ec26ce3328
ORDER BY clause, since the sqlite_master table is reordered by VACUUM. FossilOrigin-Name: c8bfd99b96608a08f934f46b4e1a4d0f1cc69ea7
787 lines
23 KiB
C
787 lines
23 KiB
C
/*
|
|
** 2017-02-07
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This program implements an SQLite database self-verification utility.
|
|
** Usage:
|
|
**
|
|
** dbselftest DATABASE ...
|
|
**
|
|
** This program reads the "selftest" table in DATABASE, in rowid order,
|
|
** and runs each of the tests described there, reporting results at the
|
|
** end.
|
|
**
|
|
** The intent of this program is to have a set of test database files that
|
|
** can be run using future versions of SQLite in order to verify that
|
|
** legacy database files continue to be readable. In other words, the
|
|
** intent is to confirm that there have been no breaking changes in the
|
|
** file format. The program can also be used to verify that database files
|
|
** are fully compatible between different architectures.
|
|
**
|
|
** The selftest table looks like this:
|
|
**
|
|
** CREATE TABLE selftest (
|
|
** id INTEGER PRIMARY KEY, -- Run tests in ascending order
|
|
** op TEXT, -- "test", "regexp", "print", etc.
|
|
** cmdtxt TEXT, -- Usually the SQL to be run
|
|
** expected TEXT -- Expected results
|
|
** );
|
|
**
|
|
*/
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include "sqlite3.h"
|
|
|
|
static const char zHelp[] =
|
|
"Usage: dbselftest [OPTIONS] DBFILE ...\n"
|
|
"\n"
|
|
" --init Create the selftest table\n"
|
|
" -q Suppress most output. Errors only\n"
|
|
" -v Show extra output\n"
|
|
;
|
|
|
|
|
|
/******************************************************************************
|
|
** The following code from ext/misc/sha1.c
|
|
**
|
|
** Context for the SHA1 hash
|
|
*/
|
|
typedef struct SHA1Context SHA1Context;
|
|
struct SHA1Context {
|
|
unsigned int state[5];
|
|
unsigned int count[2];
|
|
unsigned char buffer[64];
|
|
};
|
|
|
|
|
|
#if __GNUC__ && (defined(__i386__) || defined(__x86_64__))
|
|
/*
|
|
* GCC by itself only generates left rotates. Use right rotates if
|
|
* possible to be kinder to dinky implementations with iterative rotate
|
|
* instructions.
|
|
*/
|
|
#define SHA_ROT(op, x, k) \
|
|
({ unsigned int y; asm(op " %1,%0" : "=r" (y) : "I" (k), "0" (x)); y; })
|
|
#define rol(x,k) SHA_ROT("roll", x, k)
|
|
#define ror(x,k) SHA_ROT("rorl", x, k)
|
|
|
|
#else
|
|
/* Generic C equivalent */
|
|
#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
|
|
#define rol(x,k) SHA_ROT(x,k,32-(k))
|
|
#define ror(x,k) SHA_ROT(x,32-(k),k)
|
|
#endif
|
|
|
|
|
|
#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
|
|
|(rol(block[i],8)&0x00FF00FF))
|
|
#define blk0be(i) block[i]
|
|
#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
|
|
^block[(i+2)&15]^block[i&15],1))
|
|
|
|
/*
|
|
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
|
|
*
|
|
* Rl0() for little-endian and Rb0() for big-endian. Endianness is
|
|
* determined at run-time.
|
|
*/
|
|
#define Rl0(v,w,x,y,z,i) \
|
|
z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
|
|
#define Rb0(v,w,x,y,z,i) \
|
|
z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
|
|
#define R1(v,w,x,y,z,i) \
|
|
z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
|
|
#define R2(v,w,x,y,z,i) \
|
|
z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
|
|
#define R3(v,w,x,y,z,i) \
|
|
z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
|
|
#define R4(v,w,x,y,z,i) \
|
|
z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);
|
|
|
|
/*
|
|
* Hash a single 512-bit block. This is the core of the algorithm.
|
|
*/
|
|
void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){
|
|
unsigned int qq[5]; /* a, b, c, d, e; */
|
|
static int one = 1;
|
|
unsigned int block[16];
|
|
memcpy(block, buffer, 64);
|
|
memcpy(qq,state,5*sizeof(unsigned int));
|
|
|
|
#define a qq[0]
|
|
#define b qq[1]
|
|
#define c qq[2]
|
|
#define d qq[3]
|
|
#define e qq[4]
|
|
|
|
/* Copy p->state[] to working vars */
|
|
/*
|
|
a = state[0];
|
|
b = state[1];
|
|
c = state[2];
|
|
d = state[3];
|
|
e = state[4];
|
|
*/
|
|
|
|
/* 4 rounds of 20 operations each. Loop unrolled. */
|
|
if( 1 == *(unsigned char*)&one ){
|
|
Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3);
|
|
Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7);
|
|
Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11);
|
|
Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15);
|
|
}else{
|
|
Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3);
|
|
Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7);
|
|
Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11);
|
|
Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15);
|
|
}
|
|
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
|
|
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
|
|
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
|
|
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
|
|
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
|
|
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
|
|
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
|
|
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
|
|
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
|
|
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
|
|
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
|
|
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
|
|
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
|
|
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
|
|
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
|
|
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
|
|
|
|
/* Add the working vars back into context.state[] */
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
state[4] += e;
|
|
|
|
#undef a
|
|
#undef b
|
|
#undef c
|
|
#undef d
|
|
#undef e
|
|
}
|
|
|
|
|
|
/* Initialize a SHA1 context */
|
|
static void hash_init(SHA1Context *p){
|
|
/* SHA1 initialization constants */
|
|
p->state[0] = 0x67452301;
|
|
p->state[1] = 0xEFCDAB89;
|
|
p->state[2] = 0x98BADCFE;
|
|
p->state[3] = 0x10325476;
|
|
p->state[4] = 0xC3D2E1F0;
|
|
p->count[0] = p->count[1] = 0;
|
|
}
|
|
|
|
/* Add new content to the SHA1 hash */
|
|
static void hash_step(
|
|
SHA1Context *p, /* Add content to this context */
|
|
const unsigned char *data, /* Data to be added */
|
|
unsigned int len /* Number of bytes in data */
|
|
){
|
|
unsigned int i, j;
|
|
|
|
j = p->count[0];
|
|
if( (p->count[0] += len << 3) < j ){
|
|
p->count[1] += (len>>29)+1;
|
|
}
|
|
j = (j >> 3) & 63;
|
|
if( (j + len) > 63 ){
|
|
(void)memcpy(&p->buffer[j], data, (i = 64-j));
|
|
SHA1Transform(p->state, p->buffer);
|
|
for(; i + 63 < len; i += 64){
|
|
SHA1Transform(p->state, &data[i]);
|
|
}
|
|
j = 0;
|
|
}else{
|
|
i = 0;
|
|
}
|
|
(void)memcpy(&p->buffer[j], &data[i], len - i);
|
|
}
|
|
|
|
/* Compute a string using sqlite3_vsnprintf() and hash it */
|
|
static void hash_step_vformat(
|
|
SHA1Context *p, /* Add content to this context */
|
|
const char *zFormat,
|
|
...
|
|
){
|
|
va_list ap;
|
|
int n;
|
|
char zBuf[50];
|
|
va_start(ap, zFormat);
|
|
sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap);
|
|
va_end(ap);
|
|
n = (int)strlen(zBuf);
|
|
hash_step(p, (unsigned char*)zBuf, n);
|
|
}
|
|
|
|
|
|
/* Add padding and compute the message digest. Render the
|
|
** message digest as lower-case hexadecimal and put it into
|
|
** zOut[]. zOut[] must be at least 41 bytes long. */
|
|
static void hash_finish(
|
|
SHA1Context *p, /* The SHA1 context to finish and render */
|
|
char *zOut /* Store hexadecimal hash here */
|
|
){
|
|
unsigned int i;
|
|
unsigned char finalcount[8];
|
|
unsigned char digest[20];
|
|
static const char zEncode[] = "0123456789abcdef";
|
|
|
|
for (i = 0; i < 8; i++){
|
|
finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)]
|
|
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
|
|
}
|
|
hash_step(p, (const unsigned char *)"\200", 1);
|
|
while ((p->count[0] & 504) != 448){
|
|
hash_step(p, (const unsigned char *)"\0", 1);
|
|
}
|
|
hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */
|
|
for (i = 0; i < 20; i++){
|
|
digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
|
|
}
|
|
for(i=0; i<20; i++){
|
|
zOut[i*2] = zEncode[(digest[i]>>4)&0xf];
|
|
zOut[i*2+1] = zEncode[digest[i] & 0xf];
|
|
}
|
|
zOut[i*2]= 0;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sha1(X) function.
|
|
**
|
|
** Return a lower-case hexadecimal rendering of the SHA1 hash of the
|
|
** argument X. If X is a BLOB, it is hashed as is. For all other
|
|
** types of input, X is converted into a UTF-8 string and the string
|
|
** is hash without the trailing 0x00 terminator. The hash of a NULL
|
|
** value is NULL.
|
|
*/
|
|
static void sha1Func(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
SHA1Context cx;
|
|
int eType = sqlite3_value_type(argv[0]);
|
|
int nByte = sqlite3_value_bytes(argv[0]);
|
|
char zOut[44];
|
|
|
|
assert( argc==1 );
|
|
if( eType==SQLITE_NULL ) return;
|
|
hash_init(&cx);
|
|
if( eType==SQLITE_BLOB ){
|
|
hash_step(&cx, sqlite3_value_blob(argv[0]), nByte);
|
|
}else{
|
|
hash_step(&cx, sqlite3_value_text(argv[0]), nByte);
|
|
}
|
|
hash_finish(&cx, zOut);
|
|
sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
|
|
}
|
|
|
|
/*
|
|
** Run a prepared statement and compute the SHA1 hash on the
|
|
** result rows.
|
|
*/
|
|
static void sha1RunStatement(SHA1Context *pCtx, sqlite3_stmt *pStmt){
|
|
int nCol = sqlite3_column_count(pStmt);
|
|
const char *z = sqlite3_sql(pStmt);
|
|
int n = (int)strlen(z);
|
|
|
|
hash_step_vformat(pCtx,"S%d:",n);
|
|
hash_step(pCtx,(unsigned char*)z,n);
|
|
|
|
/* Compute a hash over the result of the query */
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
int i;
|
|
hash_step(pCtx,(const unsigned char*)"R",1);
|
|
for(i=0; i<nCol; i++){
|
|
switch( sqlite3_column_type(pStmt,i) ){
|
|
case SQLITE_NULL: {
|
|
hash_step(pCtx, (const unsigned char*)"N",1);
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER: {
|
|
sqlite3_uint64 u;
|
|
int j;
|
|
unsigned char x[9];
|
|
sqlite3_int64 v = sqlite3_column_int64(pStmt,i);
|
|
memcpy(&u, &v, 8);
|
|
for(j=8; j>=1; j--){
|
|
x[j] = u & 0xff;
|
|
u >>= 8;
|
|
}
|
|
x[0] = 'I';
|
|
hash_step(pCtx, x, 9);
|
|
break;
|
|
}
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_uint64 u;
|
|
int j;
|
|
unsigned char x[9];
|
|
double r = sqlite3_column_double(pStmt,i);
|
|
memcpy(&u, &r, 8);
|
|
for(j=8; j>=1; j--){
|
|
x[j] = u & 0xff;
|
|
u >>= 8;
|
|
}
|
|
x[0] = 'F';
|
|
hash_step(pCtx,x,9);
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
int n2 = sqlite3_column_bytes(pStmt, i);
|
|
const unsigned char *z2 = sqlite3_column_text(pStmt, i);
|
|
hash_step_vformat(pCtx,"T%d:",n2);
|
|
hash_step(pCtx, z2, n2);
|
|
break;
|
|
}
|
|
case SQLITE_BLOB: {
|
|
int n2 = sqlite3_column_bytes(pStmt, i);
|
|
const unsigned char *z2 = sqlite3_column_blob(pStmt, i);
|
|
hash_step_vformat(pCtx,"B%d:",n2);
|
|
hash_step(pCtx, z2, n2);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Run one or more statements of SQL. Compute a SHA1 hash of the output.
|
|
*/
|
|
static int sha1Exec(
|
|
sqlite3 *db, /* Run against this database connection */
|
|
const char *zSql, /* The SQL to be run */
|
|
char *zOut /* Store the SHA1 hash as hexadecimal in this buffer */
|
|
){
|
|
sqlite3_stmt *pStmt = 0; /* A prepared statement */
|
|
int rc; /* Result of an API call */
|
|
SHA1Context cx; /* The SHA1 hash context */
|
|
|
|
hash_init(&cx);
|
|
while( zSql[0] ){
|
|
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
|
|
if( rc ){
|
|
sqlite3_finalize(pStmt);
|
|
return rc;
|
|
}
|
|
sha1RunStatement(&cx, pStmt);
|
|
sqlite3_finalize(pStmt);
|
|
}
|
|
hash_finish(&cx, zOut);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sha1_query(SQL) function.
|
|
**
|
|
** This function compiles and runs the SQL statement(s) given in the
|
|
** argument. The results are hashed using SHA1 and that hash is returned.
|
|
**
|
|
** The original SQL text is included as part of the hash.
|
|
**
|
|
** The hash is not just a concatenation of the outputs. Each query
|
|
** is delimited and each row and value within the query is delimited,
|
|
** with all values being marked with their datatypes.
|
|
*/
|
|
static void sha1QueryFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
const char *zSql = (const char*)sqlite3_value_text(argv[0]);
|
|
sqlite3_stmt *pStmt = 0;
|
|
int rc;
|
|
SHA1Context cx;
|
|
char zOut[44];
|
|
|
|
assert( argc==1 );
|
|
if( zSql==0 ) return;
|
|
hash_init(&cx);
|
|
while( zSql[0] ){
|
|
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
|
|
if( rc ){
|
|
char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s",
|
|
zSql, sqlite3_errmsg(db));
|
|
sqlite3_finalize(pStmt);
|
|
sqlite3_result_error(context, zMsg, -1);
|
|
sqlite3_free(zMsg);
|
|
return;
|
|
}
|
|
if( !sqlite3_stmt_readonly(pStmt) ){
|
|
char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt));
|
|
sqlite3_finalize(pStmt);
|
|
sqlite3_result_error(context, zMsg, -1);
|
|
sqlite3_free(zMsg);
|
|
return;
|
|
}
|
|
sha1RunStatement(&cx, pStmt);
|
|
sqlite3_finalize(pStmt);
|
|
}
|
|
hash_finish(&cx, zOut);
|
|
sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
|
|
}
|
|
/* End of ext/misc/sha1.c
|
|
******************************************************************************/
|
|
|
|
/* How much output to display */
|
|
#define VOLUME_MIN 0
|
|
#define VOLUME_OFF 0
|
|
#define VOLUME_ERROR_ONLY 1
|
|
#define VOLUME_LOW 2
|
|
#define VOLUME_ECHO 3
|
|
#define VOLUME_VERBOSE 4
|
|
#define VOLUME_MAX 4
|
|
|
|
/* A string accumulator
|
|
*/
|
|
typedef struct Str {
|
|
char *z; /* Accumulated text */
|
|
int n; /* Bytes of z[] used so far */
|
|
int nAlloc; /* Bytes allocated for z[] */
|
|
} Str;
|
|
|
|
/* Append text to the Str object
|
|
*/
|
|
static void strAppend(Str *p, const char *z){
|
|
int n = (int)strlen(z);
|
|
if( p->n+n >= p->nAlloc ){
|
|
p->nAlloc += p->n+n + 100;
|
|
p->z = sqlite3_realloc(p->z, p->nAlloc);
|
|
if( z==0 ){
|
|
printf("Could not allocate %d bytes\n", p->nAlloc);
|
|
exit(1);
|
|
}
|
|
}
|
|
memcpy(p->z+p->n, z, n+1);
|
|
p->n += n;
|
|
}
|
|
|
|
/* This is an sqlite3_exec() callback that will capture all
|
|
** output in a Str.
|
|
**
|
|
** Columns are separated by ",". Rows are separated by "|".
|
|
*/
|
|
static int execCallback(void *pStr, int argc, char **argv, char **colv){
|
|
int i;
|
|
Str *p = (Str*)pStr;
|
|
if( p->n ) strAppend(p, "|");
|
|
for(i=0; i<argc; i++){
|
|
const char *z = (const char*)argv[i];
|
|
if( z==0 ) z = "NULL";
|
|
if( i>0 ) strAppend(p, ",");
|
|
strAppend(p, z);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Run an SQL statement constructing using sqlite3_vmprintf().
|
|
** Return the number of errors.
|
|
*/
|
|
static int runSql(sqlite3 *db, const char *zFormat, ...){
|
|
char *zSql;
|
|
char *zErr = 0;
|
|
int rc;
|
|
int nErr = 0;
|
|
va_list ap;
|
|
|
|
va_start(ap, zFormat);
|
|
zSql = sqlite3_vmprintf(zFormat, ap);
|
|
va_end(ap);
|
|
if( zSql==0 ){
|
|
printf("Out of memory\n");
|
|
exit(1);
|
|
}
|
|
rc = sqlite3_exec(db, zSql, 0, 0, &zErr);
|
|
if( rc || zErr ){
|
|
printf("SQL error in [%s]: code=%d: %s\n", zSql, rc, zErr);
|
|
nErr++;
|
|
}
|
|
sqlite3_free(zSql);
|
|
return nErr;
|
|
}
|
|
|
|
/*
|
|
** Generate a prepared statement using a formatted string.
|
|
*/
|
|
static sqlite3_stmt *prepareSql(sqlite3 *db, const char *zFormat, ...){
|
|
char *zSql;
|
|
int rc;
|
|
sqlite3_stmt *pStmt = 0;
|
|
va_list ap;
|
|
|
|
va_start(ap, zFormat);
|
|
zSql = sqlite3_vmprintf(zFormat, ap);
|
|
va_end(ap);
|
|
if( zSql==0 ){
|
|
printf("Out of memory\n");
|
|
exit(1);
|
|
}
|
|
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
|
if( rc ){
|
|
printf("SQL error in [%s]: code=%d: %s\n", zSql, rc, sqlite3_errmsg(db));
|
|
sqlite3_finalize(pStmt);
|
|
pStmt = 0;
|
|
}
|
|
sqlite3_free(zSql);
|
|
return pStmt;
|
|
}
|
|
|
|
/*
|
|
** Construct the standard selftest configuration for the database.
|
|
*/
|
|
static int buildSelftestTable(sqlite3 *db){
|
|
int rc;
|
|
sqlite3_stmt *pStmt;
|
|
int tno = 110;
|
|
char *zSql;
|
|
char zHash[50];
|
|
|
|
rc = runSql(db,
|
|
"CREATE TABLE IF NOT EXISTS selftest(\n"
|
|
" tno INTEGER PRIMARY KEY, -- test number\n"
|
|
" op TEXT, -- what kind of test\n"
|
|
" sql TEXT, -- SQL text for the test\n"
|
|
" ans TEXT -- expected answer\n"
|
|
");"
|
|
"INSERT INTO selftest"
|
|
" VALUES(100,'memo','Hashes generated using --init',NULL);"
|
|
);
|
|
if( rc ) return 1;
|
|
tno = 110;
|
|
zSql = "SELECT type,name,tbl_name,sql FROM sqlite_master ORDER BY name";
|
|
sha1Exec(db, zSql, zHash);
|
|
rc = runSql(db,
|
|
"INSERT INTO selftest(tno,op,sql,ans)"
|
|
" VALUES(%d,'sha1',%Q,%Q)", tno, zSql, zHash);
|
|
tno += 10;
|
|
pStmt = prepareSql(db,
|
|
"SELECT lower(name) FROM sqlite_master"
|
|
" WHERE type='table' AND sql NOT GLOB 'CREATE VIRTUAL*'"
|
|
" AND name<>'selftest'"
|
|
" ORDER BY 1");
|
|
if( pStmt==0 ) return 1;
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
zSql = sqlite3_mprintf("SELECT * FROM \"%w\" NOT INDEXED",
|
|
sqlite3_column_text(pStmt, 0));
|
|
if( zSql==0 ){
|
|
printf("Of of memory\n");
|
|
exit(1);
|
|
}
|
|
sha1Exec(db, zSql, zHash);
|
|
rc = runSql(db,
|
|
"INSERT INTO selftest(tno,op,sql,ans)"
|
|
" VALUES(%d,'sha1',%Q,%Q)", tno, zSql, zHash);
|
|
tno += 10;
|
|
sqlite3_free(zSql);
|
|
if( rc ) break;
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
if( rc ) return 1;
|
|
rc = runSql(db,
|
|
"INSERT INTO selftest(tno,op,sql,ans)"
|
|
" VALUES(%d,'run','PRAGMA integrity_check','ok');", tno);
|
|
if( rc ) return 1;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return true if the named table exists
|
|
*/
|
|
static int tableExists(sqlite3 *db, const char *zTab){
|
|
return sqlite3_table_column_metadata(db, "main", zTab, 0, 0, 0, 0, 0, 0)
|
|
== SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Default selftest table content, for use when there is no selftest table
|
|
*/
|
|
static char *azDefaultTest[] = {
|
|
0, 0, 0, 0,
|
|
"0", "memo", "Missing SELFTEST table - default checks only", "",
|
|
"1", "run", "PRAGMA integrity_check", "ok"
|
|
};
|
|
|
|
int main(int argc, char **argv){
|
|
int eVolume = VOLUME_LOW; /* How much output to display */
|
|
const char **azDb = 0; /* Name of the database file */
|
|
int nDb = 0; /* Number of database files to check */
|
|
int doInit = 0; /* True if --init is present */
|
|
sqlite3 *db = 0; /* Open database connection */
|
|
int rc; /* Return code from API calls */
|
|
char *zErrMsg = 0; /* An error message return */
|
|
char **azTest; /* Content of the selftest table */
|
|
int nRow = 0, nCol = 0; /* Rows and columns in azTest[] */
|
|
int i; /* Loop counter */
|
|
int nErr = 0; /* Number of errors */
|
|
int iDb; /* Loop counter for databases */
|
|
Str str; /* Result accumulator */
|
|
int nTest = 0; /* Number of tests run */
|
|
|
|
for(i=1; i<argc; i++){
|
|
const char *z = argv[i];
|
|
if( z[0]=='-' ){
|
|
if( z[1]=='-' ) z++;
|
|
if( strcmp(z, "-help")==0 ){
|
|
printf("%s", zHelp);
|
|
return 0;
|
|
}else
|
|
if( strcmp(z, "-init")==0 ){
|
|
doInit = 1;
|
|
}else
|
|
if( strcmp(z, "-a")==0 ){
|
|
if( eVolume>VOLUME_MIN) eVolume--;
|
|
}else
|
|
if( strcmp(z, "-v")==0 ){
|
|
if( eVolume<VOLUME_MAX) eVolume++;
|
|
}else
|
|
{
|
|
printf("unknown option: \"%s\"\nUse --help for more information\n",
|
|
argv[i]);
|
|
return 1;
|
|
}
|
|
}else{
|
|
nDb++;
|
|
azDb = sqlite3_realloc(azDb, nDb*sizeof(azDb[0]));
|
|
if( azDb==0 ){
|
|
printf("out of memory\n");
|
|
exit(1);
|
|
}
|
|
azDb[nDb-1] = argv[i];
|
|
}
|
|
}
|
|
if( nDb==0 ){
|
|
printf("No databases specified. Use --help for more info\n");
|
|
return 1;
|
|
}
|
|
if( eVolume>=VOLUME_LOW ){
|
|
printf("SQLite %s\n", sqlite3_sourceid());
|
|
}
|
|
memset(&str, 0, sizeof(str));
|
|
strAppend(&str, "\n");
|
|
for(iDb=0; iDb<nDb; iDb++, sqlite3_close(db)){
|
|
rc = sqlite3_open_v2(azDb[iDb], &db,
|
|
doInit ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY, 0);
|
|
if( rc ){
|
|
printf("Cannot open \"%s\": %s\n", azDb[iDb], sqlite3_errmsg(db));
|
|
return 1;
|
|
}
|
|
rc = sqlite3_create_function(db, "sha1", 1, SQLITE_UTF8, 0,
|
|
sha1Func, 0, 0);
|
|
if( rc==SQLITE_OK ){
|
|
rc = sqlite3_create_function(db, "sha1_query", 1, SQLITE_UTF8, 0,
|
|
sha1QueryFunc, 0, 0);
|
|
}
|
|
if( rc ){
|
|
printf("Initialization error: %s\n", sqlite3_errmsg(db));
|
|
sqlite3_close(db);
|
|
return 1;
|
|
}
|
|
if( doInit && !tableExists(db, "selftest") ){
|
|
buildSelftestTable(db);
|
|
}
|
|
if( !tableExists(db, "selftest") ){
|
|
azTest = azDefaultTest;
|
|
nCol = 4;
|
|
nRow = 2;
|
|
}else{
|
|
rc = sqlite3_get_table(db,
|
|
"SELECT tno,op,sql,ans FROM selftest ORDER BY tno",
|
|
&azTest, &nRow, &nCol, &zErrMsg);
|
|
if( rc || zErrMsg ){
|
|
printf("Error querying selftest: %s\n", zErrMsg);
|
|
sqlite3_free_table(azTest);
|
|
continue;
|
|
}
|
|
}
|
|
for(i=1; i<=nRow; i++){
|
|
int tno = atoi(azTest[i*nCol]);
|
|
const char *zOp = azTest[i*nCol+1];
|
|
const char *zSql = azTest[i*nCol+2];
|
|
const char *zAns = azTest[i*nCol+3];
|
|
|
|
if( eVolume>=VOLUME_ECHO ){
|
|
char *zQuote = sqlite3_mprintf("%q", zSql);
|
|
printf("%d: %s %s\n", tno, zOp, zSql);
|
|
sqlite3_free(zQuote);
|
|
}
|
|
if( strcmp(zOp,"memo")==0 ){
|
|
if( eVolume>=VOLUME_LOW ){
|
|
printf("%s: %s\n", azDb[iDb], zSql);
|
|
}
|
|
}else
|
|
if( strcmp(zOp,"sha1")==0 ){
|
|
char zOut[44];
|
|
rc = sha1Exec(db, zSql, zOut);
|
|
nTest++;
|
|
if( eVolume>=VOLUME_VERBOSE ){
|
|
printf("Result: %s\n", zOut);
|
|
}
|
|
if( rc ){
|
|
nErr++;
|
|
if( eVolume>=VOLUME_ERROR_ONLY ){
|
|
printf("%d: error-code-%d: %s\n", tno, rc, sqlite3_errmsg(db));
|
|
}
|
|
}else if( strcmp(zAns,zOut)!=0 ){
|
|
nErr++;
|
|
if( eVolume>=VOLUME_ERROR_ONLY ){
|
|
printf("%d: Expected: [%s]\n", tno, zAns);
|
|
printf("%d: Got: [%s]\n", tno, zOut);
|
|
}
|
|
}
|
|
}else
|
|
if( strcmp(zOp,"run")==0 ){
|
|
str.n = 0;
|
|
str.z[0] = 0;
|
|
zErrMsg = 0;
|
|
rc = sqlite3_exec(db, zSql, execCallback, &str, &zErrMsg);
|
|
nTest++;
|
|
if( eVolume>=VOLUME_VERBOSE ){
|
|
printf("Result: %s\n", str.z);
|
|
}
|
|
if( rc || zErrMsg ){
|
|
nErr++;
|
|
if( eVolume>=VOLUME_ERROR_ONLY ){
|
|
printf("%d: error-code-%d: %s\n", tno, rc, zErrMsg);
|
|
}
|
|
sqlite3_free(zErrMsg);
|
|
}else if( strcmp(zAns,str.z)!=0 ){
|
|
nErr++;
|
|
if( eVolume>=VOLUME_ERROR_ONLY ){
|
|
printf("%d: Expected: [%s]\n", tno, zAns);
|
|
printf("%d: Got: [%s]\n", tno, str.z);
|
|
}
|
|
}
|
|
}else
|
|
{
|
|
printf("Unknown operation \"%s\" on selftest line %d\n", zOp, tno);
|
|
return 1;
|
|
}
|
|
}
|
|
if( azTest!=azDefaultTest ) sqlite3_free_table(azTest);
|
|
}
|
|
if( eVolume>=VOLUME_LOW || (nErr>0 && eVolume>=VOLUME_ERROR_ONLY) ){
|
|
printf("%d errors out of %d tests on %d databases\n", nErr, nTest, nDb);
|
|
}
|
|
return nErr;
|
|
}
|