/* ** 2017-02-07 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This program implements an SQLite database self-verification utility. ** Usage: ** ** dbselftest DATABASE ... ** ** This program reads the "selftest" table in DATABASE, in rowid order, ** and runs each of the tests described there, reporting results at the ** end. ** ** The intent of this program is to have a set of test database files that ** can be run using future versions of SQLite in order to verify that ** legacy database files continue to be readable. In other words, the ** intent is to confirm that there have been no breaking changes in the ** file format. The program can also be used to verify that database files ** are fully compatible between different architectures. ** ** The selftest table looks like this: ** ** CREATE TABLE selftest ( ** id INTEGER PRIMARY KEY, -- Run tests in ascending order ** op TEXT, -- "test", "regexp", "print", etc. ** cmdtxt TEXT, -- Usually the SQL to be run ** expected TEXT -- Expected results ** ); ** */ #include #include #include #include #include #include "sqlite3.h" static const char zHelp[] = "Usage: dbselftest [OPTIONS] DBFILE ...\n" "\n" " --init Create the selftest table\n" " -q Suppress most output. Errors only\n" " -v Show extra output\n" ; /****************************************************************************** ** The following code from ext/misc/sha1.c ** ** Context for the SHA1 hash */ typedef struct SHA1Context SHA1Context; struct SHA1Context { unsigned int state[5]; unsigned int count[2]; unsigned char buffer[64]; }; #if __GNUC__ && (defined(__i386__) || defined(__x86_64__)) /* * GCC by itself only generates left rotates. Use right rotates if * possible to be kinder to dinky implementations with iterative rotate * instructions. */ #define SHA_ROT(op, x, k) \ ({ unsigned int y; asm(op " %1,%0" : "=r" (y) : "I" (k), "0" (x)); y; }) #define rol(x,k) SHA_ROT("roll", x, k) #define ror(x,k) SHA_ROT("rorl", x, k) #else /* Generic C equivalent */ #define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r)) #define rol(x,k) SHA_ROT(x,k,32-(k)) #define ror(x,k) SHA_ROT(x,32-(k),k) #endif #define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \ |(rol(block[i],8)&0x00FF00FF)) #define blk0be(i) block[i] #define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \ ^block[(i+2)&15]^block[i&15],1)) /* * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 * * Rl0() for little-endian and Rb0() for big-endian. Endianness is * determined at run-time. */ #define Rl0(v,w,x,y,z,i) \ z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2); #define Rb0(v,w,x,y,z,i) \ z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2); #define R1(v,w,x,y,z,i) \ z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2); #define R2(v,w,x,y,z,i) \ z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2); #define R3(v,w,x,y,z,i) \ z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2); #define R4(v,w,x,y,z,i) \ z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2); /* * Hash a single 512-bit block. This is the core of the algorithm. */ void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){ unsigned int qq[5]; /* a, b, c, d, e; */ static int one = 1; unsigned int block[16]; memcpy(block, buffer, 64); memcpy(qq,state,5*sizeof(unsigned int)); #define a qq[0] #define b qq[1] #define c qq[2] #define d qq[3] #define e qq[4] /* Copy p->state[] to working vars */ /* a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; */ /* 4 rounds of 20 operations each. Loop unrolled. */ if( 1 == *(unsigned char*)&one ){ Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3); Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7); Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11); Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15); }else{ Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3); Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7); Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11); Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15); } R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; #undef a #undef b #undef c #undef d #undef e } /* Initialize a SHA1 context */ static void hash_init(SHA1Context *p){ /* SHA1 initialization constants */ p->state[0] = 0x67452301; p->state[1] = 0xEFCDAB89; p->state[2] = 0x98BADCFE; p->state[3] = 0x10325476; p->state[4] = 0xC3D2E1F0; p->count[0] = p->count[1] = 0; } /* Add new content to the SHA1 hash */ static void hash_step( SHA1Context *p, /* Add content to this context */ const unsigned char *data, /* Data to be added */ unsigned int len /* Number of bytes in data */ ){ unsigned int i, j; j = p->count[0]; if( (p->count[0] += len << 3) < j ){ p->count[1] += (len>>29)+1; } j = (j >> 3) & 63; if( (j + len) > 63 ){ (void)memcpy(&p->buffer[j], data, (i = 64-j)); SHA1Transform(p->state, p->buffer); for(; i + 63 < len; i += 64){ SHA1Transform(p->state, &data[i]); } j = 0; }else{ i = 0; } (void)memcpy(&p->buffer[j], &data[i], len - i); } /* Compute a string using sqlite3_vsnprintf() and hash it */ static void hash_step_vformat( SHA1Context *p, /* Add content to this context */ const char *zFormat, ... ){ va_list ap; int n; char zBuf[50]; va_start(ap, zFormat); sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap); va_end(ap); n = (int)strlen(zBuf); hash_step(p, (unsigned char*)zBuf, n); } /* Add padding and compute the message digest. Render the ** message digest as lower-case hexadecimal and put it into ** zOut[]. zOut[] must be at least 41 bytes long. */ static void hash_finish( SHA1Context *p, /* The SHA1 context to finish and render */ char *zOut /* Store hexadecimal hash here */ ){ unsigned int i; unsigned char finalcount[8]; unsigned char digest[20]; static const char zEncode[] = "0123456789abcdef"; for (i = 0; i < 8; i++){ finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ } hash_step(p, (const unsigned char *)"\200", 1); while ((p->count[0] & 504) != 448){ hash_step(p, (const unsigned char *)"\0", 1); } hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */ for (i = 0; i < 20; i++){ digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } for(i=0; i<20; i++){ zOut[i*2] = zEncode[(digest[i]>>4)&0xf]; zOut[i*2+1] = zEncode[digest[i] & 0xf]; } zOut[i*2]= 0; } /* ** Implementation of the sha1(X) function. ** ** Return a lower-case hexadecimal rendering of the SHA1 hash of the ** argument X. If X is a BLOB, it is hashed as is. For all other ** types of input, X is converted into a UTF-8 string and the string ** is hash without the trailing 0x00 terminator. The hash of a NULL ** value is NULL. */ static void sha1Func( sqlite3_context *context, int argc, sqlite3_value **argv ){ SHA1Context cx; int eType = sqlite3_value_type(argv[0]); int nByte = sqlite3_value_bytes(argv[0]); char zOut[44]; assert( argc==1 ); if( eType==SQLITE_NULL ) return; hash_init(&cx); if( eType==SQLITE_BLOB ){ hash_step(&cx, sqlite3_value_blob(argv[0]), nByte); }else{ hash_step(&cx, sqlite3_value_text(argv[0]), nByte); } hash_finish(&cx, zOut); sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT); } /* ** Run a prepared statement and compute the SHA1 hash on the ** result rows. */ static void sha1RunStatement(SHA1Context *pCtx, sqlite3_stmt *pStmt){ int nCol = sqlite3_column_count(pStmt); const char *z = sqlite3_sql(pStmt); int n = (int)strlen(z); hash_step_vformat(pCtx,"S%d:",n); hash_step(pCtx,(unsigned char*)z,n); /* Compute a hash over the result of the query */ while( SQLITE_ROW==sqlite3_step(pStmt) ){ int i; hash_step(pCtx,(const unsigned char*)"R",1); for(i=0; i=1; j--){ x[j] = u & 0xff; u >>= 8; } x[0] = 'I'; hash_step(pCtx, x, 9); break; } case SQLITE_FLOAT: { sqlite3_uint64 u; int j; unsigned char x[9]; double r = sqlite3_column_double(pStmt,i); memcpy(&u, &r, 8); for(j=8; j>=1; j--){ x[j] = u & 0xff; u >>= 8; } x[0] = 'F'; hash_step(pCtx,x,9); break; } case SQLITE_TEXT: { int n2 = sqlite3_column_bytes(pStmt, i); const unsigned char *z2 = sqlite3_column_text(pStmt, i); hash_step_vformat(pCtx,"T%d:",n2); hash_step(pCtx, z2, n2); break; } case SQLITE_BLOB: { int n2 = sqlite3_column_bytes(pStmt, i); const unsigned char *z2 = sqlite3_column_blob(pStmt, i); hash_step_vformat(pCtx,"B%d:",n2); hash_step(pCtx, z2, n2); break; } } } } } /* ** Run one or more statements of SQL. Compute a SHA1 hash of the output. */ static int sha1Exec( sqlite3 *db, /* Run against this database connection */ const char *zSql, /* The SQL to be run */ char *zOut /* Store the SHA1 hash as hexadecimal in this buffer */ ){ sqlite3_stmt *pStmt = 0; /* A prepared statement */ int rc; /* Result of an API call */ SHA1Context cx; /* The SHA1 hash context */ hash_init(&cx); while( zSql[0] ){ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql); if( rc ){ sqlite3_finalize(pStmt); return rc; } sha1RunStatement(&cx, pStmt); sqlite3_finalize(pStmt); } hash_finish(&cx, zOut); return SQLITE_OK; } /* ** Implementation of the sha1_query(SQL) function. ** ** This function compiles and runs the SQL statement(s) given in the ** argument. The results are hashed using SHA1 and that hash is returned. ** ** The original SQL text is included as part of the hash. ** ** The hash is not just a concatenation of the outputs. Each query ** is delimited and each row and value within the query is delimited, ** with all values being marked with their datatypes. */ static void sha1QueryFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); const char *zSql = (const char*)sqlite3_value_text(argv[0]); sqlite3_stmt *pStmt = 0; int rc; SHA1Context cx; char zOut[44]; assert( argc==1 ); if( zSql==0 ) return; hash_init(&cx); while( zSql[0] ){ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql); if( rc ){ char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s", zSql, sqlite3_errmsg(db)); sqlite3_finalize(pStmt); sqlite3_result_error(context, zMsg, -1); sqlite3_free(zMsg); return; } if( !sqlite3_stmt_readonly(pStmt) ){ char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt)); sqlite3_finalize(pStmt); sqlite3_result_error(context, zMsg, -1); sqlite3_free(zMsg); return; } sha1RunStatement(&cx, pStmt); sqlite3_finalize(pStmt); } hash_finish(&cx, zOut); sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT); } /* End of ext/misc/sha1.c ******************************************************************************/ /* How much output to display */ #define VOLUME_MIN 0 #define VOLUME_OFF 0 #define VOLUME_ERROR_ONLY 1 #define VOLUME_LOW 2 #define VOLUME_ECHO 3 #define VOLUME_VERBOSE 4 #define VOLUME_MAX 4 /* A string accumulator */ typedef struct Str { char *z; /* Accumulated text */ int n; /* Bytes of z[] used so far */ int nAlloc; /* Bytes allocated for z[] */ } Str; /* Append text to the Str object */ static void strAppend(Str *p, const char *z){ int n = (int)strlen(z); if( p->n+n >= p->nAlloc ){ p->nAlloc += p->n+n + 100; p->z = sqlite3_realloc(p->z, p->nAlloc); if( z==0 ){ printf("Could not allocate %d bytes\n", p->nAlloc); exit(1); } } memcpy(p->z+p->n, z, n+1); p->n += n; } /* This is an sqlite3_exec() callback that will capture all ** output in a Str. ** ** Columns are separated by ",". Rows are separated by "|". */ static int execCallback(void *pStr, int argc, char **argv, char **colv){ int i; Str *p = (Str*)pStr; if( p->n ) strAppend(p, "|"); for(i=0; i0 ) strAppend(p, ","); strAppend(p, z); } return 0; } /* ** Run an SQL statement constructing using sqlite3_vmprintf(). ** Return the number of errors. */ static int runSql(sqlite3 *db, const char *zFormat, ...){ char *zSql; char *zErr = 0; int rc; int nErr = 0; va_list ap; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( zSql==0 ){ printf("Out of memory\n"); exit(1); } rc = sqlite3_exec(db, zSql, 0, 0, &zErr); if( rc || zErr ){ printf("SQL error in [%s]: code=%d: %s\n", zSql, rc, zErr); nErr++; } sqlite3_free(zSql); return nErr; } /* ** Generate a prepared statement using a formatted string. */ static sqlite3_stmt *prepareSql(sqlite3 *db, const char *zFormat, ...){ char *zSql; int rc; sqlite3_stmt *pStmt = 0; va_list ap; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( zSql==0 ){ printf("Out of memory\n"); exit(1); } rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc ){ printf("SQL error in [%s]: code=%d: %s\n", zSql, rc, sqlite3_errmsg(db)); sqlite3_finalize(pStmt); pStmt = 0; } sqlite3_free(zSql); return pStmt; } /* ** Construct the standard selftest configuration for the database. */ static int buildSelftestTable(sqlite3 *db){ int rc; sqlite3_stmt *pStmt; int tno = 110; char *zSql; char zHash[50]; rc = runSql(db, "CREATE TABLE IF NOT EXISTS selftest(\n" " tno INTEGER PRIMARY KEY, -- test number\n" " op TEXT, -- what kind of test\n" " sql TEXT, -- SQL text for the test\n" " ans TEXT -- expected answer\n" ");" "INSERT INTO selftest" " VALUES(100,'memo','Hashes generated using --init',NULL);" ); if( rc ) return 1; tno = 110; zSql = "SELECT type,name,tbl_name,sql FROM sqlite_master ORDER BY name"; sha1Exec(db, zSql, zHash); rc = runSql(db, "INSERT INTO selftest(tno,op,sql,ans)" " VALUES(%d,'sha1',%Q,%Q)", tno, zSql, zHash); tno += 10; pStmt = prepareSql(db, "SELECT lower(name) FROM sqlite_master" " WHERE type='table' AND sql NOT GLOB 'CREATE VIRTUAL*'" " AND name<>'selftest'" " ORDER BY 1"); if( pStmt==0 ) return 1; while( SQLITE_ROW==sqlite3_step(pStmt) ){ zSql = sqlite3_mprintf("SELECT * FROM \"%w\" NOT INDEXED", sqlite3_column_text(pStmt, 0)); if( zSql==0 ){ printf("Of of memory\n"); exit(1); } sha1Exec(db, zSql, zHash); rc = runSql(db, "INSERT INTO selftest(tno,op,sql,ans)" " VALUES(%d,'sha1',%Q,%Q)", tno, zSql, zHash); tno += 10; sqlite3_free(zSql); if( rc ) break; } sqlite3_finalize(pStmt); if( rc ) return 1; rc = runSql(db, "INSERT INTO selftest(tno,op,sql,ans)" " VALUES(%d,'run','PRAGMA integrity_check','ok');", tno); if( rc ) return 1; return rc; } /* ** Return true if the named table exists */ static int tableExists(sqlite3 *db, const char *zTab){ return sqlite3_table_column_metadata(db, "main", zTab, 0, 0, 0, 0, 0, 0) == SQLITE_OK; } /* ** Default selftest table content, for use when there is no selftest table */ static char *azDefaultTest[] = { 0, 0, 0, 0, "0", "memo", "Missing SELFTEST table - default checks only", "", "1", "run", "PRAGMA integrity_check", "ok" }; int main(int argc, char **argv){ int eVolume = VOLUME_LOW; /* How much output to display */ const char **azDb = 0; /* Name of the database file */ int nDb = 0; /* Number of database files to check */ int doInit = 0; /* True if --init is present */ sqlite3 *db = 0; /* Open database connection */ int rc; /* Return code from API calls */ char *zErrMsg = 0; /* An error message return */ char **azTest; /* Content of the selftest table */ int nRow = 0, nCol = 0; /* Rows and columns in azTest[] */ int i; /* Loop counter */ int nErr = 0; /* Number of errors */ int iDb; /* Loop counter for databases */ Str str; /* Result accumulator */ int nTest = 0; /* Number of tests run */ for(i=1; iVOLUME_MIN) eVolume--; }else if( strcmp(z, "-v")==0 ){ if( eVolume=VOLUME_LOW ){ printf("SQLite %s\n", sqlite3_sourceid()); } memset(&str, 0, sizeof(str)); strAppend(&str, "\n"); for(iDb=0; iDb=VOLUME_ECHO ){ char *zQuote = sqlite3_mprintf("%q", zSql); printf("%d: %s %s\n", tno, zOp, zSql); sqlite3_free(zQuote); } if( strcmp(zOp,"memo")==0 ){ if( eVolume>=VOLUME_LOW ){ printf("%s: %s\n", azDb[iDb], zSql); } }else if( strcmp(zOp,"sha1")==0 ){ char zOut[44]; rc = sha1Exec(db, zSql, zOut); nTest++; if( eVolume>=VOLUME_VERBOSE ){ printf("Result: %s\n", zOut); } if( rc ){ nErr++; if( eVolume>=VOLUME_ERROR_ONLY ){ printf("%d: error-code-%d: %s\n", tno, rc, sqlite3_errmsg(db)); } }else if( strcmp(zAns,zOut)!=0 ){ nErr++; if( eVolume>=VOLUME_ERROR_ONLY ){ printf("%d: Expected: [%s]\n", tno, zAns); printf("%d: Got: [%s]\n", tno, zOut); } } }else if( strcmp(zOp,"run")==0 ){ str.n = 0; str.z[0] = 0; zErrMsg = 0; rc = sqlite3_exec(db, zSql, execCallback, &str, &zErrMsg); nTest++; if( eVolume>=VOLUME_VERBOSE ){ printf("Result: %s\n", str.z); } if( rc || zErrMsg ){ nErr++; if( eVolume>=VOLUME_ERROR_ONLY ){ printf("%d: error-code-%d: %s\n", tno, rc, zErrMsg); } sqlite3_free(zErrMsg); }else if( strcmp(zAns,str.z)!=0 ){ nErr++; if( eVolume>=VOLUME_ERROR_ONLY ){ printf("%d: Expected: [%s]\n", tno, zAns); printf("%d: Got: [%s]\n", tno, str.z); } } }else { printf("Unknown operation \"%s\" on selftest line %d\n", zOp, tno); return 1; } } if( azTest!=azDefaultTest ) sqlite3_free_table(azTest); } if( eVolume>=VOLUME_LOW || (nErr>0 && eVolume>=VOLUME_ERROR_ONLY) ){ printf("%d errors out of %d tests on %d databases\n", nErr, nTest, nDb); } return nErr; }