
struct SqlDb {
TestDb base;
sqlite3 *db;
sqlite3_stmt *pInsert;
sqlite3_stmt *pDelete;
sqlite3_stmt *pDeleteRange;
sqlite3_stmt *pFetch;
sqlite3_stmt *apScan[8];
int nOpenTrans;
/* Used by sql_fetch() to allocate space for results */
int nAlloc;
u8 *aAlloc;
};
static int sql_close(TestDb *pTestDb){
SqlDb *pDb = (SqlDb *)pTestDb;
sqlite3_finalize(pDb->pInsert);
sqlite3_finalize(pDb->pDelete);
sqlite3_finalize(pDb->pDeleteRange);
sqlite3_finalize(pDb->pFetch);
sqlite3_finalize(pDb->apScan[0]);
sqlite3_finalize(pDb->apScan[1]);
sqlite3_finalize(pDb->apScan[2]);
sqlite3_finalize(pDb->apScan[3]);
sqlite3_finalize(pDb->apScan[4]);
sqlite3_finalize(pDb->apScan[5]);
sqlite3_finalize(pDb->apScan[6]);
sqlite3_finalize(pDb->apScan[7]);
sqlite3_close(pDb->db);
free((char *)pDb->aAlloc);
free((char *)pDb);
return SQLITE_OK;
}
static int sql_write(
TestDb *pTestDb,
void *pKey,
int nKey,
void *pVal,
int nVal
){
SqlDb *pDb = (SqlDb *)pTestDb;
sqlite3_bind_blob(pDb->pInsert, 1, pKey, nKey, SQLITE_STATIC);
sqlite3_bind_blob(pDb->pInsert, 2, pVal, nVal, SQLITE_STATIC);
sqlite3_step(pDb->pInsert);
return sqlite3_reset(pDb->pInsert);
}
static int sql_delete(TestDb *pTestDb, void *pKey, int nKey){
SqlDb *pDb = (SqlDb *)pTestDb;
sqlite3_bind_blob(pDb->pDelete, 1, pKey, nKey, SQLITE_STATIC);
sqlite3_step(pDb->pDelete);
return sqlite3_reset(pDb->pDelete);
}
static int sql_delete_range(
TestDb *pTestDb,
void *pKey1, int nKey1,
void *pKey2, int nKey2
){
SqlDb *pDb = (SqlDb *)pTestDb;
sqlite3_bind_blob(pDb->pDeleteRange, 1, pKey1, nKey1, SQLITE_STATIC);
sqlite3_bind_blob(pDb->pDeleteRange, 2, pKey2, nKey2, SQLITE_STATIC);
sqlite3_step(pDb->pDeleteRange);
return sqlite3_reset(pDb->pDeleteRange);
}
static int sql_fetch(
TestDb *pTestDb,
void *pKey,
int nKey,
void **ppVal,
int *pnVal
){
SqlDb *pDb = (SqlDb *)pTestDb;
int rc;
sqlite3_reset(pDb->pFetch);
if( pKey==0 ){
assert( ppVal==0 );
assert( pnVal==0 );
return LSM_OK;
}
sqlite3_bind_blob(pDb->pFetch, 1, pKey, nKey, SQLITE_STATIC);
rc = sqlite3_step(pDb->pFetch);
if( rc==SQLITE_ROW ){
int nVal = sqlite3_column_bytes(pDb->pFetch, 0);
u8 *aVal = (void *)sqlite3_column_blob(pDb->pFetch, 0);
if( nVal>pDb->nAlloc ){
free(pDb->aAlloc);
pDb->aAlloc = (u8 *)malloc(nVal*2);
pDb->nAlloc = nVal*2;
}
memcpy(pDb->aAlloc, aVal, nVal);
*pnVal = nVal;
*ppVal = (void *)pDb->aAlloc;
}else{
*pnVal = -1;
*ppVal = 0;
}
rc = sqlite3_reset(pDb->pFetch);
return rc;
}
static int sql_scan(
TestDb *pTestDb,
void *pCtx,
int bReverse,
void *pFirst, int nFirst,
void *pLast, int nLast,
void (*xCallback)(void *, void *, int , void *, int)
){
SqlDb *pDb = (SqlDb *)pTestDb;
sqlite3_stmt *pScan;
assert( bReverse==1 || bReverse==0 );
pScan = pDb->apScan[(pFirst==0) + (pLast==0)*2 + bReverse*4];
if( pFirst ) sqlite3_bind_blob(pScan, 1, pFirst, nFirst, SQLITE_STATIC);
if( pLast ) sqlite3_bind_blob(pScan, 2, pLast, nLast, SQLITE_STATIC);
while( SQLITE_ROW==sqlite3_step(pScan) ){
void *pKey; int nKey;
void *pVal; int nVal;
nKey = sqlite3_column_bytes(pScan, 0);
pKey = (void *)sqlite3_column_blob(pScan, 0);
nVal = sqlite3_column_bytes(pScan, 1);
pVal = (void *)sqlite3_column_blob(pScan, 1);
xCallback(pCtx, pKey, nKey, pVal, nVal);
}
return sqlite3_reset(pScan);
}
static int sql_begin(TestDb *pTestDb, int iLevel){
int i;
SqlDb *pDb = (SqlDb *)pTestDb;
/* iLevel==0 is a no-op */
if( iLevel==0 ) return 0;
/* If there are no transactions at all open, open a read transaction. */
if( pDb->nOpenTrans==0 ){
int rc = sqlite3_exec(pDb->db,
"BEGIN; SELECT * FROM sqlite_master LIMIT 1;" , 0, 0, 0
);
if( rc!=0 ) return rc;
pDb->nOpenTrans = 1;
}
/* Open any required write transactions */
for(i=pDb->nOpenTrans; i<iLevel; i++){
char *zSql = sqlite3_mprintf("SAVEPOINT x%d", i);
int rc = sqlite3_exec(pDb->db, zSql, 0, 0, 0);
sqlite3_free(zSql);
if( rc!=SQLITE_OK ) return rc;
}
pDb->nOpenTrans = iLevel;
return 0;
}
static int sql_commit(TestDb *pTestDb, int iLevel){
SqlDb *pDb = (SqlDb *)pTestDb;
assert( iLevel>=0 );
/* Close the read transaction if requested. */
if( pDb->nOpenTrans>=1 && iLevel==0 ){
int rc = sqlite3_exec(pDb->db, "COMMIT", 0, 0, 0);
if( rc!=0 ) return rc;
pDb->nOpenTrans = 0;
}
/* Close write transactions as required */
if( pDb->nOpenTrans>iLevel ){
char *zSql = sqlite3_mprintf("RELEASE x%d", iLevel);
int rc = sqlite3_exec(pDb->db, zSql, 0, 0, 0);
sqlite3_free(zSql);
if( rc!=0 ) return rc;
}
pDb->nOpenTrans = iLevel;
return 0;
}
static int sql_rollback(TestDb *pTestDb, int iLevel){
SqlDb *pDb = (SqlDb *)pTestDb;
assert( iLevel>=0 );
if( pDb->nOpenTrans>=1 && iLevel==0 ){
/* Close the read transaction if requested. */
int rc = sqlite3_exec(pDb->db, "ROLLBACK", 0, 0, 0);
if( rc!=0 ) return rc;
}else if( pDb->nOpenTrans>1 && iLevel==1 ){
/* Or, rollback and close the top-level write transaction */
int rc = sqlite3_exec(pDb->db, "ROLLBACK TO x1; RELEASE x1;", 0, 0, 0);
if( rc!=0 ) return rc;
}else{
/* Or, just roll back some nested transactions */
char *zSql = sqlite3_mprintf("ROLLBACK TO x%d", iLevel-1);
int rc = sqlite3_exec(pDb->db, zSql, 0, 0, 0);
sqlite3_free(zSql);
if( rc!=0 ) return rc;
}
pDb->nOpenTrans = iLevel;
return 0;
}
static int sql_open(
const char *zSpec,
const char *zFilename,
int bClear,
TestDb **ppDb
){
static const DatabaseMethods SqlMethods = {
sql_close,
sql_write,
sql_delete,
sql_delete_range,
sql_fetch,
sql_scan,
sql_begin,
sql_commit,
sql_rollback
};
const char *zCreate = "CREATE TABLE IF NOT EXISTS t1(k PRIMARY KEY, v)";
const char *zInsert = "REPLACE INTO t1 VALUES(?, ?)";
const char *zDelete = "DELETE FROM t1 WHERE k = ?";
const char *zRange = "DELETE FROM t1 WHERE k>? AND k<?";
const char *zFetch = "SELECT v FROM t1 WHERE k = ?";
const char *zScan0 = "SELECT * FROM t1 WHERE k BETWEEN ?1 AND ?2 ORDER BY k";
const char *zScan1 = "SELECT * FROM t1 WHERE k <= ?2 ORDER BY k";
const char *zScan2 = "SELECT * FROM t1 WHERE k >= ?1 ORDER BY k";
const char *zScan3 = "SELECT * FROM t1 ORDER BY k";
const char *zScan4 =
"SELECT * FROM t1 WHERE k BETWEEN ?1 AND ?2 ORDER BY k DESC";
const char *zScan5 = "SELECT * FROM t1 WHERE k <= ?2 ORDER BY k DESC";
const char *zScan6 = "SELECT * FROM t1 WHERE k >= ?1 ORDER BY k DESC";
const char *zScan7 = "SELECT * FROM t1 ORDER BY k DESC";
int rc;
SqlDb *pDb;
char *zPragma;
if( bClear && zFilename && zFilename[0] ){
unlink(zFilename);
}
pDb = (SqlDb *)malloc(sizeof(SqlDb));
memset(pDb, 0, sizeof(SqlDb));
pDb->base.pMethods = &SqlMethods;
if( 0!=(rc = sqlite3_open(zFilename, &pDb->db))
|| 0!=(rc = sqlite3_exec(pDb->db, zCreate, 0, 0, 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zInsert, -1, &pDb->pInsert, 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zDelete, -1, &pDb->pDelete, 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zRange, -1, &pDb->pDeleteRange, 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zFetch, -1, &pDb->pFetch, 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan0, -1, &pDb->apScan[0], 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan1, -1, &pDb->apScan[1], 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan2, -1, &pDb->apScan[2], 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan3, -1, &pDb->apScan[3], 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan4, -1, &pDb->apScan[4], 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan5, -1, &pDb->apScan[5], 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan6, -1, &pDb->apScan[6], 0))
|| 0!=(rc = sqlite3_prepare_v2(pDb->db, zScan7, -1, &pDb->apScan[7], 0))
){
*ppDb = 0;
sql_close((TestDb *)pDb);
return rc;
}
zPragma = sqlite3_mprintf("PRAGMA page_size=%d", TESTDB_DEFAULT_PAGE_SIZE);
sqlite3_exec(pDb->db, zPragma, 0, 0, 0);
sqlite3_free(zPragma);
zPragma = sqlite3_mprintf("PRAGMA cache_size=%d", TESTDB_DEFAULT_CACHE_SIZE);
sqlite3_exec(pDb->db, zPragma, 0, 0, 0);
sqlite3_free(zPragma);
/* sqlite3_exec(pDb->db, "PRAGMA locking_mode=EXCLUSIVE", 0, 0, 0); */
sqlite3_exec(pDb->db, "PRAGMA synchronous=OFF", 0, 0, 0);
sqlite3_exec(pDb->db, "PRAGMA journal_mode=WAL", 0, 0, 0);
sqlite3_exec(pDb->db, "PRAGMA wal_autocheckpoint=4096", 0, 0, 0);
*ppDb = (TestDb *)pDb;
return 0;
}
/*
** End wrapper for SQLite.
*************************************************************************/
/*************************************************************************
** Begin exported functions.
*/
static struct Lib {
const char *zName;
const char *zDefaultDb;
int (*xOpen)(const char *, const char *zFilename, int bClear, TestDb **ppDb);
} aLib[] = {
{ "sqlite3", "testdb.sqlite", sql_open },
{ "lsm_small", "testdb.lsm_small", test_lsm_small_open },
{ "lsm_lomem", "testdb.lsm_lomem", test_lsm_lomem_open },
#ifdef HAVE_ZLIB
{ "lsm_zip", "testdb.lsm_zip", test_lsm_zip_open },
#endif
{ "lsm", "testdb.lsm", test_lsm_open },
#ifdef LSM_MUTEX_PTHREADS
{ "lsm_mt2", "testdb.lsm_mt2", test_lsm_mt2 },
{ "lsm_mt3", "testdb.lsm_mt3", test_lsm_mt3 },
#endif
#ifdef HAVE_LEVELDB
{ "leveldb", "testdb.leveldb", test_leveldb_open },
#endif
#ifdef HAVE_KYOTOCABINET
{ "kyotocabinet", "testdb.kc", kc_open },
#endif
#ifdef HAVE_MDB
{ "mdb", "./testdb.mdb", mdb_open }
#endif
};
const char *tdb_system_name(int i){
if( i<0 || i>=ArraySize(aLib) ) return 0;
return aLib[i].zName;
}
int tdb_open(const char *zLib, const char *zDb, int bClear, TestDb **ppDb){
int i;
int rc = 1;
const char *zSpec = 0;
int nLib = 0;
while( zLib[nLib] && zLib[nLib]!=' ' ){
nLib++;
}
zSpec = &zLib[nLib];
while( *zSpec==' ' ) zSpec++;
if( *zSpec=='\0' ) zSpec = 0;
for(i=0; i<ArraySize(aLib); i++){
if( strlen(aLib[i].zName)==nLib && 0==memcmp(zLib, aLib[i].zName, nLib) ){
rc = aLib[i].xOpen(zSpec, (zDb ? zDb : aLib[i].zDefaultDb), bClear, ppDb);
if( rc==0 ){
(*ppDb)->zLibrary = aLib[i].zName;
}
break;
}
}
if( rc ){
/* Failed to find the requested database library. Return an error. */
*ppDb = 0;
}
return rc;
}
int tdb_close(TestDb *pDb){
if( pDb ){
return pDb->pMethods->xClose(pDb);
}
return 0;
}
int tdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal){
return pDb->pMethods->xWrite(pDb, pKey, nKey, pVal, nVal);
}
int tdb_delete(TestDb *pDb, void *pKey, int nKey){
return pDb->pMethods->xDelete(pDb, pKey, nKey);
}
int tdb_delete_range(
TestDb *pDb, void *pKey1, int nKey1, void *pKey2, int nKey2
){
return pDb->pMethods->xDeleteRange(pDb, pKey1, nKey1, pKey2, nKey2);
}
int tdb_fetch(TestDb *pDb, void *pKey, int nKey, void **ppVal, int *pnVal){
return pDb->pMethods->xFetch(pDb, pKey, nKey, ppVal, pnVal);
}
int tdb_scan(
TestDb *pDb, /* Database handle */
void *pCtx, /* Context pointer to pass to xCallback */
int bReverse, /* True to scan in reverse order */
void *pKey1, int nKey1, /* Start of search */
void *pKey2, int nKey2, /* End of search */
void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal)
){
return pDb->pMethods->xScan(
pDb, pCtx, bReverse, pKey1, nKey1, pKey2, nKey2, xCallback
);
}
int tdb_begin(TestDb *pDb, int iLevel){
return pDb->pMethods->xBegin(pDb, iLevel);
}
int tdb_commit(TestDb *pDb, int iLevel){
return pDb->pMethods->xCommit(pDb, iLevel);
}
int tdb_rollback(TestDb *pDb, int iLevel){
return pDb->pMethods->xRollback(pDb, iLevel);
}
int tdb_transaction_support(TestDb *pDb){
return (pDb->pMethods->xBegin != error_transaction_function);
}
const char *tdb_library_name(TestDb *pDb){
return pDb->zLibrary;
}
/*
** End exported functions.
*************************************************************************/

View File

@ -0,0 +1,167 @@
/*
** This file is the interface to a very simple database library used for
** testing. The interface is similar to that of the LSM. The main virtue
** of this library is that the same API may be used to access a key-value
** store implemented by LSM, SQLite or another database system. Which
** makes it easy to use for correctness and performance tests.
*/
#ifndef __WRAPPER_H_
#define __WRAPPER_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "lsm.h"
typedef struct TestDb TestDb;
/*
** Open a new database connection. The first argument is the name of the
** database library to use. e.g. something like:
**
** "sqlite3"
** "lsm"
**
** See function tdb_system_name() for a list of available database systems.
**
** The second argument is the name of the database to open (e.g. a filename).
**
** If the third parameter is non-zero, then any existing database by the
** name of zDb is removed before opening a new one. If it is zero, then an
** existing database may be opened.
*/
int tdb_open(const char *zLibrary, const char *zDb, int bClear, TestDb **ppDb);
/*
** Close a database handle.
*/
int tdb_close(TestDb *pDb);
/*
** Write a new key/value into the database.
*/
int tdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal);
/*
** Delete a key from the database.
*/
int tdb_delete(TestDb *pDb, void *pKey, int nKey);
/*
** Delete a range of keys from the database.
*/
int tdb_delete_range(TestDb *, void *pKey1, int nKey1, void *pKey2, int nKey2);
/*
** Query the database for key (pKey/nKey). If no entry is found, set *ppVal
** to 0 and *pnVal to -1 before returning. Otherwise, set *ppVal and *pnVal
** to a pointer to and size of the value associated with (pKey/nKey).
*/
int tdb_fetch(TestDb *pDb, void *pKey, int nKey, void **ppVal, int *pnVal);
/*
** Open and close nested transactions. Currently, these functions only
** work for SQLite3 and LSM systems. Use the tdb_transaction_support()
** function to determine if a given TestDb handle supports these methods.
**
** These functions and the iLevel parameter follow the same conventions as
** the SQLite 4 transaction interface. Note that this is slightly different
** from the way LSM does things. As follows:
**
** tdb_begin():
** A successful call to tdb_begin() with (iLevel>1) guarantees that
** there are at least (iLevel-1) write transactions open. If iLevel==1,
** then it guarantees that at least a read-transaction is open. Calling
** tdb_begin() with iLevel==0 is a no-op.
**
** tdb_commit():
** A successful call to tdb_commit() with (iLevel>1) guarantees that
** there are at most (iLevel-1) write transactions open. If iLevel==1,
** then it guarantees that there are no write transactions open (although
** a read-transaction may remain open). Calling tdb_commit() with
** iLevel==0 ensures that all transactions, read or write, have been
** closed and committed.
**
** tdb_rollback():
** This call is similar to tdb_commit(), except that instead of committing
** transactions, it reverts them. For example, calling tdb_rollback() with
** iLevel==2 ensures that there is at most one write transaction open, and
** restores the database to the state that it was in when that transaction
** was opened.
**
** In other words, tdb_commit() just closes transactions - tdb_rollback()
** closes transactions and then restores the database to the state it
** was in before those transactions were even opened.
*/
int tdb_begin(TestDb *pDb, int iLevel);
int tdb_commit(TestDb *pDb, int iLevel);
int tdb_rollback(TestDb *pDb, int iLevel);
/*
** Return true if transactions are supported, or false otherwise.
*/
int tdb_transaction_support(TestDb *pDb);
/*
** Return the name of the database library (as passed to tdb_open()) used
** by the handled passed as the first argument.
*/
const char *tdb_library_name(TestDb *pDb);
/*
** Scan a range of database keys. Invoke the callback function for each
** key visited.
*/
int tdb_scan(
TestDb *pDb, /* Database handle */
void *pCtx, /* Context pointer to pass to xCallback */
int bReverse, /* True to scan in reverse order */
void *pKey1, int nKey1, /* Start of search */
void *pKey2, int nKey2, /* End of search */
void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal)
);
const char *tdb_system_name(int i);
int tdb_lsm_open(const char *zCfg, const char *zDb, int bClear, TestDb **ppDb);
/*
** If the TestDb handle passed as an argument is a wrapper around an LSM
** database, return the LSM handle. Otherwise, if the argument is some other
** database system, return NULL.
*/
lsm_db *tdb_lsm(TestDb *pDb);
/*
** Return a pointer to the lsm_env object used by all lsm database
** connections initialized as a copy of the object returned by
** lsm_default_env(). It may be modified (e.g. to override functions)
** if the caller can guarantee that it is not already in use.
*/
lsm_env *tdb_lsm_env(void);
/*
** The following functions only work with LSM database handles. It is
** illegal to call them with any other type of database handle specified
** as an argument.
*/
void tdb_lsm_enable_log(TestDb *pDb, int bEnable);
void tdb_lsm_application_crash(TestDb *pDb);
void tdb_lsm_prepare_system_crash(TestDb *pDb);
void tdb_lsm_system_crash(TestDb *pDb);
void tdb_lsm_prepare_sync_crash(TestDb *pDb, int iSync);
void tdb_lsm_safety(TestDb *pDb, int eMode);
void tdb_lsm_config_work_hook(TestDb *pDb, void (*)(lsm_db *, void *), void *);
void tdb_lsm_write_hook(TestDb *, void(*)(void*,int,lsm_i64,int,int), void*);
int tdb_lsm_config_str(TestDb *pDb, const char *zStr);
#ifdef __cplusplus
} /* End of the 'extern "C"' block */
#endif
#endif

View File

@ -0,0 +1,370 @@
#include "lsmtest.h"
#include <stdlib.h>
#ifdef HAVE_KYOTOCABINET
#include "kcpolydb.h"
extern "C" {
struct KcDb {
TestDb base;
kyotocabinet::TreeDB* db;
char *pVal;
};
}
int test_kc_open(const char *zFilename, int bClear, TestDb **ppDb){
KcDb *pKcDb;
int ok;
int rc = 0;
if( bClear ){
char *zCmd = sqlite3_mprintf("rm -rf %s\n", zFilename);
system(zCmd);
sqlite3_free(zCmd);
}
pKcDb = (KcDb *)malloc(sizeof(KcDb));
memset(pKcDb, 0, sizeof(KcDb));
pKcDb->db = new kyotocabinet::TreeDB();
pKcDb->db->tune_page(TESTDB_DEFAULT_PAGE_SIZE);
pKcDb->db->tune_page_cache(
TESTDB_DEFAULT_PAGE_SIZE * TESTDB_DEFAULT_CACHE_SIZE
);
ok = pKcDb->db->open(zFilename,
kyotocabinet::PolyDB::OWRITER | kyotocabinet::PolyDB::OCREATE
);
if( ok==0 ){
free(pKcDb);
pKcDb = 0;
rc = 1;
}
*ppDb = (TestDb *)pKcDb;
return rc;
}
int test_kc_close(TestDb *pDb){
KcDb *pKcDb = (KcDb *)pDb;
if( pKcDb->pVal ){
delete [] pKcDb->pVal;
}
pKcDb->db->close();
delete pKcDb->db;
free(pKcDb);
return 0;
}
int test_kc_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal){
KcDb *pKcDb = (KcDb *)pDb;
int ok;
ok = pKcDb->db->set((const char *)pKey, nKey, (const char *)pVal, nVal);
return (ok ? 0 : 1);
}
int test_kc_delete(TestDb *pDb, void *pKey, int nKey){
KcDb *pKcDb = (KcDb *)pDb;
int ok;
ok = pKcDb->db->remove((const char *)pKey, nKey);
return (ok ? 0 : 1);
}
int test_kc_delete_range(
TestDb *pDb,
void *pKey1, int nKey1,
void *pKey2, int nKey2
){
int res;
KcDb *pKcDb = (KcDb *)pDb;
kyotocabinet::DB::Cursor* pCur = pKcDb->db->cursor();
if( pKey1 ){
res = pCur->jump((const char *)pKey1, nKey1);
}else{
res = pCur->jump();
}
while( 1 ){
const char *pKey; size_t nKey;
const char *pVal; size_t nVal;
pKey = pCur->get(&nKey, &pVal, &nVal);
if( pKey==0 ) break;
#ifndef NDEBUG
if( pKey1 ){
res = memcmp(pKey, pKey1, MIN((size_t)nKey1, nKey));
assert( res>0 || (res==0 && nKey>nKey1) );
}
#endif
if( pKey2 ){
res = memcmp(pKey, pKey2, MIN((size_t)nKey2, nKey));
if( res>0 || (res==0 && (size_t)nKey2<nKey) ){
delete [] pKey;
break;
}
}
pCur->remove();
delete [] pKey;
}
delete pCur;
return 0;
}
int test_kc_fetch(
TestDb *pDb,
void *pKey,
int nKey,
void **ppVal,
int *pnVal
){
KcDb *pKcDb = (KcDb *)pDb;
size_t nVal;
if( pKcDb->pVal ){
delete [] pKcDb->pVal;
pKcDb->pVal = 0;
}
pKcDb->pVal = pKcDb->db->get((const char *)pKey, nKey, &nVal);
if( pKcDb->pVal ){
*ppVal = pKcDb->pVal;
*pnVal = nVal;
}else{
*ppVal = 0;
*pnVal = -1;
}
return 0;
}
int test_kc_scan(
TestDb *pDb, /* Database handle */
void *pCtx, /* Context pointer to pass to xCallback */
int bReverse, /* True for a reverse order scan */
void *pKey1, int nKey1, /* Start of search */
void *pKey2, int nKey2, /* End of search */
void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal)
){
KcDb *pKcDb = (KcDb *)pDb;
kyotocabinet::DB::Cursor* pCur = pKcDb->db->cursor();
int res;
if( bReverse==0 ){
if( pKey1 ){
res = pCur->jump((const char *)pKey1, nKey1);
}else{
res = pCur->jump();
}
}else{
if( pKey2 ){
res = pCur->jump_back((const char *)pKey2, nKey2);
}else{
res = pCur->jump_back();
}
}
while( res ){
const char *pKey; size_t nKey;
const char *pVal; size_t nVal;
pKey = pCur->get(&nKey, &pVal, &nVal);
if( bReverse==0 && pKey2 ){
res = memcmp(pKey, pKey2, MIN((size_t)nKey2, nKey));
if( res>0 || (res==0 && (size_t)nKey2<nKey) ){
delete [] pKey;
break;
}
}else if( bReverse!=0 && pKey1 ){
res = memcmp(pKey, pKey1, MIN((size_t)nKey1, nKey));
if( res<0 || (res==0 && (size_t)nKey1>nKey) ){
delete [] pKey;
break;
}
}
xCallback(pCtx, (void *)pKey, (int)nKey, (void *)pVal, (int)nVal);
delete [] pKey;
if( bReverse ){
res = pCur->step_back();
}else{
res = pCur->step();
}
}
delete pCur;
return 0;
}
#endif /* HAVE_KYOTOCABINET */
#ifdef HAVE_MDB
#include "lmdb.h"
extern "C" {
struct MdbDb {
TestDb base;
MDB_env *env;
MDB_dbi dbi;
};
}
int test_mdb_open(
const char *zSpec,
const char *zFilename,
int bClear,
TestDb **ppDb
){
MDB_txn *txn;
MdbDb *pMdb;
int rc;
if( bClear ){
char *zCmd = sqlite3_mprintf("rm -rf %s\n", zFilename);
system(zCmd);
sqlite3_free(zCmd);
}
pMdb = (MdbDb *)malloc(sizeof(MdbDb));
memset(pMdb, 0, sizeof(MdbDb));
rc = mdb_env_create(&pMdb->env);
if( rc==0 ) rc = mdb_env_set_mapsize(pMdb->env, 1*1024*1024*1024);
if( rc==0 ) rc = mdb_env_open(pMdb->env, zFilename, MDB_NOSYNC|MDB_NOSUBDIR, 0600);
if( rc==0 ) rc = mdb_txn_begin(pMdb->env, NULL, 0, &txn);
if( rc==0 ){
rc = mdb_open(txn, NULL, 0, &pMdb->dbi);
mdb_txn_commit(txn);
}
*ppDb = (TestDb *)pMdb;
return rc;
}
int test_mdb_close(TestDb *pDb){
MdbDb *pMdb = (MdbDb *)pDb;
mdb_close(pMdb->env, pMdb->dbi);
mdb_env_close(pMdb->env);
free(pMdb);
return 0;
}
int test_mdb_write(TestDb *pDb, void *pKey, int nKey, void *pVal, int nVal){
int rc;
MdbDb *pMdb = (MdbDb *)pDb;
MDB_val val;
MDB_val key;
MDB_txn *txn;
val.mv_size = nVal;
val.mv_data = pVal;
key.mv_size = nKey;
key.mv_data = pKey;
rc = mdb_txn_begin(pMdb->env, NULL, 0, &txn);
if( rc==0 ){
rc = mdb_put(txn, pMdb->dbi, &key, &val, 0);
if( rc==0 ){
rc = mdb_txn_commit(txn);
}else{
mdb_txn_abort(txn);
}
}
return rc;
}
int test_mdb_delete(TestDb *pDb, void *pKey, int nKey){
int rc;
MdbDb *pMdb = (MdbDb *)pDb;
MDB_val key;
MDB_txn *txn;
key.mv_size = nKey;
key.mv_data = pKey;
rc = mdb_txn_begin(pMdb->env, NULL, 0, &txn);
if( rc==0 ){
rc = mdb_del(txn, pMdb->dbi, &key, 0);
if( rc==0 ){
rc = mdb_txn_commit(txn);
}else{
mdb_txn_abort(txn);
}
}
return rc;
}
int test_mdb_fetch(
TestDb *pDb,
void *pKey,
int nKey,
void **ppVal,
int *pnVal
){
int rc;
MdbDb *pMdb = (MdbDb *)pDb;
MDB_val key;
MDB_txn *txn;
key.mv_size = nKey;
key.mv_data = pKey;
rc = mdb_txn_begin(pMdb->env, NULL, MDB_RDONLY, &txn);
if( rc==0 ){
MDB_val val = {0, 0};
rc = mdb_get(txn, pMdb->dbi, &key, &val);
if( rc==MDB_NOTFOUND ){
rc = 0;
*ppVal = 0;
*pnVal = -1;
}else{
*ppVal = val.mv_data;
*pnVal = val.mv_size;
}
mdb_txn_commit(txn);
}
return rc;
}
int test_mdb_scan(
TestDb *pDb, /* Database handle */
void *pCtx, /* Context pointer to pass to xCallback */
int bReverse, /* True for a reverse order scan */
void *pKey1, int nKey1, /* Start of search */
void *pKey2, int nKey2, /* End of search */
void (*xCallback)(void *pCtx, void *pKey, int nKey, void *pVal, int nVal)
){
MdbDb *pMdb = (MdbDb *)pDb;
int rc;
MDB_cursor_op op = bReverse ? MDB_PREV : MDB_NEXT;
MDB_txn *txn;
rc = mdb_txn_begin(pMdb->env, NULL, MDB_RDONLY, &txn);
if( rc==0 ){
MDB_cursor *csr;
MDB_val key = {0, 0};
MDB_val val = {0, 0};
rc = mdb_cursor_open(txn, pMdb->dbi, &csr);
if( rc==0 ){
while( mdb_cursor_get(csr, &key, &val, op)==0 ){
xCallback(pCtx, key.mv_data, key.mv_size, val.mv_data, val.mv_size);
}
mdb_cursor_close(csr);
}
}
return rc;
}
#endif /* HAVE_MDB */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,982 @@
/*
** This file contains the TestDb bt wrapper.
*/
#include "lsmtest_tdb.h"
#include "lsmtest.h"
#include <unistd.h>
#include "bt.h"
#include <pthread.h>
typedef struct BtDb BtDb;
typedef struct BtFile BtFile;
/* Background checkpointer interface (see implementations below). */
typedef struct bt_ckpter bt_ckpter;
static int bgc_attach(BtDb *pDb, const char*);
static int bgc_detach(BtDb *pDb);
/*
** Each database or log file opened by a database handle is wrapped by
** an object of the following type.
*/
struct BtFile {
BtDb *pBt; /* Database handle that opened this file */
bt_env *pVfs; /* Underlying VFS */
bt_file *pFile; /* File handle belonging to underlying VFS */
int nSectorSize; /* Size of sectors in bytes */
int nSector; /* Allocated size of nSector array */
u8 **apSector; /* Original sector data */
};
/*
** nCrashSync:
** If this value is non-zero, then a "crash-test" is running. If
** nCrashSync==1, then the crash is simulated during the very next
** call to the xSync() VFS method (on either the db or log file).
** If nCrashSync==2, the following call to xSync(), and so on.
**
** bCrash:
** After a crash is simulated, this variable is set. Any subsequent
** attempts to write to a file or modify the file system in any way
** fail once this is set. All the caller can do is close the connection.
**
** bFastInsert:
** If this variable is set to true, then a BT_CONTROL_FAST_INSERT_OP
** control is issued before each callto BtReplace() or BtCsrOpen().
*/
struct BtDb {
TestDb base; /* Base class */
bt_db *pBt; /* bt database handle */
sqlite4_env *pEnv; /* SQLite environment (for malloc/free) */
bt_env *pVfs; /* Underlying VFS */
int bFastInsert; /* True to use fast-insert */
/* Space for bt_fetch() results */
u8 *aBuffer; /* Space to store results */
int nBuffer; /* Allocated size of aBuffer[] in bytes */
int nRef;
/* Background checkpointer used by mt connections */
bt_ckpter *pCkpter;
/* Stuff used for crash test simulation */
BtFile *apFile[2]; /* Database and log files used by pBt */
bt_env env; /* Private VFS for this object */
int nCrashSync; /* Number of syncs until crash (see above) */
int bCrash; /* True once a crash has been simulated */
};
static int btVfsFullpath(
sqlite4_env *pEnv,
bt_env *pVfs,
const char *z,
char **pzOut
){
BtDb *pBt = (BtDb*)pVfs->pVfsCtx;
if( pBt->bCrash ) return SQLITE4_IOERR;
return pBt->pVfs->xFullpath(pEnv, pBt->pVfs, z, pzOut);
}
static int btVfsOpen(
sqlite4_env *pEnv,
bt_env *pVfs,
const char *zFile,
int flags, bt_file **ppFile
){
BtFile *p;
BtDb *pBt = (BtDb*)pVfs->pVfsCtx;
int rc;
if( pBt->bCrash ) return SQLITE4_IOERR;
p = (BtFile*)testMalloc(sizeof(BtFile));
if( !p ) return SQLITE4_NOMEM;
if( flags & BT_OPEN_DATABASE ){
pBt->apFile[0] = p;
}else if( flags & BT_OPEN_LOG ){
pBt->apFile[1] = p;
}
if( (flags & BT_OPEN_SHARED)==0 ){
p->pBt = pBt;
}
p->pVfs = pBt->pVfs;
rc = pBt->pVfs->xOpen(pEnv, pVfs, zFile, flags, &p->pFile);
if( rc!=SQLITE4_OK ){
testFree(p);
p = 0;
}else{
pBt->nRef++;
}
*ppFile = (bt_file*)p;
return rc;
}
static int btVfsSize(bt_file *pFile, sqlite4_int64 *piRes){
BtFile *p = (BtFile*)pFile;
if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR;
return p->pVfs->xSize(p->pFile, piRes);
}
static int btVfsRead(bt_file *pFile, sqlite4_int64 iOff, void *pBuf, int nBuf){
BtFile *p = (BtFile*)pFile;
if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR;
return p->pVfs->xRead(p->pFile, iOff, pBuf, nBuf);
}
static int btFlushSectors(BtFile *p, int iFile){
sqlite4_int64 iSz;
int rc;
int i;
u8 *aTmp = 0;
rc = p->pBt->pVfs->xSize(p->pFile, &iSz);
for(i=0; rc==SQLITE4_OK && i<p->nSector; i++){
if( p->pBt->bCrash && p->apSector[i] ){
/* The system is simulating a crash. There are three choices for
** this sector:
**
** 1) Leave it as it is (simulating a successful write),
** 2) Restore the original data (simulating a lost write),
** 3) Populate the disk sector with garbage data.
*/
sqlite4_int64 iSOff = p->nSectorSize*i;
int nWrite = MIN(p->nSectorSize, iSz - iSOff);
if( nWrite ){
u8 *aWrite = 0;
int iOpt = (testPrngValue(i) % 3) + 1;
if( iOpt==1 ){
aWrite = p->apSector[i];
}else if( iOpt==3 ){
if( aTmp==0 ) aTmp = testMalloc(p->nSectorSize);
aWrite = aTmp;
testPrngArray(i*13, (u32*)aWrite, nWrite/sizeof(u32));
}
#if 0
fprintf(stderr, "handle sector %d of %s with %s\n", i,
iFile==0 ? "db" : "log",
iOpt==1 ? "rollback" : iOpt==2 ? "write" : "omit"
);
fflush(stderr);
#endif
if( aWrite ){
rc = p->pBt->pVfs->xWrite(p->pFile, iSOff, aWrite, nWrite);
}
}
}
testFree(p->apSector[i]);
p->apSector[i] = 0;
}
testFree(aTmp);
return rc;
}
static int btSaveSectors(BtFile *p, sqlite4_int64 iOff, int nBuf){
int rc;
sqlite4_int64 iSz; /* Size of file on disk */
int iFirst; /* First sector affected */
int iSector; /* Current sector */
int iLast; /* Last sector affected */
if( p->nSectorSize==0 ){
p->nSectorSize = p->pBt->pVfs->xSectorSize(p->pFile);
if( p->nSectorSize<512 ) p->nSectorSize = 512;
}
iLast = (iOff+nBuf-1) / p->nSectorSize;
iFirst = iOff / p->nSectorSize;
rc = p->pBt->pVfs->xSize(p->pFile, &iSz);
for(iSector=iFirst; rc==SQLITE4_OK && iSector<=iLast; iSector++){
int nRead;
sqlite4_int64 iSOff = iSector * p->nSectorSize;
u8 *aBuf = testMalloc(p->nSectorSize);
nRead = MIN(p->nSectorSize, (iSz - iSOff));
if( nRead>0 ){
rc = p->pBt->pVfs->xRead(p->pFile, iSOff, aBuf, nRead);
}
while( rc==SQLITE4_OK && iSector>=p->nSector ){
int nNew = p->nSector + 32;
u8 **apNew = (u8**)testMalloc(nNew * sizeof(u8*));
memcpy(apNew, p->apSector, p->nSector*sizeof(u8*));
testFree(p->apSector);
p->apSector = apNew;
p->nSector = nNew;
}
p->apSector[iSector] = aBuf;
}
return rc;
}
static int btVfsWrite(bt_file *pFile, sqlite4_int64 iOff, void *pBuf, int nBuf){
BtFile *p = (BtFile*)pFile;
if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR;
if( p->pBt && p->pBt->nCrashSync ){
btSaveSectors(p, iOff, nBuf);
}
return p->pVfs->xWrite(p->pFile, iOff, pBuf, nBuf);
}
static int btVfsTruncate(bt_file *pFile, sqlite4_int64 iOff){
BtFile *p = (BtFile*)pFile;
if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR;
return p->pVfs->xTruncate(p->pFile, iOff);
}
static int btVfsSync(bt_file *pFile){
int rc = SQLITE4_OK;
BtFile *p = (BtFile*)pFile;
BtDb *pBt = p->pBt;
if( pBt ){
if( pBt->bCrash ) return SQLITE4_IOERR;
if( pBt->nCrashSync ){
pBt->nCrashSync--;
pBt->bCrash = (pBt->nCrashSync==0);
if( pBt->bCrash ){
btFlushSectors(pBt->apFile[0], 0);
btFlushSectors(pBt->apFile[1], 1);
rc = SQLITE4_IOERR;
}else{
btFlushSectors(p, 0);
}
}
}
if( rc==SQLITE4_OK ){
rc = p->pVfs->xSync(p->pFile);
}
return rc;
}
static int btVfsSectorSize(bt_file *pFile){
BtFile *p = (BtFile*)pFile;
return p->pVfs->xSectorSize(p->pFile);
}
static void btDeref(BtDb *p){
p->nRef--;
assert( p->nRef>=0 );
if( p->nRef<=0 ) testFree(p);
}
static int btVfsClose(bt_file *pFile){
BtFile *p = (BtFile*)pFile;
BtDb *pBt = p->pBt;
int rc;
if( pBt ){
btFlushSectors(p, 0);
if( p==pBt->apFile[0] ) pBt->apFile[0] = 0;
if( p==pBt->apFile[1] ) pBt->apFile[1] = 0;
}
testFree(p->apSector);
rc = p->pVfs->xClose(p->pFile);
#if 0
btDeref(p->pBt);
#endif
testFree(p);
return rc;
}
static int btVfsUnlink(sqlite4_env *pEnv, bt_env *pVfs, const char *zFile){
BtDb *pBt = (BtDb*)pVfs->pVfsCtx;
if( pBt->bCrash ) return SQLITE4_IOERR;
return pBt->pVfs->xUnlink(pEnv, pBt->pVfs, zFile);
}
static int btVfsLock(bt_file *pFile, int iLock, int eType){
BtFile *p = (BtFile*)pFile;
if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR;
return p->pVfs->xLock(p->pFile, iLock, eType);
}
static int btVfsTestLock(bt_file *pFile, int iLock, int nLock, int eType){
BtFile *p = (BtFile*)pFile;
if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR;
return p->pVfs->xTestLock(p->pFile, iLock, nLock, eType);
}
static int btVfsShmMap(bt_file *pFile, int iChunk, int sz, void **ppOut){
BtFile *p = (BtFile*)pFile;
if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR;
return p->pVfs->xShmMap(p->pFile, iChunk, sz, ppOut);
}
static void btVfsShmBarrier(bt_file *pFile){
BtFile *p = (BtFile*)pFile;
return p->pVfs->xShmBarrier(p->pFile);
}
static int btVfsShmUnmap(bt_file *pFile, int bDelete){
BtFile *p = (BtFile*)pFile;
if( p->pBt && p->pBt->bCrash ) return SQLITE4_IOERR;
return p->pVfs->xShmUnmap(p->pFile, bDelete);
}
static int bt_close(TestDb *pTestDb){
BtDb *p = (BtDb*)pTestDb;
int rc = sqlite4BtClose(p->pBt);
free(p->aBuffer);
if( p->apFile[0] ) p->apFile[0]->pBt = 0;
if( p->apFile[1] ) p->apFile[1]->pBt = 0;
bgc_detach(p);
testFree(p);
return rc;
}
static int btMinTransaction(BtDb *p, int iMin, int *piLevel){
int iLevel;
int rc = SQLITE4_OK;
iLevel = sqlite4BtTransactionLevel(p->pBt);
if( iLevel<iMin ){
rc = sqlite4BtBegin(p->pBt, iMin);
*piLevel = iLevel;
}else{
*piLevel = -1;
}
return rc;
}
static int btRestoreTransaction(BtDb *p, int iLevel, int rcin){
int rc = rcin;
if( iLevel>=0 ){
if( rc==SQLITE4_OK ){
rc = sqlite4BtCommit(p->pBt, iLevel);
}else{
sqlite4BtRollback(p->pBt, iLevel);
}
assert( iLevel==sqlite4BtTransactionLevel(p->pBt) );
}
return rc;
}
static int bt_write(TestDb *pTestDb, void *pK, int nK, void *pV, int nV){
BtDb *p = (BtDb*)pTestDb;
int iLevel;
int rc;
rc = btMinTransaction(p, 2, &iLevel);
if( rc==SQLITE4_OK ){
if( p->bFastInsert ) sqlite4BtControl(p->pBt, BT_CONTROL_FAST_INSERT_OP, 0);
rc = sqlite4BtReplace(p->pBt, pK, nK, pV, nV);
rc = btRestoreTransaction(p, iLevel, rc);
}
return rc;
}
static int bt_delete(TestDb *pTestDb, void *pK, int nK){
return bt_write(pTestDb, pK, nK, 0, -1);
}
static int bt_delete_range(
TestDb *pTestDb,
void *pKey1, int nKey1,
void *pKey2, int nKey2
){
BtDb *p = (BtDb*)pTestDb;
bt_cursor *pCsr = 0;
int rc = SQLITE4_OK;
int iLevel;
rc = btMinTransaction(p, 2, &iLevel);
if( rc==SQLITE4_OK ){
if( p->bFastInsert ) sqlite4BtControl(p->pBt, BT_CONTROL_FAST_INSERT_OP, 0);
rc = sqlite4BtCsrOpen(p->pBt, 0, &pCsr);
}
while( rc==SQLITE4_OK ){
const void *pK;
int n;
int nCmp;
int res;
rc = sqlite4BtCsrSeek(pCsr, pKey1, nKey1, BT_SEEK_GE);
if( rc==SQLITE4_INEXACT ) rc = SQLITE4_OK;
if( rc!=SQLITE4_OK ) break;
rc = sqlite4BtCsrKey(pCsr, &pK, &n);
if( rc!=SQLITE4_OK ) break;
nCmp = MIN(n, nKey1);
res = memcmp(pKey1, pK, nCmp);
assert( res<0 || (res==0 && nKey1<=n) );
if( res==0 && nKey1==n ){
rc = sqlite4BtCsrNext(pCsr);
if( rc!=SQLITE4_OK ) break;
rc = sqlite4BtCsrKey(pCsr, &pK, &n);
if( rc!=SQLITE4_OK ) break;
}
nCmp = MIN(n, nKey2);
res = memcmp(pKey2, pK, nCmp);
if( res<0 || (res==0 && nKey2<=n) ) break;
rc = sqlite4BtDelete(pCsr);
}
if( rc==SQLITE4_NOTFOUND ) rc = SQLITE4_OK;
sqlite4BtCsrClose(pCsr);
rc = btRestoreTransaction(p, iLevel, rc);
return rc;
}
static int bt_fetch(
TestDb *pTestDb,
void *pK, int nK,
void **ppVal, int *pnVal
){
BtDb *p = (BtDb*)pTestDb;
bt_cursor *pCsr = 0;
int iLevel;
int rc = SQLITE4_OK;
iLevel = sqlite4BtTransactionLevel(p->pBt);
if( iLevel==0 ){
rc = sqlite4BtBegin(p->pBt, 1);
if( rc!=SQLITE4_OK ) return rc;
}
if( p->bFastInsert ) sqlite4BtControl(p->pBt, BT_CONTROL_FAST_INSERT_OP, 0);
rc = sqlite4BtCsrOpen(p->pBt, 0, &pCsr);
if( rc==SQLITE4_OK ){
rc = sqlite4BtCsrSeek(pCsr, pK, nK, BT_SEEK_EQ);
if( rc==SQLITE4_OK ){
const void *pV = 0;
int nV = 0;
rc = sqlite4BtCsrData(pCsr, 0, -1, &pV, &nV);
if( rc==SQLITE4_OK ){
if( nV>p->nBuffer ){
free(p->aBuffer);
p->aBuffer = (u8*)malloc(nV*2);
p->nBuffer = nV*2;
}
memcpy(p->aBuffer, pV, nV);
*pnVal = nV;
*ppVal = (void*)(p->aBuffer);
}
}else if( rc==SQLITE4_INEXACT || rc==SQLITE4_NOTFOUND ){
*ppVal = 0;
*pnVal = -1;
rc = SQLITE4_OK;
}
sqlite4BtCsrClose(pCsr);
}
if( iLevel==0 ) sqlite4BtCommit(p->pBt, 0);
return rc;
}
static int bt_scan(
TestDb *pTestDb,
void *pCtx,
int bReverse,
void *pFirst, int nFirst,
void *pLast, int nLast,
void (*xCallback)(void *, void *, int , void *, int)
){
BtDb *p = (BtDb*)pTestDb;
bt_cursor *pCsr = 0;
int rc;
int iLevel;
rc = btMinTransaction(p, 1, &iLevel);
if( rc==SQLITE4_OK ){
if( p->bFastInsert ) sqlite4BtControl(p->pBt, BT_CONTROL_FAST_INSERT_OP, 0);
rc = sqlite4BtCsrOpen(p->pBt, 0, &pCsr);
}
if( rc==SQLITE4_OK ){
if( bReverse ){
if( pLast ){
rc = sqlite4BtCsrSeek(pCsr, pLast, nLast, BT_SEEK_LE);
}else{
rc = sqlite4BtCsrLast(pCsr);
}
}else{
rc = sqlite4BtCsrSeek(pCsr, pFirst, nFirst, BT_SEEK_GE);
}
if( rc==SQLITE4_INEXACT ) rc = SQLITE4_OK;
while( rc==SQLITE4_OK ){
const void *pK = 0; int nK = 0;
const void *pV = 0; int nV = 0;
rc = sqlite4BtCsrKey(pCsr, &pK, &nK);
if( rc==SQLITE4_OK ){
rc = sqlite4BtCsrData(pCsr, 0, -1, &pV, &nV);
}
if( rc!=SQLITE4_OK ) break;
if( bReverse ){
if( pFirst ){
int res;
int nCmp = MIN(nK, nFirst);
res = memcmp(pFirst, pK, nCmp);
if( res>0 || (res==0 && nK<nFirst) ) break;
}
}else{
if( pLast ){
int res;
int nCmp = MIN(nK, nLast);
res = memcmp(pLast, pK, nCmp);
if( res<0 || (res==0 && nK>nLast) ) break;
}
}
xCallback(pCtx, (void*)pK, nK, (void*)pV, nV);
if( bReverse ){
rc = sqlite4BtCsrPrev(pCsr);
}else{
rc = sqlite4BtCsrNext(pCsr);
}
}
if( rc==SQLITE4_NOTFOUND ) rc = SQLITE4_OK;
sqlite4BtCsrClose(pCsr);
}
rc = btRestoreTransaction(p, iLevel, rc);
return rc;
}
static int bt_begin(TestDb *pTestDb, int iLvl){
BtDb *p = (BtDb*)pTestDb;
int rc = sqlite4BtBegin(p->pBt, iLvl);
return rc;
}
static int bt_commit(TestDb *pTestDb, int iLvl){
BtDb *p = (BtDb*)pTestDb;
int rc = sqlite4BtCommit(p->pBt, iLvl);
return rc;
}
static int bt_rollback(TestDb *pTestDb, int iLvl){
BtDb *p = (BtDb*)pTestDb;
int rc = sqlite4BtRollback(p->pBt, iLvl);
return rc;
}
static int testParseOption(
const char **pzIn, /* IN/OUT: pointer to next option */
const char **pzOpt, /* OUT: nul-terminated option name */
const char **pzArg, /* OUT: nul-terminated option argument */
char *pSpace /* Temporary space for output params */
){
const char *p = *pzIn;
const char *pStart;
int n;
char *pOut = pSpace;
while( *p==' ' ) p++;
pStart = p;
while( *p && *p!='=' ) p++;
if( *p==0 ) return 1;
n = (p - pStart);
memcpy(pOut, pStart, n);
*pzOpt = pOut;
pOut += n;
*pOut++ = '\0';
p++;
pStart = p;
while( *p && *p!=' ' ) p++;
n = (p - pStart);
memcpy(pOut, pStart, n);
*pzArg = pOut;
pOut += n;
*pOut++ = '\0';
*pzIn = p;
return 0;
}
static int testParseInt(const char *z, int *piVal){
int i = 0;
const char *p = z;
while( *p>='0' && *p<='9' ){
i = i*10 + (*p - '0');
p++;
}
if( *p=='K' || *p=='k' ){
i = i * 1024;
p++;
}else if( *p=='M' || *p=='m' ){
i = i * 1024 * 1024;
p++;
}
if( *p ) return SQLITE4_ERROR;
*piVal = i;
return SQLITE4_OK;
}
static int testBtConfigure(BtDb *pDb, const char *zCfg, int *pbMt){
int rc = SQLITE4_OK;
if( zCfg ){
struct CfgParam {
const char *zParam;
int eParam;
} aParam[] = {
{ "safety", BT_CONTROL_SAFETY },
{ "autockpt", BT_CONTROL_AUTOCKPT },
{ "multiproc", BT_CONTROL_MULTIPROC },
{ "blksz", BT_CONTROL_BLKSZ },
{ "pagesz", BT_CONTROL_PAGESZ },
{ "mt", -1 },
{ "fastinsert", -2 },
{ 0, 0 }
};
const char *z = zCfg;
int n = strlen(z);
char *aSpace;
const char *zOpt;
const char *zArg;
aSpace = (char*)testMalloc(n+2);
while( rc==SQLITE4_OK && 0==testParseOption(&z, &zOpt, &zArg, aSpace) ){
int i;
int iVal;
rc = testArgSelect(aParam, "param", zOpt, &i);
if( rc!=SQLITE4_OK ) break;
rc = testParseInt(zArg, &iVal);
if( rc!=SQLITE4_OK ) break;
switch( aParam[i].eParam ){
case -1:
*pbMt = iVal;
break;
case -2:
pDb->bFastInsert = 1;
break;
default:
rc = sqlite4BtControl(pDb->pBt, aParam[i].eParam, (void*)&iVal);
break;
}
}
testFree(aSpace);
}
return rc;
}
int test_bt_open(
const char *zSpec,
const char *zFilename,
int bClear,
TestDb **ppDb
){
static const DatabaseMethods SqlMethods = {
bt_close,
bt_write,
bt_delete,
bt_delete_range,
bt_fetch,
bt_scan,
bt_begin,
bt_commit,
bt_rollback
};
BtDb *p = 0;
bt_db *pBt = 0;
int rc;
sqlite4_env *pEnv = sqlite4_env_default();
if( bClear && zFilename && zFilename[0] ){
char *zLog = sqlite3_mprintf("%s-wal", zFilename);
unlink(zFilename);
unlink(zLog);
sqlite3_free(zLog);
}
rc = sqlite4BtNew(pEnv, 0, &pBt);
if( rc==SQLITE4_OK ){
int mt = 0; /* True for multi-threaded connection */
p = (BtDb*)testMalloc(sizeof(BtDb));
p->base.pMethods = &SqlMethods;
p->pBt = pBt;
p->pEnv = pEnv;
p->nRef = 1;
p->env.pVfsCtx = (void*)p;
p->env.xFullpath = btVfsFullpath;
p->env.xOpen = btVfsOpen;
p->env.xSize = btVfsSize;
p->env.xRead = btVfsRead;
p->env.xWrite = btVfsWrite;
p->env.xTruncate = btVfsTruncate;
p->env.xSync = btVfsSync;
p->env.xSectorSize = btVfsSectorSize;
p->env.xClose = btVfsClose;
p->env.xUnlink = btVfsUnlink;
p->env.xLock = btVfsLock;
p->env.xTestLock = btVfsTestLock;
p->env.xShmMap = btVfsShmMap;
p->env.xShmBarrier = btVfsShmBarrier;
p->env.xShmUnmap = btVfsShmUnmap;
sqlite4BtControl(pBt, BT_CONTROL_GETVFS, (void*)&p->pVfs);
sqlite4BtControl(pBt, BT_CONTROL_SETVFS, (void*)&p->env);
rc = testBtConfigure(p, zSpec, &mt);
if( rc==SQLITE4_OK ){
rc = sqlite4BtOpen(pBt, zFilename);
}
if( rc==SQLITE4_OK && mt ){
int nAuto = 0;
rc = bgc_attach(p, zSpec);
sqlite4BtControl(pBt, BT_CONTROL_AUTOCKPT, (void*)&nAuto);
}
}
if( rc!=SQLITE4_OK && p ){
bt_close(&p->base);
}
*ppDb = &p->base;
return rc;
}
int test_fbt_open(
const char *zSpec,
const char *zFilename,
int bClear,
TestDb **ppDb
){
return test_bt_open("fast=1", zFilename, bClear, ppDb);
}
int test_fbts_open(
const char *zSpec,
const char *zFilename,
int bClear,
TestDb **ppDb
){
return test_bt_open("fast=1 blksz=32K pagesz=512", zFilename, bClear, ppDb);
}
void tdb_bt_prepare_sync_crash(TestDb *pTestDb, int iSync){
BtDb *p = (BtDb*)pTestDb;
assert( pTestDb->pMethods->xClose==bt_close );
assert( p->bCrash==0 );
p->nCrashSync = iSync;
}
bt_db *tdb_bt(TestDb *pDb){
if( pDb->pMethods->xClose==bt_close ){
return ((BtDb *)pDb)->pBt;
}
return 0;
}
/*************************************************************************
** Beginning of code for background checkpointer.
*/
struct bt_ckpter {
sqlite4_buffer file; /* File name */
sqlite4_buffer spec; /* Options */
int nLogsize; /* Minimum log size to checkpoint */
int nRef; /* Number of clients */
int bDoWork; /* Set by client threads */
pthread_t ckpter_thread; /* Checkpointer thread */
pthread_cond_t ckpter_cond; /* Condition var the ckpter waits on */
pthread_mutex_t ckpter_mutex; /* Mutex used with ckpter_cond */
bt_ckpter *pNext; /* Next object in list at gBgc.pCkpter */
};
static struct GlobalBackgroundCheckpointer {
bt_ckpter *pCkpter; /* Linked list of checkpointers */
} gBgc;
static void *bgc_main(void *pArg){
BtDb *pDb = 0;
int rc;
int mt;
bt_ckpter *pCkpter = (bt_ckpter*)pArg;
rc = test_bt_open("", (char*)pCkpter->file.p, 0, (TestDb**)&pDb);
assert( rc==SQLITE4_OK );
rc = testBtConfigure(pDb, (char*)pCkpter->spec.p, &mt);
while( pCkpter->nRef>0 ){
bt_db *db = pDb->pBt;
int nLog = 0;
sqlite4BtBegin(db, 1);
sqlite4BtCommit(db, 0);
sqlite4BtControl(db, BT_CONTROL_LOGSIZE, (void*)&nLog);
if( nLog>=pCkpter->nLogsize ){
int rc;
bt_checkpoint ckpt;
memset(&ckpt, 0, sizeof(bt_checkpoint));
ckpt.nFrameBuffer = nLog/2;
rc = sqlite4BtControl(db, BT_CONTROL_CHECKPOINT, (void*)&ckpt);
assert( rc==SQLITE4_OK );
sqlite4BtControl(db, BT_CONTROL_LOGSIZE, (void*)&nLog);
}
/* The thread will wake up when it is signaled either because another
** thread has created some work for this one or because the connection
** is being closed. */
pthread_mutex_lock(&pCkpter->ckpter_mutex);
if( pCkpter->bDoWork==0 ){
pthread_cond_wait(&pCkpter->ckpter_cond, &pCkpter->ckpter_mutex);
}
pCkpter->bDoWork = 0;
pthread_mutex_unlock(&pCkpter->ckpter_mutex);
}
if( pDb ) bt_close((TestDb*)pDb);
return 0;
}
static void bgc_logsize_cb(void *pCtx, int nLogsize){
bt_ckpter *p = (bt_ckpter*)pCtx;
if( nLogsize>=p->nLogsize ){
pthread_mutex_lock(&p->ckpter_mutex);
p->bDoWork = 1;
pthread_cond_signal(&p->ckpter_cond);
pthread_mutex_unlock(&p->ckpter_mutex);
}
}
static int bgc_attach(BtDb *pDb, const char *zSpec){
int rc;
int n;
bt_info info;
bt_ckpter *pCkpter;
/* Figure out the full path to the database opened by handle pDb. */
info.eType = BT_INFO_FILENAME;
info.pgno = 0;
sqlite4_buffer_init(&info.output, 0);
rc = sqlite4BtControl(pDb->pBt, BT_CONTROL_INFO, (void*)&info);
if( rc!=SQLITE4_OK ) return rc;
sqlite4_mutex_enter(sqlite4_mutex_alloc(pDb->pEnv, SQLITE4_MUTEX_STATIC_KV));
/* Search for an existing bt_ckpter object. */
n = info.output.n;
for(pCkpter=gBgc.pCkpter; pCkpter; pCkpter=pCkpter->pNext){
if( n==pCkpter->file.n && 0==memcmp(info.output.p, pCkpter->file.p, n) ){
break;
}
}
/* Failed to find a suitable checkpointer. Create a new one. */
if( pCkpter==0 ){
bt_logsizecb cb;
pCkpter = testMalloc(sizeof(bt_ckpter));
memcpy(&pCkpter->file, &info.output, sizeof(sqlite4_buffer));
info.output.p = 0;
pCkpter->pNext = gBgc.pCkpter;
pCkpter->nLogsize = 1000;
gBgc.pCkpter = pCkpter;
pCkpter->nRef = 1;
sqlite4_buffer_init(&pCkpter->spec, 0);
rc = sqlite4_buffer_set(&pCkpter->spec, zSpec, strlen(zSpec)+1);
assert( rc==SQLITE4_OK );
/* Kick off the checkpointer thread. */
if( rc==0 ) rc = pthread_cond_init(&pCkpter->ckpter_cond, 0);
if( rc==0 ) rc = pthread_mutex_init(&pCkpter->ckpter_mutex, 0);
if( rc==0 ){
rc = pthread_create(&pCkpter->ckpter_thread, 0, bgc_main, (void*)pCkpter);
}
assert( rc==0 ); /* todo: Fix this */
/* Set up the logsize callback for the client thread */
cb.pCtx = (void*)pCkpter;
cb.xLogsize = bgc_logsize_cb;
sqlite4BtControl(pDb->pBt, BT_CONTROL_LOGSIZECB, (void*)&cb);
}else{
pCkpter->nRef++;
}
/* Assuming a checkpointer was encountered or effected, attach the
** connection to it. */
if( pCkpter ){
pDb->pCkpter = pCkpter;
}
sqlite4_mutex_leave(sqlite4_mutex_alloc(pDb->pEnv, SQLITE4_MUTEX_STATIC_KV));
sqlite4_buffer_clear(&info.output);
return rc;
}
static int bgc_detach(BtDb *pDb){
int rc = SQLITE4_OK;
bt_ckpter *pCkpter = pDb->pCkpter;
if( pCkpter ){
int bShutdown = 0; /* True if this is the last reference */
sqlite4_mutex_enter(sqlite4_mutex_alloc(pDb->pEnv,SQLITE4_MUTEX_STATIC_KV));
pCkpter->nRef--;
if( pCkpter->nRef==0 ){
bt_ckpter **pp;
*pp = pCkpter->pNext;
for(pp=&gBgc.pCkpter; *pp!=pCkpter; pp=&((*pp)->pNext));
bShutdown = 1;
}
sqlite4_mutex_leave(sqlite4_mutex_alloc(pDb->pEnv,SQLITE4_MUTEX_STATIC_KV));
if( bShutdown ){
void *pDummy;
/* Signal the checkpointer thread. */
pthread_mutex_lock(&pCkpter->ckpter_mutex);
pCkpter->bDoWork = 1;
pthread_cond_signal(&pCkpter->ckpter_cond);
pthread_mutex_unlock(&pCkpter->ckpter_mutex);
/* Join the checkpointer thread. */
pthread_join(pCkpter->ckpter_thread, &pDummy);
pthread_cond_destroy(&pCkpter->ckpter_cond);
pthread_mutex_destroy(&pCkpter->ckpter_mutex);
sqlite4_buffer_clear(&pCkpter->file);
sqlite4_buffer_clear(&pCkpter->spec);
testFree(pCkpter);
}
pDb->pCkpter = 0;
}
return rc;
}
/*
** End of background checkpointer.
*************************************************************************/

View File

@ -0,0 +1,220 @@
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
/*
** Global variables used within this module.
*/
static struct TestutilGlobal {
char **argv;
int argc;
} g = {0, 0};
static struct TestutilRnd {
unsigned int aRand1[2048]; /* Bits 0..10 */
unsigned int aRand2[2048]; /* Bits 11..21 */
unsigned int aRand3[1024]; /* Bits 22..31 */
} r;
/*************************************************************************
** The following block is a copy of the implementation of SQLite function
** sqlite3_randomness. This version has two important differences:
**
** 1. It always uses the same seed. So the sequence of random data output
** is the same for every run of the program.
**
** 2. It is not threadsafe.
*/
static struct sqlite3PrngType {
unsigned char i, j; /* State variables */
unsigned char s[256]; /* State variables */
} sqlite3Prng = {
0xAF, 0x28,
{
0x71, 0xF5, 0xB4, 0x6E, 0x80, 0xAB, 0x1D, 0xB8,
0xFB, 0xB7, 0x49, 0xBF, 0xFF, 0x72, 0x2D, 0x14,
0x79, 0x09, 0xE3, 0x78, 0x76, 0xB0, 0x2C, 0x0A,
0x8E, 0x23, 0xEE, 0xDF, 0xE0, 0x9A, 0x2F, 0x67,
0xE1, 0xBE, 0x0E, 0xA7, 0x08, 0x97, 0xEB, 0x77,
0x78, 0xBA, 0x9D, 0xCA, 0x49, 0x4C, 0x60, 0x9A,
0xF6, 0xBD, 0xDA, 0x7F, 0xBC, 0x48, 0x58, 0x52,
0xE5, 0xCD, 0x83, 0x72, 0x23, 0x52, 0xFF, 0x6D,
0xEF, 0x0F, 0x82, 0x29, 0xA0, 0x83, 0x3F, 0x7D,
0xA4, 0x88, 0x31, 0xE7, 0x88, 0x92, 0x3B, 0x9B,
0x3B, 0x2C, 0xC2, 0x4C, 0x71, 0xA2, 0xB0, 0xEA,
0x36, 0xD0, 0x00, 0xF1, 0xD3, 0x39, 0x17, 0x5D,
0x2A, 0x7A, 0xE4, 0xAD, 0xE1, 0x64, 0xCE, 0x0F,
0x9C, 0xD9, 0xF5, 0xED, 0xB0, 0x22, 0x5E, 0x62,
0x97, 0x02, 0xA3, 0x8C, 0x67, 0x80, 0xFC, 0x88,
0x14, 0x0B, 0x15, 0x10, 0x0F, 0xC7, 0x40, 0xD4,
0xF1, 0xF9, 0x0E, 0x1A, 0xCE, 0xB9, 0x1E, 0xA1,
0x72, 0x8E, 0xD7, 0x78, 0x39, 0xCD, 0xF4, 0x5D,
0x2A, 0x59, 0x26, 0x34, 0xF2, 0x73, 0x0B, 0xA0,
0x02, 0x51, 0x2C, 0x03, 0xA3, 0xA7, 0x43, 0x13,
0xE8, 0x98, 0x2B, 0xD2, 0x53, 0xF8, 0xEE, 0x91,
0x7D, 0xE7, 0xE3, 0xDA, 0xD5, 0xBB, 0xC0, 0x92,
0x9D, 0x98, 0x01, 0x2C, 0xF9, 0xB9, 0xA0, 0xEB,
0xCF, 0x32, 0xFA, 0x01, 0x49, 0xA5, 0x1D, 0x9A,
0x76, 0x86, 0x3F, 0x40, 0xD4, 0x89, 0x8F, 0x9C,
0xE2, 0xE3, 0x11, 0x31, 0x37, 0xB2, 0x49, 0x28,
0x35, 0xC0, 0x99, 0xB6, 0xD0, 0xBC, 0x66, 0x35,
0xF7, 0x83, 0x5B, 0xD7, 0x37, 0x1A, 0x2B, 0x18,
0xA6, 0xFF, 0x8D, 0x7C, 0x81, 0xA8, 0xFC, 0x9E,
0xC4, 0xEC, 0x80, 0xD0, 0x98, 0xA7, 0x76, 0xCC,
0x9C, 0x2F, 0x7B, 0xFF, 0x8E, 0x0E, 0xBB, 0x90,
0xAE, 0x13, 0x06, 0xF5, 0x1C, 0x4E, 0x52, 0xF7
}
};
/* Generate and return single random byte */
static unsigned char randomByte(void){
unsigned char t;
sqlite3Prng.i++;
t = sqlite3Prng.s[sqlite3Prng.i];
sqlite3Prng.j += t;
sqlite3Prng.s[sqlite3Prng.i] = sqlite3Prng.s[sqlite3Prng.j];
sqlite3Prng.s[sqlite3Prng.j] = t;
t += sqlite3Prng.s[sqlite3Prng.i];
return sqlite3Prng.s[t];
}
/*
** Return N random bytes.
*/
static void randomBlob(int nBuf, unsigned char *zBuf){
int i;
for(i=0; i<nBuf; i++){
zBuf[i] = randomByte();
}
}
/*
** End of code copied from SQLite.
*************************************************************************/
int testPrngInit(void){
randomBlob(sizeof(r.aRand1), (unsigned char *)r.aRand1);
randomBlob(sizeof(r.aRand2), (unsigned char *)r.aRand2);
randomBlob(sizeof(r.aRand3), (unsigned char *)r.aRand3);
return 0;
}
unsigned int testPrngValue(unsigned int iVal){
return
r.aRand1[iVal & 0x000007FF] ^
r.aRand2[(iVal>>11) & 0x000007FF] ^
r.aRand3[(iVal>>22) & 0x000003FF]
;
}
void testPrngArray(unsigned int iVal, unsigned int *aOut, int nOut){
int i;
for(i=0; i<nOut; i++){
aOut[i] = testPrngValue(iVal+i);
}
}
void testPrngString(unsigned int iVal, char *aOut, int nOut){
int i;
for(i=0; i<(nOut-1); i++){
aOut[i] = 'a' + (testPrngValue(iVal+i) % 26);
}
aOut[i] = '\0';
}
void testErrorInit(int argc, char **argv){
g.argc = argc;
g.argv = argv;
}
void testPrintError(const char *zFormat, ...){
va_list ap;
va_start(ap, zFormat);
vfprintf(stderr, zFormat, ap);
va_end(ap);
}
void testPrintFUsage(const char *zFormat, ...){
va_list ap;
va_start(ap, zFormat);
fprintf(stderr, "Usage: %s %s ", g.argv[0], g.argv[1]);
vfprintf(stderr, zFormat, ap);
fprintf(stderr, "\n");
va_end(ap);
}
void testPrintUsage(const char *zArgs){
testPrintError("Usage: %s %s %s\n", g.argv[0], g.argv[1], zArgs);
}
static void argError(void *aData, const char *zType, int sz, const char *zArg){
struct Entry { const char *zName; };
struct Entry *pEntry;
const char *zPrev = 0;
testPrintError("unrecognized %s \"%s\": must be ", zType, zArg);
for(pEntry=(struct Entry *)aData;
pEntry->zName;
pEntry=(struct Entry *)&((unsigned char *)pEntry)[sz]
){
if( zPrev ){ testPrintError("%s, ", zPrev); }
zPrev = pEntry->zName;
}
testPrintError("or %s\n", zPrev);
}
int testArgSelectX(
void *aData,
const char *zType,
int sz,
const char *zArg,
int *piOut
){
struct Entry { const char *zName; };
struct Entry *pEntry;
int nArg = strlen(zArg);
int i = 0;
int iOut = -1;
int nOut = 0;
for(pEntry=(struct Entry *)aData;
pEntry->zName;
pEntry=(struct Entry *)&((unsigned char *)pEntry)[sz]
){
int nName = strlen(pEntry->zName);
if( nArg<=nName && memcmp(pEntry->zName, zArg, nArg)==0 ){
iOut = i;
if( nName==nArg ){
nOut = 1;
break;
}
nOut++;
}
i++;
}
if( nOut!=1 ){
argError(aData, zType, sz, zArg);
}else{
*piOut = iOut;
}
return (nOut!=1);
}
struct timeval zero_time;
void testTimeInit(void){
gettimeofday(&zero_time, 0);
}
int testTimeGet(void){
struct timeval now;
gettimeofday(&now, 0);
return
(((int)now.tv_sec - (int)zero_time.tv_sec)*1000) +
(((int)now.tv_usec - (int)zero_time.tv_usec)/1000);
}

View File

@ -12,6 +12,9 @@
**
** Unix-specific run-time environment implementation for LSM.
*/
#ifndef WIN32
#if defined(__GNUC__) || defined(__TINYC__)
/* workaround for ftruncate() visibility on gcc. */
# ifndef _XOPEN_SOURCE
@ -739,3 +742,5 @@ lsm_env *lsm_default_env(void){
};
return &posix_env;
}
#endif

748
ext/lsm1/lsm_win32.c Normal file
View File

@ -0,0 +1,748 @@
/*
** 2011-12-03
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** Unix-specific run-time environment implementation for LSM.
*/
#ifdef WIN32
#if defined(__GNUC__) || defined(__TINYC__)
/* workaround for ftruncate() visibility on gcc. */
# ifndef _XOPEN_SOURCE
# define _XOPEN_SOURCE 500
# endif
#endif
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <ctype.h>
#include <unistd.h>
#include <errno.h>
#include "lsmInt.h"
/*
** An open file is an instance of the following object
*/
typedef struct Win32File Win32File;
struct Win32File {
lsm_env *pEnv; /* The run-time environment */
const char *zName; /* Full path to file */
HANDLE h; /* Open file descriptor */
HANDLE shmh; /* File descriptor for *-shm file */
void *pMap; /* Pointer to mapping of file fd */
off_t nMap; /* Size of mapping at pMap in bytes */
int nShm; /* Number of entries in array apShm[] */
void **apShm; /* Array of 32K shared memory segments */
};
static char *win32ShmFile(Win32File *p){
char *zShm;
int nName = strlen(p->zName);
zShm = (char *)lsmMalloc(p->pEnv, nName+4+1);
if( zShm ){
memcpy(zShm, p->zName, nName);
memcpy(&zShm[nName], "-shm", 5);
}
return zShm;
}
static int lsmWin32OsOpen(
lsm_env *pEnv,
const char *zFile,
int flags,
lsm_file **ppFile
){
int rc = LSM_OK;
Win32File *p;
p = lsm_malloc(pEnv, sizeof(Win32File));
if( p==0 ){
rc = LSM_NOMEM;
}else{
int bReadonly = (flags & LSM_OPEN_READONLY);
int oflags = (bReadonly ? O_RDONLY : (O_RDWR|O_CREAT));
memset(p, 0, sizeof(Win32File));
p->zName = zFile;
p->pEnv = pEnv;
CreateFile((LPCWSTR)zConverted,
dwDesiredAccess,
dwShareMode, NULL,
dwCreationDisposition,
dwFlagsAndAttributes,
NULL))==INVALID_HANDLE_VALUE &&
winRetryIoerr(&cnt, &lastErrno) ){
p->fd = open(zFile, oflags, 0644);
if( p->fd<0 ){
lsm_free(pEnv, p);
p = 0;
if( errno==ENOENT ){
rc = lsmErrorBkpt(LSM_IOERR_NOENT);
}else{
rc = LSM_IOERR_BKPT;
}
}
}
*ppFile = (lsm_file *)p;
return rc;
}
static int lsmWin32OsWrite(
lsm_file *pFile, /* File to write to */
lsm_i64 iOff, /* Offset to write to */
void *pData, /* Write data from this buffer */
int nData /* Bytes of data to write */
){
int rc = LSM_OK;
Win32File *p = (Win32File *)pFile;
off_t offset;
offset = lseek(p->fd, (off_t)iOff, SEEK_SET);
if( offset!=iOff ){
rc = LSM_IOERR_BKPT;
}else{
ssize_t prc = write(p->fd, pData, (size_t)nData);
if( prc<0 ) rc = LSM_IOERR_BKPT;
}
return rc;
}
static int lsmWin32OsTruncate(
lsm_file *pFile, /* File to write to */
lsm_i64 nSize /* Size to truncate file to */
){
Win32File *p = (Win32File *)pFile;
int rc = LSM_OK; /* Return code */
int prc; /* Posix Return Code */
struct stat sStat; /* Result of fstat() invocation */
prc = fstat(p->fd, &sStat);
if( prc==0 && sStat.st_size>nSize ){
prc = ftruncate(p->fd, (off_t)nSize);
}
if( prc<0 ) rc = LSM_IOERR_BKPT;
return rc;
}
static int lsmWin32OsRead(
lsm_file *pFile, /* File to read from */
lsm_i64 iOff, /* Offset to read from */
void *pData, /* Read data into this buffer */
int nData /* Bytes of data to read */
){
int rc = LSM_OK;
Win32File *p = (Win32File *)pFile;
off_t offset;
offset = lseek(p->fd, (off_t)iOff, SEEK_SET);
if( offset!=iOff ){
rc = LSM_IOERR_BKPT;
}else{
ssize_t prc = read(p->fd, pData, (size_t)nData);
if( prc<0 ){
rc = LSM_IOERR_BKPT;
}else if( prc<nData ){
memset(&((u8 *)pData)[prc], 0, nData - prc);
}
}
return rc;
}
static int lsmWin32OsSync(lsm_file *pFile){
int rc = LSM_OK;
#ifndef LSM_NO_SYNC
Win32File *p = (Win32File *)pFile;
int prc = 0;
if( p->pMap ){
prc = msync(p->pMap, p->nMap, MS_SYNC);
}
if( prc==0 ) prc = fdatasync(p->fd);
if( prc<0 ) rc = LSM_IOERR_BKPT;
#else
(void)pFile;
#endif
return rc;
}
static int lsmWin32OsSectorSize(lsm_file *pFile){
return 512;
}
static int lsmWin32OsRemap(
lsm_file *pFile,
lsm_i64 iMin,
void **ppOut,
lsm_i64 *pnOut
){
off_t iSz;
int prc;
Win32File *p = (Win32File *)pFile;
struct stat buf;
/* If the file is between 0 and 2MB in size, extend it in chunks of 256K.
** Thereafter, in chunks of 1MB at a time. */
const int aIncrSz[] = {256*1024, 1024*1024};
int nIncrSz = aIncrSz[iMin>(2*1024*1024)];
if( p->pMap ){
munmap(p->pMap, p->nMap);
*ppOut = p->pMap = 0;
*pnOut = p->nMap = 0;
}
if( iMin>=0 ){
memset(&buf, 0, sizeof(buf));
prc = fstat(p->fd, &buf);
if( prc!=0 ) return LSM_IOERR_BKPT;
iSz = buf.st_size;
if( iSz<iMin ){
iSz = ((iMin + nIncrSz-1) / nIncrSz) * nIncrSz;
prc = ftruncate(p->fd, iSz);
if( prc!=0 ) return LSM_IOERR_BKPT;
}
p->pMap = mmap(0, iSz, PROT_READ|PROT_WRITE, MAP_SHARED, p->fd, 0);
p->nMap = iSz;
}
*ppOut = p->pMap;
*pnOut = p->nMap;
return LSM_OK;
}
static int lsmWin32OsFullpath(
lsm_env *pEnv,
const char *zName,
char *zOut,
int *pnOut
){
int nBuf = *pnOut;
int nReq;
if( zName[0]!='/' ){
char *z;
char *zTmp;
int nTmp = 512;
zTmp = lsmMalloc(pEnv, nTmp);
while( zTmp ){
z = getcwd(zTmp, nTmp);
if( z || errno!=ERANGE ) break;
nTmp = nTmp*2;
zTmp = lsmReallocOrFree(pEnv, zTmp, nTmp);
}
if( zTmp==0 ) return LSM_NOMEM_BKPT;
if( z==0 ) return LSM_IOERR_BKPT;
assert( z==zTmp );
nTmp = strlen(zTmp);
nReq = nTmp + 1 + strlen(zName) + 1;
if( nReq<=nBuf ){
memcpy(zOut, zTmp, nTmp);
zOut[nTmp] = '/';
memcpy(&zOut[nTmp+1], zName, strlen(zName)+1);
}
lsmFree(pEnv, zTmp);
}else{
nReq = strlen(zName)+1;
if( nReq<=nBuf ){
memcpy(zOut, zName, strlen(zName)+1);
}
}
*pnOut = nReq;
return LSM_OK;
}
static int lsmWin32OsFileid(
lsm_file *pFile,
void *pBuf,
int *pnBuf
){
int prc;
int nBuf;
int nReq;
Win32File *p = (Win32File *)pFile;
struct stat buf;
nBuf = *pnBuf;
nReq = (sizeof(buf.st_dev) + sizeof(buf.st_ino));
*pnBuf = nReq;
if( nReq>nBuf ) return LSM_OK;
memset(&buf, 0, sizeof(buf));
prc = fstat(p->fd, &buf);
if( prc!=0 ) return LSM_IOERR_BKPT;
memcpy(pBuf, &buf.st_dev, sizeof(buf.st_dev));
memcpy(&(((u8 *)pBuf)[sizeof(buf.st_dev)]), &buf.st_ino, sizeof(buf.st_ino));
return LSM_OK;
}
static int lsmWin32OsUnlink(lsm_env *pEnv, const char *zFile){
int prc = unlink(zFile);
return prc ? LSM_IOERR_BKPT : LSM_OK;
}
int lsmWin32OsLock(lsm_file *pFile, int iLock, int eType){
int rc = LSM_OK;
Win32File *p = (Win32File *)pFile;
static const short aType[3] = { F_UNLCK, F_RDLCK, F_WRLCK };
struct flock lock;
assert( aType[LSM_LOCK_UNLOCK]==F_UNLCK );
assert( aType[LSM_LOCK_SHARED]==F_RDLCK );
assert( aType[LSM_LOCK_EXCL]==F_WRLCK );
assert( eType>=0 && eType<array_size(aType) );
assert( iLock>0 && iLock<=32 );
memset(&lock, 0, sizeof(lock));
lock.l_whence = SEEK_SET;
lock.l_len = 1;
lock.l_type = aType[eType];
lock.l_start = (4096-iLock);
if( fcntl(p->fd, F_SETLK, &lock) ){
int e = errno;
if( e==EACCES || e==EAGAIN ){
rc = LSM_BUSY;
}else{
rc = LSM_IOERR_BKPT;
}
}
return rc;
}
int lsmWin32OsTestLock(lsm_file *pFile, int iLock, int nLock, int eType){
int rc = LSM_OK;
Win32File *p = (Win32File *)pFile;
static const short aType[3] = { 0, F_RDLCK, F_WRLCK };
struct flock lock;
assert( eType==LSM_LOCK_SHARED || eType==LSM_LOCK_EXCL );
assert( aType[LSM_LOCK_SHARED]==F_RDLCK );
assert( aType[LSM_LOCK_EXCL]==F_WRLCK );
assert( eType>=0 && eType<array_size(aType) );
assert( iLock>0 && iLock<=32 );
memset(&lock, 0, sizeof(lock));
lock.l_whence = SEEK_SET;
lock.l_len = nLock;
lock.l_type = aType[eType];
lock.l_start = (4096-iLock);
if( fcntl(p->fd, F_GETLK, &lock) ){
rc = LSM_IOERR_BKPT;
}else if( lock.l_type!=F_UNLCK ){
rc = LSM_BUSY;
}
return rc;
}
int lsmWin32OsShmMap(lsm_file *pFile, int iChunk, int sz, void **ppShm){
Win32File *p = (Win32File *)pFile;
*ppShm = 0;
assert( sz==LSM_SHM_CHUNK_SIZE );
if( iChunk>=p->nShm ){
int i;
void **apNew;
int nNew = iChunk+1;
off_t nReq = nNew * LSM_SHM_CHUNK_SIZE;
struct stat sStat;
/* If the shared-memory file has not been opened, open it now. */
if( p->shmfd<=0 ){
char *zShm = win32ShmFile(p);
if( !zShm ) return LSM_NOMEM_BKPT;
p->shmfd = open(zShm, O_RDWR|O_CREAT, 0644);
lsmFree(p->pEnv, zShm);
if( p->shmfd<0 ){
return LSM_IOERR_BKPT;
}
}
/* If the shared-memory file is not large enough to contain the
** requested chunk, cause it to grow. */
if( fstat(p->shmfd, &sStat) ){
return LSM_IOERR_BKPT;
}
if( sStat.st_size<nReq ){
if( ftruncate(p->shmfd, nReq) ){
return LSM_IOERR_BKPT;
}
}
apNew = (void **)lsmRealloc(p->pEnv, p->apShm, sizeof(void *) * nNew);
if( !apNew ) return LSM_NOMEM_BKPT;
for(i=p->nShm; i<nNew; i++){
apNew[i] = 0;
}
p->apShm = apNew;
p->nShm = nNew;
}
if( p->apShm[iChunk]==0 ){
p->apShm[iChunk] = mmap(0, LSM_SHM_CHUNK_SIZE,
PROT_READ|PROT_WRITE, MAP_SHARED, p->shmfd, iChunk*LSM_SHM_CHUNK_SIZE
);
if( p->apShm[iChunk]==0 ) return LSM_IOERR_BKPT;
}
*ppShm = p->apShm[iChunk];
return LSM_OK;
}
void lsmWin32OsShmBarrier(void){
}
int lsmWin32OsShmUnmap(lsm_file *pFile, int bDelete){
Win32File *p = (Win32File *)pFile;
if( p->shmfd>0 ){
int i;
for(i=0; i<p->nShm; i++){
if( p->apShm[i] ){
munmap(p->apShm[i], LSM_SHM_CHUNK_SIZE);
p->apShm[i] = 0;
}
}
close(p->shmfd);
p->shmfd = 0;
if( bDelete ){
char *zShm = win32ShmFile(p);
if( zShm ) unlink(zShm);
lsmFree(p->pEnv, zShm);
}
}
return LSM_OK;
}
static int lsmWin32OsClose(lsm_file *pFile){
Win32File *p = (Win32File *)pFile;
lsmWin32OsShmUnmap(pFile, 0);
if( p->pMap ) munmap(p->pMap, p->nMap);
close(p->fd);
lsm_free(p->pEnv, p->apShm);
lsm_free(p->pEnv, p);
return LSM_OK;
}
static int lsmWin32OsSleep(lsm_env *pEnv, int us){
usleep(us);
return LSM_OK;
}
/****************************************************************************
** Memory allocation routines.
*/
#define BLOCK_HDR_SIZE ROUND8( sizeof(size_t) )
static void *lsmWin32OsMalloc(lsm_env *pEnv, size_t N){
unsigned char * m;
N += BLOCK_HDR_SIZE;
m = (unsigned char *)malloc(N);
*((size_t*)m) = N;
return m + BLOCK_HDR_SIZE;
}
static void lsmWin32OsFree(lsm_env *pEnv, void *p){
if(p){
free( ((unsigned char *)p) - BLOCK_HDR_SIZE );
}
}
static void *lsmWin32OsRealloc(lsm_env *pEnv, void *p, size_t N){
unsigned char * m = (unsigned char *)p;
if(1>N){
lsmWin32OsFree( pEnv, p );
return NULL;
}else if(NULL==p){
return lsmWin32OsMalloc(pEnv, N);
}else{
void * re = NULL;
m -= BLOCK_HDR_SIZE;
#if 0 /* arguable: don't shrink */
size_t * sz = (size_t*)m;
if(*sz >= (size_t)N){
return p;
}
#endif
re = realloc( m, N + BLOCK_HDR_SIZE );
if(re){
m = (unsigned char *)re;
*((size_t*)m) = N;
return m + BLOCK_HDR_SIZE;
}else{
return NULL;
}
}
}
static size_t lsmWin32OsMSize(lsm_env *pEnv, void *p){
unsigned char * m = (unsigned char *)p;
return *((size_t*)(m-BLOCK_HDR_SIZE));
}
#undef BLOCK_HDR_SIZE
#ifdef LSM_MUTEX_WIN32
/*************************************************************************
** Mutex methods for pthreads based systems. If LSM_MUTEX_WIN32 is
** missing then a no-op implementation of mutexes found below will be
** used instead.
*/
#include <pthread.h>
typedef struct PthreadMutex PthreadMutex;
struct PthreadMutex {
lsm_env *pEnv;
pthread_mutex_t mutex;
#ifdef LSM_DEBUG
pthread_t owner;
#endif
};
#ifdef LSM_DEBUG
# define LSM_PTHREAD_STATIC_MUTEX { 0, PTHREAD_MUTEX_INITIALIZER, 0 }
#else
# define LSM_PTHREAD_STATIC_MUTEX { 0, PTHREAD_MUTEX_INITIALIZER }
#endif
static int lsmWin32OsMutexStatic(
lsm_env *pEnv,
int iMutex,
lsm_mutex **ppStatic
){
static PthreadMutex sMutex[2] = {
LSM_PTHREAD_STATIC_MUTEX,
LSM_PTHREAD_STATIC_MUTEX
};
assert( iMutex==LSM_MUTEX_GLOBAL || iMutex==LSM_MUTEX_HEAP );
assert( LSM_MUTEX_GLOBAL==1 && LSM_MUTEX_HEAP==2 );
*ppStatic = (lsm_mutex *)&sMutex[iMutex-1];
return LSM_OK;
}
static int lsmWin32OsMutexNew(lsm_env *pEnv, lsm_mutex **ppNew){
PthreadMutex *pMutex; /* Pointer to new mutex */
pthread_mutexattr_t attr; /* Attributes object */
pMutex = (PthreadMutex *)lsmMallocZero(pEnv, sizeof(PthreadMutex));
if( !pMutex ) return LSM_NOMEM_BKPT;
pMutex->pEnv = pEnv;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&pMutex->mutex, &attr);
pthread_mutexattr_destroy(&attr);
*ppNew = (lsm_mutex *)pMutex;
return LSM_OK;
}
static void lsmWin32OsMutexDel(lsm_mutex *p){
PthreadMutex *pMutex = (PthreadMutex *)p;
pthread_mutex_destroy(&pMutex->mutex);
lsmFree(pMutex->pEnv, pMutex);
}
static void lsmWin32OsMutexEnter(lsm_mutex *p){
PthreadMutex *pMutex = (PthreadMutex *)p;
pthread_mutex_lock(&pMutex->mutex);
#ifdef LSM_DEBUG
assert( !pthread_equal(pMutex->owner, pthread_self()) );
pMutex->owner = pthread_self();
assert( pthread_equal(pMutex->owner, pthread_self()) );
#endif
}
static int lsmWin32OsMutexTry(lsm_mutex *p){
int ret;
PthreadMutex *pMutex = (PthreadMutex *)p;
ret = pthread_mutex_trylock(&pMutex->mutex);
#ifdef LSM_DEBUG
if( ret==0 ){
assert( !pthread_equal(pMutex->owner, pthread_self()) );
pMutex->owner = pthread_self();
assert( pthread_equal(pMutex->owner, pthread_self()) );
}
#endif
return ret;
}
static void lsmWin32OsMutexLeave(lsm_mutex *p){
PthreadMutex *pMutex = (PthreadMutex *)p;
#ifdef LSM_DEBUG
assert( pthread_equal(pMutex->owner, pthread_self()) );
pMutex->owner = 0;
assert( !pthread_equal(pMutex->owner, pthread_self()) );
#endif
pthread_mutex_unlock(&pMutex->mutex);
}
#ifdef LSM_DEBUG
static int lsmWin32OsMutexHeld(lsm_mutex *p){
PthreadMutex *pMutex = (PthreadMutex *)p;
return pMutex ? pthread_equal(pMutex->owner, pthread_self()) : 1;
}
static int lsmWin32OsMutexNotHeld(lsm_mutex *p){
PthreadMutex *pMutex = (PthreadMutex *)p;
return pMutex ? !pthread_equal(pMutex->owner, pthread_self()) : 1;
}
#endif
/*
** End of pthreads mutex implementation.
*************************************************************************/
#else
/*************************************************************************
** Noop mutex implementation
*/
typedef struct NoopMutex NoopMutex;
struct NoopMutex {
lsm_env *pEnv; /* Environment handle (for xFree()) */
int bHeld; /* True if mutex is held */
int bStatic; /* True for a static mutex */
};
static NoopMutex aStaticNoopMutex[2] = {
{0, 0, 1},
{0, 0, 1},
};
static int lsmWin32OsMutexStatic(
lsm_env *pEnv,
int iMutex,
lsm_mutex **ppStatic
){
assert( iMutex>=1 && iMutex<=(int)array_size(aStaticNoopMutex) );
*ppStatic = (lsm_mutex *)&aStaticNoopMutex[iMutex-1];
return LSM_OK;
}
static int lsmWin32OsMutexNew(lsm_env *pEnv, lsm_mutex **ppNew){
NoopMutex *p;
p = (NoopMutex *)lsmMallocZero(pEnv, sizeof(NoopMutex));
if( p ) p->pEnv = pEnv;
*ppNew = (lsm_mutex *)p;
return (p ? LSM_OK : LSM_NOMEM_BKPT);
}
static void lsmWin32OsMutexDel(lsm_mutex *pMutex) {
NoopMutex *p = (NoopMutex *)pMutex;
assert( p->bStatic==0 && p->pEnv );
lsmFree(p->pEnv, p);
}
static void lsmWin32OsMutexEnter(lsm_mutex *pMutex){
NoopMutex *p = (NoopMutex *)pMutex;
assert( p->bHeld==0 );
p->bHeld = 1;
}
static int lsmWin32OsMutexTry(lsm_mutex *pMutex){
NoopMutex *p = (NoopMutex *)pMutex;
assert( p->bHeld==0 );
p->bHeld = 1;
return 0;
}
static void lsmWin32OsMutexLeave(lsm_mutex *pMutex){
NoopMutex *p = (NoopMutex *)pMutex;
assert( p->bHeld==1 );
p->bHeld = 0;
}
#ifdef LSM_DEBUG
static int lsmWin32OsMutexHeld(lsm_mutex *pMutex){
NoopMutex *p = (NoopMutex *)pMutex;
return p ? p->bHeld : 1;
}
static int lsmWin32OsMutexNotHeld(lsm_mutex *pMutex){
NoopMutex *p = (NoopMutex *)pMutex;
return p ? !p->bHeld : 1;
}
#endif
/***************************************************************************/
#endif /* else LSM_MUTEX_NONE */
/* Without LSM_DEBUG, the MutexHeld tests are never called */
#ifndef LSM_DEBUG
# define lsmWin32OsMutexHeld 0
# define lsmWin32OsMutexNotHeld 0
#endif
lsm_env *lsm_default_env(void){
static lsm_env win32_env = {
sizeof(lsm_env), /* nByte */
1, /* iVersion */
/***** file i/o ******************/
0, /* pVfsCtx */
lsmWin32OsFullpath, /* xFullpath */
lsmWin32OsOpen, /* xOpen */
lsmWin32OsRead, /* xRead */
lsmWin32OsWrite, /* xWrite */
lsmWin32OsTruncate, /* xTruncate */
lsmWin32OsSync, /* xSync */
lsmWin32OsSectorSize, /* xSectorSize */
lsmWin32OsRemap, /* xRemap */
lsmWin32OsFileid, /* xFileid */
lsmWin32OsClose, /* xClose */
lsmWin32OsUnlink, /* xUnlink */
lsmWin32OsLock, /* xLock */
lsmWin32OsTestLock, /* xTestLock */
lsmWin32OsShmMap, /* xShmMap */
lsmWin32OsShmBarrier, /* xShmBarrier */
lsmWin32OsShmUnmap, /* xShmUnmap */
/***** memory allocation *********/
0, /* pMemCtx */
lsmWin32OsMalloc, /* xMalloc */
lsmWin32OsRealloc, /* xRealloc */
lsmWin32OsFree, /* xFree */
lsmWin32OsMSize, /* xSize */
/***** mutexes *********************/
0, /* pMutexCtx */
lsmWin32OsMutexStatic, /* xMutexStatic */
lsmWin32OsMutexNew, /* xMutexNew */
lsmWin32OsMutexDel, /* xMutexDel */
lsmWin32OsMutexEnter, /* xMutexEnter */
lsmWin32OsMutexTry, /* xMutexTry */
lsmWin32OsMutexLeave, /* xMutexLeave */
lsmWin32OsMutexHeld, /* xMutexHeld */
lsmWin32OsMutexNotHeld, /* xMutexNotHeld */
/***** other *********************/
lsmWin32OsSleep, /* xSleep */
};
return &win32_env;
}
#endif

View File

@ -1,5 +1,5 @@
C LSM1:\sFix\sthe\sinteger\skey\sencoding\sso\sthat\snegative\skeys\sare\sin\snumeric\sorder.
D 2016-02-24T13:35:22.043
C Add\stest\scode\sfor\sLSM\sto\sthe\sext/lsm1/lsm-test\sdirectory.
D 2017-06-01T16:13:57.519
F Makefile.in 4e90dc1521879022aa9479268a4cd141d1771142
F Makefile.linux-gcc 7bc79876b875010e8c8f9502eb935ca92aa3c434
F Makefile.msc 28fc4ee02333996d31b3602b39eeb8e609a89ce4
@ -200,7 +200,30 @@ F ext/fts5/tool/showfts5.tcl d54da0e067306663e2d5d523965ca487698e722c
F ext/icu/README.txt d9fbbad0c2f647c3fdf715fc9fd64af53aedfc43
F ext/icu/icu.c b2732aef0b076e4276d9b39b5a33cec7a05e1413
F ext/icu/sqliteicu.h 728867a802baa5a96de7495e9689a8e01715ef37
F ext/lsm1/Makefile 9eed37365e0df2fe58a3011c6aacc4646f22a4ef
F ext/lsm1/Makefile e10dbcffacc9288704c270b1f74c0811c3ef1b9b526036797d13aadddc9caa59
F ext/lsm1/lsm-test/README 87ea529d2abe615e856d4714bfe8bb185e6c2771b8612aa6298588b7b43e6f86
F ext/lsm1/lsm-test/lsmtest.h e7057a3f9db71938496fc8ef081c9f45623b25bfd8499b3550d1ea7123143e90
F ext/lsm1/lsm-test/lsmtest1.c 27c3cf6512514b25a145154ae4e54d053d883b2f7f52ed214747b5ebaceedd3e
F ext/lsm1/lsm-test/lsmtest2.c 02bd747ead150c6b0cdfeeb1637cabe21f977ab21265762036b04e76202f4fc0
F ext/lsm1/lsm-test/lsmtest3.c 9ab87528a36dbf4a61d7c8ad954f5ee368c0878c127b84b942b2e2abe522de26
F ext/lsm1/lsm-test/lsmtest4.c d258d6a245db5d8eaede096e2368d23f859c5e92c80ab9122463f708514fe10c
F ext/lsm1/lsm-test/lsmtest5.c 8d5242a0f870d65eeada191c8945781fed9cb8ece3886573790ebd373b62dac5
F ext/lsm1/lsm-test/lsmtest6.c 9d5db9ff638152c8c3948dc1077dd302deff4fcb3d30cc71ac769915797bbb1d
F ext/lsm1/lsm-test/lsmtest7.c aece33086e531898ecbf218d51c0be7a0d6c461219268f1a8e89ab0e8bf64654
F ext/lsm1/lsm-test/lsmtest8.c b87a1279b0cfbb39df1fff50074696fbf5d83822349f65706fab6d618a7a52fa
F ext/lsm1/lsm-test/lsmtest9.c 88245ce0fdd01678be548100e584cacdacab90208624223aac9029e4f90535fe
F ext/lsm1/lsm-test/lsmtest_bt.c d70d9a9be5eef9360af1251dd083948d74fd30137a08f61bef995f7ac04e037f
F ext/lsm1/lsm-test/lsmtest_datasource.c 5d770be191d0ca51315926723009b2c25c0b4b8136840494ef710ac324aa916c
F ext/lsm1/lsm-test/lsmtest_func.c 159aa401bc8032bfa3d8cf2977bd687abebab880255895a5eb45770d626fa38d
F ext/lsm1/lsm-test/lsmtest_io.c 2b71d1208a5671b3836fb95cdb4c0263ae7eb51542d16ef7f6bb9b651b15f194
F ext/lsm1/lsm-test/lsmtest_main.c db1d641afd8ba4ca8c6f37b388054ac981f8ba934411e754fe175058f417d372
F ext/lsm1/lsm-test/lsmtest_mem.c 996b1e76cc876e8d765182a2f14159b1acbf56cbf86d286173e13e970b79a945
F ext/lsm1/lsm-test/lsmtest_tdb.c f40971180a55013e75760995b0716ac4540450466bf329201767aba04f5467c1
F ext/lsm1/lsm-test/lsmtest_tdb.h de1ee8c71a7ef61d964e40e057cffea387d7b58a51d95905ab909937d24e4a91
F ext/lsm1/lsm-test/lsmtest_tdb2.cc 99ea7f2dd9c7536c8fb9bdd329e4cfeb76899f3ddf6f48bdd3926e016922b715
F ext/lsm1/lsm-test/lsmtest_tdb3.c c55afd81231094ee0fd5b83dca6cff5540ba044e571b5f34bf25cedb26ff8d0e
F ext/lsm1/lsm-test/lsmtest_tdb4.c 47e8bb5eba266472d690fb8264f1855ebdba0ae5a0e541e35fcda61ebf1d277f
F ext/lsm1/lsm-test/lsmtest_util.c 0c2b7c1d109fbd6b7b9a2780f1315e2438a973d18afea5c4eccf94e8827c8260
F ext/lsm1/lsm.h 0f6f64ff071471cb87bf98beb8386566f30ea001
F ext/lsm1/lsmInt.h bc270dd81b3355c7410b06a6d54dd3eb9493a3e8
F ext/lsm1/lsm_ckpt.c e7907e782fe2e95de0833675e35e726e487cc4cd
@ -213,9 +236,10 @@ F ext/lsm1/lsm_shared.c 54cc3a5157c6abd77f7d3ae60708b9f7bf022b3c
F ext/lsm1/lsm_sorted.c 4a9e3ffecda87b379ed757b59c9cbcd84a80b55c
F ext/lsm1/lsm_str.c 77ebdd5040ddf267a6f724d4c83132d2dce8a226
F ext/lsm1/lsm_tree.c 5d9fb2bc58a1a70c75126bd8d7198f7b627e165b
F ext/lsm1/lsm_unix.c fcaf5b6738713f1229dc0e1a90393ecf24f787f2
F ext/lsm1/lsm_unix.c ff6d0a89861c90193f21e35ea5dfea389b480e46085c1d7ff931833b77c3ff30
F ext/lsm1/lsm_varint.c b19ae9bd26b5a1e8402fb8a564b25d9542338a41
F ext/lsm1/lsm_vtab.c fff303ce03168eca9e333add3c1429b3471674b0
F ext/lsm1/lsm_win32.c de84068b4df2999a9cefcf67aae19b0733203f772ca58f7e0c2b0bc87136d2e3
F ext/misc/amatch.c a1a8f66c29d40bd71b075546ddeddb477b17a2bb
F ext/misc/closure.c 0d2a038df8fbae7f19de42e7c7d71f2e4dc88704
F ext/misc/compress.c 122faa92d25033d6c3f07c39231de074ab3d2e83
@ -1445,7 +1469,7 @@ F tool/vdbe_profile.tcl 246d0da094856d72d2c12efec03250d71639d19f
F tool/warnings-clang.sh f6aa929dc20ef1f856af04a730772f59283631d4
F tool/warnings.sh a98af506df552f3b3c0d904f94e4cdc4e1a6d598
F tool/win/sqlite.vsix deb315d026cc8400325c5863eef847784a219a2f
P fac4f4ecee21a460e527a0e2ffa24094b74e17dd
R 9f78396a287b58b8dc55076320f7b772
U drh
Z 4d07009afed81bdff10146a4248806a2
P f92dc4187f6046fcb3ab63449efd7f3738594adc
R 74f8632bb5f7bfdb807bffd1f01db75d
U dan
Z 765d188223533ed5b1d4be9ec2f35903

View File

@ -1 +1 @@
f92dc4187f6046fcb3ab63449efd7f3738594adc
bb7436e84a315baf05f00e6cab396017e3f287ea404d32e0cc4f389fa1194dec