sqlite/ext/ota/sqlite3ota.c

3562 lines
113 KiB
C
Raw Normal View History

/*
** 2014 August 30
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
**
** OVERVIEW
**
** The OTA extension requires that the OTA update be packaged as an
** SQLite database. The tables it expects to find are described in
** sqlite3ota.h. Essentially, for each table xyz in the target database
** that the user wishes to write to, a corresponding data_xyz table is
** created in the OTA database and populated with one row for each row to
** update, insert or delete from the target table.
**
** The update proceeds in three stages:
**
** 1) The database is updated. The modified database pages are written
** to a *-oal file. A *-oal file is just like a *-wal file, except
** that it is named "<database>-oal" instead of "<database>-wal".
** Because regular SQLite clients do not look for file named
** "<database>-oal", they go on using the original database in
** rollback mode while the *-oal file is being generated.
**
** During this stage OTA does not update the database by writing
** directly to the target tables. Instead it creates "imposter"
** tables using the SQLITE_TESTCTRL_IMPOSTER interface that it uses
** to update each b-tree individually. All updates required by each
** b-tree are completed before moving on to the next, and all
** updates are done in sorted key order.
**
** 2) The "<database>-oal" file is moved to the equivalent "<database>-wal"
** location using a call to rename(2). Before doing this the OTA
** module takes an EXCLUSIVE lock on the database file, ensuring
** that there are no other active readers.
**
** Once the EXCLUSIVE lock is released, any other database readers
** detect the new *-wal file and read the database in wal mode. At
** this point they see the new version of the database - including
** the updates made as part of the OTA update.
**
** 3) The new *-wal file is checkpointed. This proceeds in the same way
** as a regular database checkpoint, except that a single frame is
** checkpointed each time sqlite3ota_step() is called. If the OTA
** handle is closed before the entire *-wal file is checkpointed,
** the checkpoint progress is saved in the OTA database and the
** checkpoint can be resumed by another OTA client at some point in
** the future.
**
** POTENTIAL PROBLEMS
**
** The rename() call might not be portable. And OTA is not currently
** syncing the directory after renaming the file.
**
** When state is saved, any commit to the *-oal file and the commit to
** the OTA update database are not atomic. So if the power fails at the
** wrong moment they might get out of sync. As the main database will be
** committed before the OTA update database this will likely either just
** pass unnoticed, or result in SQLITE_CONSTRAINT errors (due to UNIQUE
** constraint violations).
**
** If some client does modify the target database mid OTA update, or some
** other error occurs, the OTA extension will keep throwing errors. It's
** not really clear how to get out of this state. The system could just
** by delete the OTA update database and *-oal file and have the device
** download the update again and start over.
**
** At present, for an UPDATE, both the new.* and old.* records are
** collected in the ota_xyz table. And for both UPDATEs and DELETEs all
** fields are collected. This means we're probably writing a lot more
** data to disk when saving the state of an ongoing update to the OTA
** update database than is strictly necessary.
**
*/
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include "sqlite3.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_OTA)
#include "sqlite3ota.h"
/*
** Swap two objects of type TYPE.
*/
#if !defined(SQLITE_AMALGAMATION)
# define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
#endif
/*
** The ota_state table is used to save the state of a partially applied
** update so that it can be resumed later. The table consists of integer
** keys mapped to values as follows:
**
** OTA_STATE_STAGE:
** May be set to integer values 1, 2, 4 or 5. As follows:
** 1: the *-ota file is currently under construction.
** 2: the *-ota file has been constructed, but not yet moved
** to the *-wal path.
** 4: the checkpoint is underway.
** 5: the ota update has been checkpointed.
**
** OTA_STATE_TBL:
** Only valid if STAGE==1. The target database name of the table
** currently being written.
**
** OTA_STATE_IDX:
** Only valid if STAGE==1. The target database name of the index
** currently being written, or NULL if the main table is currently being
** updated.
**
** OTA_STATE_ROW:
** Only valid if STAGE==1. Number of rows already processed for the current
** table/index.
**
** OTA_STATE_PROGRESS:
** Total number of sqlite3ota_step() calls made so far as part of this
** ota update.
**
** OTA_STATE_CKPT:
** Valid if STAGE==4. The 64-bit checksum associated with the wal-index
** header created by recovering the *-wal file. This is used to detect
** cases when another client appends frames to the *-wal file in the
** middle of an incremental checkpoint (an incremental checkpoint cannot
** be continued if this happens).
**
** OTA_STATE_COOKIE:
** Valid if STAGE==1. The current change-counter cookie value in the
** target db file.
**
** OTA_STATE_OALSZ:
** Valid if STAGE==1. The size in bytes of the *-oal file.
*/
#define OTA_STATE_STAGE 1
#define OTA_STATE_TBL 2
#define OTA_STATE_IDX 3
#define OTA_STATE_ROW 4
#define OTA_STATE_PROGRESS 5
#define OTA_STATE_CKPT 6
#define OTA_STATE_COOKIE 7
#define OTA_STATE_OALSZ 8
#define OTA_STAGE_OAL 1
#define OTA_STAGE_MOVE 2
#define OTA_STAGE_CAPTURE 3
#define OTA_STAGE_CKPT 4
#define OTA_STAGE_DONE 5
#define OTA_CREATE_STATE "CREATE TABLE IF NOT EXISTS ota_state" \
"(k INTEGER PRIMARY KEY, v)"
typedef struct OtaFrame OtaFrame;
typedef struct OtaObjIter OtaObjIter;
typedef struct OtaState OtaState;
typedef struct ota_vfs ota_vfs;
typedef struct ota_file ota_file;
#if !defined(SQLITE_AMALGAMATION)
typedef unsigned int u32;
typedef unsigned char u8;
typedef sqlite3_int64 i64;
#endif
/*
** These values must match the values defined in wal.c for the equivalent
** locks. These are not magic numbers as they are part of the SQLite file
** format.
*/
#define WAL_LOCK_WRITE 0
#define WAL_LOCK_CKPT 1
#define WAL_LOCK_READ0 3
/*
** A structure to store values read from the ota_state table in memory.
*/
struct OtaState {
int eStage;
char *zTbl;
char *zIdx;
i64 iWalCksum;
int nRow;
i64 nProgress;
u32 iCookie;
i64 iOalSz;
};
/*
** An iterator of this type is used to iterate through all objects in
** the target database that require updating. For each such table, the
** iterator visits, in order:
**
** * the table itself,
** * each index of the table (zero or more points to visit), and
** * a special "cleanup table" state.
**
** abIndexed:
** If the table has no indexes on it, abIndexed is set to NULL. Otherwise,
** it points to an array of flags nTblCol elements in size. The flag is
** set for each column that is either a part of the PK or a part of an
** index. Or clear otherwise.
**
*/
struct OtaObjIter {
sqlite3_stmt *pTblIter; /* Iterate through tables */
sqlite3_stmt *pIdxIter; /* Index iterator */
int nTblCol; /* Size of azTblCol[] array */
char **azTblCol; /* Array of unquoted target column names */
char **azTblType; /* Array of target column types */
int *aiSrcOrder; /* src table col -> target table col */
u8 *abTblPk; /* Array of flags, set on target PK columns */
u8 *abNotNull; /* Array of flags, set on NOT NULL columns */
u8 *abIndexed; /* Array of flags, set on indexed & PK cols */
int eType; /* Table type - an OTA_PK_XXX value */
/* Output variables. zTbl==0 implies EOF. */
int bCleanup; /* True in "cleanup" state */
const char *zTbl; /* Name of target db table */
const char *zIdx; /* Name of target db index (or null) */
int iTnum; /* Root page of current object */
int iPkTnum; /* If eType==EXTERNAL, root of PK index */
int bUnique; /* Current index is unique */
/* Statements created by otaObjIterPrepareAll() */
int nCol; /* Number of columns in current object */
sqlite3_stmt *pSelect; /* Source data */
sqlite3_stmt *pInsert; /* Statement for INSERT operations */
sqlite3_stmt *pDelete; /* Statement for DELETE ops */
sqlite3_stmt *pTmpInsert; /* Insert into ota_tmp_$zTbl */
/* Last UPDATE used (for PK b-tree updates only), or NULL. */
char *zMask; /* Copy of update mask used with pUpdate */
sqlite3_stmt *pUpdate; /* Last update statement (or NULL) */
};
/*
** Values for OtaObjIter.eType
**
** 0: Table does not exist (error)
** 1: Table has an implicit rowid.
** 2: Table has an explicit IPK column.
** 3: Table has an external PK index.
** 4: Table is WITHOUT ROWID.
** 5: Table is a virtual table.
*/
#define OTA_PK_NOTABLE 0
#define OTA_PK_NONE 1
#define OTA_PK_IPK 2
#define OTA_PK_EXTERNAL 3
#define OTA_PK_WITHOUT_ROWID 4
#define OTA_PK_VTAB 5
/*
** Within the OTA_STAGE_OAL stage, each call to sqlite3ota_step() performs
** one of the following operations.
*/
#define OTA_INSERT 1 /* Insert on a main table b-tree */
#define OTA_DELETE 2 /* Delete a row from a main table b-tree */
#define OTA_IDX_DELETE 3 /* Delete a row from an aux. index b-tree */
#define OTA_IDX_INSERT 4 /* Insert on an aux. index b-tree */
#define OTA_UPDATE 5 /* Update a row in a main table b-tree */
/*
** A single step of an incremental checkpoint - frame iWalFrame of the wal
** file should be copied to page iDbPage of the database file.
*/
struct OtaFrame {
u32 iDbPage;
u32 iWalFrame;
};
/*
** OTA handle.
*/
struct sqlite3ota {
int eStage; /* Value of OTA_STATE_STAGE field */
sqlite3 *dbMain; /* target database handle */
sqlite3 *dbOta; /* ota database handle */
char *zTarget; /* Path to target db */
char *zOta; /* Path to ota db */
int rc; /* Value returned by last ota_step() call */
char *zErrmsg; /* Error message if rc!=SQLITE_OK */
int nStep; /* Rows processed for current object */
int nProgress; /* Rows processed for all objects */
OtaObjIter objiter; /* Iterator for skipping through tbl/idx */
const char *zVfsName; /* Name of automatically created ota vfs */
ota_file *pTargetFd; /* File handle open on target db */
i64 iOalSz;
/* The following state variables are used as part of the incremental
** checkpoint stage (eStage==OTA_STAGE_CKPT). See comments surrounding
** function otaSetupCheckpoint() for details. */
u32 iMaxFrame; /* Largest iWalFrame value in aFrame[] */
u32 mLock;
int nFrame; /* Entries in aFrame[] array */
int nFrameAlloc; /* Allocated size of aFrame[] array */
OtaFrame *aFrame;
int pgsz;
u8 *aBuf;
i64 iWalCksum;
};
/*
** An ota VFS is implemented using an instance of this structure.
*/
struct ota_vfs {
sqlite3_vfs base; /* ota VFS shim methods */
sqlite3_vfs *pRealVfs; /* Underlying VFS */
sqlite3_mutex *mutex; /* Mutex to protect pMain */
ota_file *pMain; /* Linked list of main db files */
};
/*
** Each file opened by an ota VFS is represented by an instance of
** the following structure.
*/
struct ota_file {
sqlite3_file base; /* sqlite3_file methods */
sqlite3_file *pReal; /* Underlying file handle */
ota_vfs *pOtaVfs; /* Pointer to the ota_vfs object */
sqlite3ota *pOta; /* Pointer to ota object (ota target only) */
int openFlags; /* Flags this file was opened with */
u32 iCookie; /* Cookie value for main db files */
u8 iWriteVer; /* "write-version" value for main db files */
int nShm; /* Number of entries in apShm[] array */
char **apShm; /* Array of mmap'd *-shm regions */
char *zDel; /* Delete this when closing file */
const char *zWal; /* Wal filename for this main db file */
ota_file *pWalFd; /* Wal file descriptor for this main db */
ota_file *pMainNext; /* Next MAIN_DB file */
};
/*
** Prepare the SQL statement in buffer zSql against database handle db.
** If successful, set *ppStmt to point to the new statement and return
** SQLITE_OK.
**
** Otherwise, if an error does occur, set *ppStmt to NULL and return
** an SQLite error code. Additionally, set output variable *pzErrmsg to
** point to a buffer containing an error message. It is the responsibility
** of the caller to (eventually) free this buffer using sqlite3_free().
*/
static int prepareAndCollectError(
sqlite3 *db,
sqlite3_stmt **ppStmt,
char **pzErrmsg,
const char *zSql
){
int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0);
if( rc!=SQLITE_OK ){
*pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
*ppStmt = 0;
}
return rc;
}
/*
** Reset the SQL statement passed as the first argument. Return a copy
** of the value returned by sqlite3_reset().
**
** If an error has occurred, then set *pzErrmsg to point to a buffer
** containing an error message. It is the responsibility of the caller
** to eventually free this buffer using sqlite3_free().
*/
static int resetAndCollectError(sqlite3_stmt *pStmt, char **pzErrmsg){
int rc = sqlite3_reset(pStmt);
if( rc!=SQLITE_OK ){
*pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(sqlite3_db_handle(pStmt)));
}
return rc;
}
/*
** Unless it is NULL, argument zSql points to a buffer allocated using
** sqlite3_malloc containing an SQL statement. This function prepares the SQL
** statement against database db and frees the buffer. If statement
** compilation is successful, *ppStmt is set to point to the new statement
** handle and SQLITE_OK is returned.
**
** Otherwise, if an error occurs, *ppStmt is set to NULL and an error code
** returned. In this case, *pzErrmsg may also be set to point to an error
** message. It is the responsibility of the caller to free this error message
** buffer using sqlite3_free().
**
** If argument zSql is NULL, this function assumes that an OOM has occurred.
** In this case SQLITE_NOMEM is returned and *ppStmt set to NULL.
*/
static int prepareFreeAndCollectError(
sqlite3 *db,
sqlite3_stmt **ppStmt,
char **pzErrmsg,
char *zSql
){
int rc;
assert( *pzErrmsg==0 );
if( zSql==0 ){
rc = SQLITE_NOMEM;
*ppStmt = 0;
}else{
rc = prepareAndCollectError(db, ppStmt, pzErrmsg, zSql);
sqlite3_free(zSql);
}
return rc;
}
/*
** Free the OtaObjIter.azTblCol[] and OtaObjIter.abTblPk[] arrays allocated
** by an earlier call to otaObjIterCacheTableInfo().
*/
static void otaObjIterFreeCols(OtaObjIter *pIter){
int i;
for(i=0; i<pIter->nTblCol; i++){
sqlite3_free(pIter->azTblCol[i]);
sqlite3_free(pIter->azTblType[i]);
}
sqlite3_free(pIter->azTblCol);
pIter->azTblCol = 0;
pIter->azTblType = 0;
pIter->aiSrcOrder = 0;
pIter->abTblPk = 0;
pIter->abNotNull = 0;
pIter->nTblCol = 0;
sqlite3_free(pIter->zMask);
pIter->zMask = 0;
pIter->eType = 0; /* Invalid value */
}
/*
** Finalize all statements and free all allocations that are specific to
** the current object (table/index pair).
*/
static void otaObjIterClearStatements(OtaObjIter *pIter){
sqlite3_finalize(pIter->pSelect);
sqlite3_finalize(pIter->pInsert);
sqlite3_finalize(pIter->pDelete);
sqlite3_finalize(pIter->pUpdate);
sqlite3_finalize(pIter->pTmpInsert);
pIter->pSelect = 0;
pIter->pInsert = 0;
pIter->pDelete = 0;
pIter->pUpdate = 0;
pIter->pTmpInsert = 0;
pIter->nCol = 0;
}
/*
** Clean up any resources allocated as part of the iterator object passed
** as the only argument.
*/
static void otaObjIterFinalize(OtaObjIter *pIter){
otaObjIterClearStatements(pIter);
sqlite3_finalize(pIter->pTblIter);
sqlite3_finalize(pIter->pIdxIter);
otaObjIterFreeCols(pIter);
memset(pIter, 0, sizeof(OtaObjIter));
}
/*
** Advance the iterator to the next position.
**
** If no error occurs, SQLITE_OK is returned and the iterator is left
** pointing to the next entry. Otherwise, an error code and message is
** left in the OTA handle passed as the first argument. A copy of the
** error code is returned.
*/
static int otaObjIterNext(sqlite3ota *p, OtaObjIter *pIter){
int rc = p->rc;
if( rc==SQLITE_OK ){
/* Free any SQLite statements used while processing the previous object */
otaObjIterClearStatements(pIter);
if( pIter->zIdx==0 ){
rc = sqlite3_exec(p->dbMain,
"DROP TRIGGER IF EXISTS temp.ota_insert_tr;"
"DROP TRIGGER IF EXISTS temp.ota_update1_tr;"
"DROP TRIGGER IF EXISTS temp.ota_update2_tr;"
"DROP TRIGGER IF EXISTS temp.ota_delete_tr;"
, 0, 0, &p->zErrmsg
);
}
if( rc==SQLITE_OK ){
if( pIter->bCleanup ){
otaObjIterFreeCols(pIter);
pIter->bCleanup = 0;
rc = sqlite3_step(pIter->pTblIter);
if( rc!=SQLITE_ROW ){
rc = resetAndCollectError(pIter->pTblIter, &p->zErrmsg);
pIter->zTbl = 0;
}else{
pIter->zTbl = (const char*)sqlite3_column_text(pIter->pTblIter, 0);
rc = pIter->zTbl ? SQLITE_OK : SQLITE_NOMEM;
}
}else{
if( pIter->zIdx==0 ){
sqlite3_stmt *pIdx = pIter->pIdxIter;
rc = sqlite3_bind_text(pIdx, 1, pIter->zTbl, -1, SQLITE_STATIC);
}
if( rc==SQLITE_OK ){
rc = sqlite3_step(pIter->pIdxIter);
if( rc!=SQLITE_ROW ){
rc = resetAndCollectError(pIter->pIdxIter, &p->zErrmsg);
pIter->bCleanup = 1;
pIter->zIdx = 0;
}else{
pIter->zIdx = (const char*)sqlite3_column_text(pIter->pIdxIter, 0);
pIter->iTnum = sqlite3_column_int(pIter->pIdxIter, 1);
pIter->bUnique = sqlite3_column_int(pIter->pIdxIter, 2);
rc = pIter->zIdx ? SQLITE_OK : SQLITE_NOMEM;
}
}
}
}
}
if( rc!=SQLITE_OK ){
otaObjIterFinalize(pIter);
p->rc = rc;
}
return rc;
}
/*
** Initialize the iterator structure passed as the second argument.
**
** If no error occurs, SQLITE_OK is returned and the iterator is left
** pointing to the first entry. Otherwise, an error code and message is
** left in the OTA handle passed as the first argument. A copy of the
** error code is returned.
*/
static int otaObjIterFirst(sqlite3ota *p, OtaObjIter *pIter){
int rc;
memset(pIter, 0, sizeof(OtaObjIter));
rc = prepareAndCollectError(p->dbOta, &pIter->pTblIter, &p->zErrmsg,
"SELECT substr(name, 6) FROM sqlite_master "
"WHERE type='table' AND name LIKE 'data_%'"
);
if( rc==SQLITE_OK ){
rc = prepareAndCollectError(p->dbMain, &pIter->pIdxIter, &p->zErrmsg,
"SELECT name, rootpage, sql IS NULL OR substr(8, 6)=='UNIQUE' "
" FROM main.sqlite_master "
" WHERE type='index' AND tbl_name = ?"
);
}
pIter->bCleanup = 1;
p->rc = rc;
return otaObjIterNext(p, pIter);
}
/*
** This is a wrapper around "sqlite3_mprintf(zFmt, ...)". If an OOM occurs,
** an error code is stored in the OTA handle passed as the first argument.
**
** If an error has already occurred (p->rc is already set to something other
** than SQLITE_OK), then this function returns NULL without modifying the
** stored error code. In this case it still calls sqlite3_free() on any
** printf() parameters associated with %z conversions.
*/
static char *otaMPrintf(sqlite3ota *p, const char *zFmt, ...){
char *zSql = 0;
va_list ap;
va_start(ap, zFmt);
zSql = sqlite3_vmprintf(zFmt, ap);
if( p->rc==SQLITE_OK ){
if( zSql==0 ) p->rc = SQLITE_NOMEM;
}else{
sqlite3_free(zSql);
zSql = 0;
}
va_end(ap);
return zSql;
}
/*
** Argument zFmt is a sqlite3_mprintf() style format string. The trailing
** arguments are the usual subsitution values. This function performs
** the printf() style substitutions and executes the result as an SQL
** statement on the OTA handles database.
**
** If an error occurs, an error code and error message is stored in the
** OTA handle. If an error has already occurred when this function is
** called, it is a no-op.
*/
static int otaMPrintfExec(sqlite3ota *p, sqlite3 *db, const char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
char *zSql = sqlite3_vmprintf(zFmt, ap);
if( p->rc==SQLITE_OK ){
if( zSql==0 ){
p->rc = SQLITE_NOMEM;
}else{
p->rc = sqlite3_exec(db, zSql, 0, 0, &p->zErrmsg);
}
}
sqlite3_free(zSql);
va_end(ap);
return p->rc;
}
/*
** Attempt to allocate and return a pointer to a zeroed block of nByte
** bytes.
**
** If an error (i.e. an OOM condition) occurs, return NULL and leave an
** error code in the ota handle passed as the first argument. Or, if an
** error has already occurred when this function is called, return NULL
** immediately without attempting the allocation or modifying the stored
** error code.
*/
static void *otaMalloc(sqlite3ota *p, int nByte){
void *pRet = 0;
if( p->rc==SQLITE_OK ){
pRet = sqlite3_malloc(nByte);
if( pRet==0 ){
p->rc = SQLITE_NOMEM;
}else{
memset(pRet, 0, nByte);
}
}
return pRet;
}
/*
** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that
** there is room for at least nCol elements. If an OOM occurs, store an
** error code in the OTA handle passed as the first argument.
*/
static void otaAllocateIterArrays(sqlite3ota *p, OtaObjIter *pIter, int nCol){
int nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol;
char **azNew;
azNew = (char**)otaMalloc(p, nByte);
if( azNew ){
pIter->azTblCol = azNew;
pIter->azTblType = &azNew[nCol];
pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol];
pIter->abTblPk = (u8*)&pIter->aiSrcOrder[nCol];
pIter->abNotNull = (u8*)&pIter->abTblPk[nCol];
pIter->abIndexed = (u8*)&pIter->abNotNull[nCol];
}
}
/*
** The first argument must be a nul-terminated string. This function
** returns a copy of the string in memory obtained from sqlite3_malloc().
** It is the responsibility of the caller to eventually free this memory
** using sqlite3_free().
**
** If an OOM condition is encountered when attempting to allocate memory,
** output variable (*pRc) is set to SQLITE_NOMEM before returning. Otherwise,
** if the allocation succeeds, (*pRc) is left unchanged.
*/
static char *otaStrndup(const char *zStr, int *pRc){
char *zRet = 0;
assert( *pRc==SQLITE_OK );
if( zStr ){
int nCopy = strlen(zStr) + 1;
zRet = (char*)sqlite3_malloc(nCopy);
if( zRet ){
memcpy(zRet, zStr, nCopy);
}else{
*pRc = SQLITE_NOMEM;
}
}
return zRet;
}
/*
** Finalize the statement passed as the second argument.
**
** If the sqlite3_finalize() call indicates that an error occurs, and the
** ota handle error code is not already set, set the error code and error
** message accordingly.
*/
static void otaFinalize(sqlite3ota *p, sqlite3_stmt *pStmt){
sqlite3 *db = sqlite3_db_handle(pStmt);
int rc = sqlite3_finalize(pStmt);
if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){
p->rc = rc;
p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
}
}
/* Determine the type of a table.
**
** peType is of type (int*), a pointer to an output parameter of type
** (int). This call sets the output parameter as follows, depending
** on the type of the table specified by parameters dbName and zTbl.
**
** OTA_PK_NOTABLE: No such table.
** OTA_PK_NONE: Table has an implicit rowid.
** OTA_PK_IPK: Table has an explicit IPK column.
** OTA_PK_EXTERNAL: Table has an external PK index.
** OTA_PK_WITHOUT_ROWID: Table is WITHOUT ROWID.
** OTA_PK_VTAB: Table is a virtual table.
**
** Argument *piPk is also of type (int*), and also points to an output
** parameter. Unless the table has an external primary key index
** (i.e. unless *peType is set to 3), then *piPk is set to zero. Or,
** if the table does have an external primary key index, then *piPk
** is set to the root page number of the primary key index before
** returning.
**
** ALGORITHM:
**
** if( no entry exists in sqlite_master ){
** return OTA_PK_NOTABLE
** }else if( sql for the entry starts with "CREATE VIRTUAL" ){
** return OTA_PK_VTAB
** }else if( "PRAGMA index_list()" for the table contains a "pk" index ){
** if( the index that is the pk exists in sqlite_master ){
** *piPK = rootpage of that index.
** return OTA_PK_EXTERNAL
** }else{
** return OTA_PK_WITHOUT_ROWID
** }
** }else if( "PRAGMA table_info()" lists one or more "pk" columns ){
** return OTA_PK_IPK
** }else{
** return OTA_PK_NONE
** }
*/
static void otaTableType(
sqlite3ota *p,
const char *zTab,
int *peType,
int *piTnum,
int *piPk
){
/*
** 0) SELECT count(*) FROM sqlite_master where name=%Q AND IsVirtual(%Q)
** 1) PRAGMA index_list = ?
** 2) SELECT count(*) FROM sqlite_master where name=%Q
** 3) PRAGMA table_info = ?
*/
sqlite3_stmt *aStmt[4] = {0, 0, 0, 0};
*peType = OTA_PK_NOTABLE;
*piPk = 0;
assert( p->rc==SQLITE_OK );
p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[0], &p->zErrmsg,
sqlite3_mprintf(
"SELECT (sql LIKE 'create virtual%%'), rootpage"
" FROM sqlite_master"
" WHERE name=%Q", zTab
));
if( p->rc!=SQLITE_OK || sqlite3_step(aStmt[0])!=SQLITE_ROW ){
/* Either an error, or no such table. */
goto otaTableType_end;
}
if( sqlite3_column_int(aStmt[0], 0) ){
*peType = OTA_PK_VTAB; /* virtual table */
goto otaTableType_end;
}
*piTnum = sqlite3_column_int(aStmt[0], 1);
p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[1], &p->zErrmsg,
sqlite3_mprintf("PRAGMA index_list=%Q",zTab)
);
if( p->rc ) goto otaTableType_end;
while( sqlite3_step(aStmt[1])==SQLITE_ROW ){
const u8 *zOrig = sqlite3_column_text(aStmt[1], 3);
const u8 *zIdx = sqlite3_column_text(aStmt[1], 1);
if( zOrig && zIdx && zOrig[0]=='p' ){
p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[2], &p->zErrmsg,
sqlite3_mprintf(
"SELECT rootpage FROM sqlite_master WHERE name = %Q", zIdx
));
if( p->rc==SQLITE_OK ){
if( sqlite3_step(aStmt[2])==SQLITE_ROW ){
*piPk = sqlite3_column_int(aStmt[2], 0);
*peType = OTA_PK_EXTERNAL;
}else{
*peType = OTA_PK_WITHOUT_ROWID;
}
}
goto otaTableType_end;
}
}
p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[3], &p->zErrmsg,
sqlite3_mprintf("PRAGMA table_info=%Q",zTab)
);
if( p->rc==SQLITE_OK ){
while( sqlite3_step(aStmt[3])==SQLITE_ROW ){
if( sqlite3_column_int(aStmt[3],5)>0 ){
*peType = OTA_PK_IPK; /* explicit IPK column */
goto otaTableType_end;
}
}
*peType = OTA_PK_NONE;
}
otaTableType_end: {
int i;
for(i=0; i<sizeof(aStmt)/sizeof(aStmt[0]); i++){
otaFinalize(p, aStmt[i]);
}
}
}
/*
** This is a helper function for otaObjIterCacheTableInfo(). It populates
** the pIter->abIndexed[] array.
*/
static void otaObjIterCacheIndexedCols(sqlite3ota *p, OtaObjIter *pIter){
sqlite3_stmt *pList = 0;
int bIndex = 0;
if( p->rc==SQLITE_OK ){
memcpy(pIter->abIndexed, pIter->abTblPk, sizeof(u8)*pIter->nTblCol);
p->rc = prepareFreeAndCollectError(p->dbMain, &pList, &p->zErrmsg,
sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
);
}
while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pList) ){
const char *zIdx = (const char*)sqlite3_column_text(pList, 1);
sqlite3_stmt *pXInfo = 0;
if( zIdx==0 ) break;
p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
);
while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
int iCid = sqlite3_column_int(pXInfo, 1);
if( iCid>=0 ) pIter->abIndexed[iCid] = 1;
}
otaFinalize(p, pXInfo);
bIndex = 1;
}
otaFinalize(p, pList);
if( bIndex==0 ) pIter->abIndexed = 0;
}
/*
** If they are not already populated, populate the pIter->azTblCol[],
** pIter->abTblPk[], pIter->nTblCol and pIter->bRowid variables according to
** the table (not index) that the iterator currently points to.
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. If
** an error does occur, an error code and error message are also left in
** the OTA handle.
*/
static int otaObjIterCacheTableInfo(sqlite3ota *p, OtaObjIter *pIter){
if( pIter->azTblCol==0 ){
sqlite3_stmt *pStmt = 0;
int nCol = 0;
int i; /* for() loop iterator variable */
int bOtaRowid = 0; /* If input table has column "ota_rowid" */
int iOrder = 0;
int iTnum = 0;
/* Figure out the type of table this step will deal with. */
assert( pIter->eType==0 );
otaTableType(p, pIter->zTbl, &pIter->eType, &iTnum, &pIter->iPkTnum);
if( p->rc==SQLITE_OK && pIter->eType==OTA_PK_NOTABLE ){
p->rc = SQLITE_ERROR;
p->zErrmsg = sqlite3_mprintf("no such table: %s", pIter->zTbl);
}
if( p->rc ) return p->rc;
if( pIter->zIdx==0 ) pIter->iTnum = iTnum;
assert( pIter->eType==OTA_PK_NONE || pIter->eType==OTA_PK_IPK
|| pIter->eType==OTA_PK_EXTERNAL || pIter->eType==OTA_PK_WITHOUT_ROWID
|| pIter->eType==OTA_PK_VTAB
);
/* Populate the azTblCol[] and nTblCol variables based on the columns
** of the input table. Ignore any input table columns that begin with
** "ota_". */
p->rc = prepareFreeAndCollectError(p->dbOta, &pStmt, &p->zErrmsg,
sqlite3_mprintf("SELECT * FROM 'data_%q'", pIter->zTbl)
);
if( p->rc==SQLITE_OK ){
nCol = sqlite3_column_count(pStmt);
otaAllocateIterArrays(p, pIter, nCol);
}
for(i=0; p->rc==SQLITE_OK && i<nCol; i++){
const char *zName = (const char*)sqlite3_column_name(pStmt, i);
if( sqlite3_strnicmp("ota_", zName, 4) ){
char *zCopy = otaStrndup(zName, &p->rc);
pIter->aiSrcOrder[pIter->nTblCol] = pIter->nTblCol;
pIter->azTblCol[pIter->nTblCol++] = zCopy;
}
else if( 0==sqlite3_stricmp("ota_rowid", zName) ){
bOtaRowid = 1;
}
}
sqlite3_finalize(pStmt);
pStmt = 0;
if( p->rc==SQLITE_OK
&& bOtaRowid!=(pIter->eType==OTA_PK_VTAB || pIter->eType==OTA_PK_NONE)
){
p->rc = SQLITE_ERROR;
p->zErrmsg = sqlite3_mprintf(
"table data_%q %s ota_rowid column", pIter->zTbl,
(bOtaRowid ? "may not have" : "requires")
);
}
/* Check that all non-HIDDEN columns in the destination table are also
** present in the input table. Populate the abTblPk[], azTblType[] and
** aiTblOrder[] arrays at the same time. */
if( p->rc==SQLITE_OK ){
p->rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
sqlite3_mprintf("PRAGMA table_info(%Q)", pIter->zTbl)
);
}
while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
const char *zName = (const char*)sqlite3_column_text(pStmt, 1);
if( zName==0 ) break; /* An OOM - finalize() below returns S_NOMEM */
for(i=iOrder; i<pIter->nTblCol; i++){
if( 0==strcmp(zName, pIter->azTblCol[i]) ) break;
}
if( i==pIter->nTblCol ){
p->rc = SQLITE_ERROR;
p->zErrmsg = sqlite3_mprintf("column missing from data_%q: %s",
pIter->zTbl, zName
);
}else{
int iPk = sqlite3_column_int(pStmt, 5);
int bNotNull = sqlite3_column_int(pStmt, 3);
const char *zType = (const char*)sqlite3_column_text(pStmt, 2);
if( i!=iOrder ){
SWAP(int, pIter->aiSrcOrder[i], pIter->aiSrcOrder[iOrder]);
SWAP(char*, pIter->azTblCol[i], pIter->azTblCol[iOrder]);
}
pIter->azTblType[iOrder] = otaStrndup(zType, &p->rc);
pIter->abTblPk[iOrder] = (iPk!=0);
pIter->abNotNull[iOrder] = (u8)bNotNull || (iPk!=0);
iOrder++;
}
}
otaFinalize(p, pStmt);
otaObjIterCacheIndexedCols(p, pIter);
assert( pIter->eType!=OTA_PK_VTAB || pIter->abIndexed==0 );
}
return p->rc;
}
/*
** This function constructs and returns a pointer to a nul-terminated
** string containing some SQL clause or list based on one or more of the
** column names currently stored in the pIter->azTblCol[] array.
*/
static char *otaObjIterGetCollist(
sqlite3ota *p, /* OTA object */
OtaObjIter *pIter /* Object iterator for column names */
){
char *zList = 0;
const char *zSep = "";
int i;
for(i=0; i<pIter->nTblCol; i++){
const char *z = pIter->azTblCol[i];
zList = otaMPrintf(p, "%z%s\"%w\"", zList, zSep, z);
zSep = ", ";
}
return zList;
}
/*
** This function is used to create a SELECT list (the list of SQL
** expressions that follows a SELECT keyword) for a SELECT statement
** used to read from an data_xxx or ota_tmp_xxx table while updating the
** index object currently indicated by the iterator object passed as the
** second argument. A "PRAGMA index_xinfo = <idxname>" statement is used
** to obtain the required information.
**
** If the index is of the following form:
**
** CREATE INDEX i1 ON t1(c, b COLLATE nocase);
**
** and "t1" is a table with an explicit INTEGER PRIMARY KEY column
** "ipk", the returned string is:
**
** "`c` COLLATE 'BINARY', `b` COLLATE 'NOCASE', `ipk` COLLATE 'BINARY'"
**
** As well as the returned string, three other malloc'd strings are
** returned via output parameters. As follows:
**
** pzImposterCols: ...
** pzImposterPk: ...
** pzWhere: ...
*/
static char *otaObjIterGetIndexCols(
sqlite3ota *p, /* OTA object */
OtaObjIter *pIter, /* Object iterator for column names */
char **pzImposterCols, /* OUT: Columns for imposter table */
char **pzImposterPk, /* OUT: Imposter PK clause */
char **pzWhere, /* OUT: WHERE clause */
int *pnBind /* OUT: Total number of columns */
){
int rc = p->rc; /* Error code */
int rc2; /* sqlite3_finalize() return code */
char *zRet = 0; /* String to return */
char *zImpCols = 0; /* String to return via *pzImposterCols */
char *zImpPK = 0; /* String to return via *pzImposterPK */
char *zWhere = 0; /* String to return via *pzWhere */
int nBind = 0; /* Value to return via *pnBind */
const char *zCom = ""; /* Set to ", " later on */
const char *zAnd = ""; /* Set to " AND " later on */
sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = ? */
if( rc==SQLITE_OK ){
assert( p->zErrmsg==0 );
rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx)
);
}
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
int iCid = sqlite3_column_int(pXInfo, 1);
int bDesc = sqlite3_column_int(pXInfo, 3);
const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
const char *zCol;
const char *zType;
if( iCid<0 ){
/* An integer primary key. If the table has an explicit IPK, use
** its name. Otherwise, use "ota_rowid". */
if( pIter->eType==OTA_PK_IPK ){
int i;
for(i=0; pIter->abTblPk[i]==0; i++);
assert( i<pIter->nTblCol );
zCol = pIter->azTblCol[i];
}else{
zCol = "ota_rowid";
}
zType = "INTEGER";
}else{
zCol = pIter->azTblCol[iCid];
zType = pIter->azTblType[iCid];
}
zRet = sqlite3_mprintf("%z%s\"%w\" COLLATE %Q", zRet, zCom, zCol, zCollate);
if( pIter->bUnique==0 || sqlite3_column_int(pXInfo, 5) ){
const char *zOrder = (bDesc ? " DESC" : "");
zImpPK = sqlite3_mprintf("%z%s\"ota_imp_%d%w\"%s",
zImpPK, zCom, nBind, zCol, zOrder
);
}
zImpCols = sqlite3_mprintf("%z%s\"ota_imp_%d%w\" %s COLLATE %Q",
zImpCols, zCom, nBind, zCol, zType, zCollate
);
zWhere = sqlite3_mprintf(
"%z%s\"ota_imp_%d%w\" IS ?", zWhere, zAnd, nBind, zCol
);
if( zRet==0 || zImpPK==0 || zImpCols==0 || zWhere==0 ) rc = SQLITE_NOMEM;
zCom = ", ";
zAnd = " AND ";
nBind++;
}
rc2 = sqlite3_finalize(pXInfo);
if( rc==SQLITE_OK ) rc = rc2;
if( rc!=SQLITE_OK ){
sqlite3_free(zRet);
sqlite3_free(zImpCols);
sqlite3_free(zImpPK);
sqlite3_free(zWhere);
zRet = 0;
zImpCols = 0;
zImpPK = 0;
zWhere = 0;
p->rc = rc;
}
*pzImposterCols = zImpCols;
*pzImposterPk = zImpPK;
*pzWhere = zWhere;
*pnBind = nBind;
return zRet;
}
/*
** Assuming the current table columns are "a", "b" and "c", and the zObj
** paramter is passed "old", return a string of the form:
**
** "old.a, old.b, old.b"
**
** With the column names escaped.
**
** For tables with implicit rowids - OTA_PK_EXTERNAL and OTA_PK_NONE, append
** the text ", old._rowid_" to the returned value.
*/
static char *otaObjIterGetOldlist(
sqlite3ota *p,
OtaObjIter *pIter,
const char *zObj
){
char *zList = 0;
if( p->rc==SQLITE_OK && pIter->abIndexed ){
const char *zS = "";
int i;
for(i=0; i<pIter->nTblCol; i++){
if( pIter->abIndexed[i] ){
const char *zCol = pIter->azTblCol[i];
zList = sqlite3_mprintf("%z%s%s.\"%w\"", zList, zS, zObj, zCol);
}else{
zList = sqlite3_mprintf("%z%sNULL", zList, zS);
}
zS = ", ";
if( zList==0 ){
p->rc = SQLITE_NOMEM;
break;
}
}
/* For a table with implicit rowids, append "old._rowid_" to the list. */
if( pIter->eType==OTA_PK_EXTERNAL || pIter->eType==OTA_PK_NONE ){
zList = otaMPrintf(p, "%z, %s._rowid_", zList, zObj);
}
}
return zList;
}
/*
** Return an expression that can be used in a WHERE clause to match the
** primary key of the current table. For example, if the table is:
**
** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c));
**
** Return the string:
**
** "b = ?1 AND c = ?2"
*/
static char *otaObjIterGetWhere(
sqlite3ota *p,
OtaObjIter *pIter
){
char *zList = 0;
if( pIter->eType==OTA_PK_VTAB || pIter->eType==OTA_PK_NONE ){
zList = otaMPrintf(p, "_rowid_ = ?%d", pIter->nTblCol+1);
}else if( pIter->eType==OTA_PK_EXTERNAL ){
const char *zSep = "";
int i;
for(i=0; i<pIter->nTblCol; i++){
if( pIter->abTblPk[i] ){
zList = otaMPrintf(p, "%z%sc%d=?%d", zList, zSep, i, i+1);
zSep = " AND ";
}
}
zList = otaMPrintf(p,
"_rowid_ = (SELECT id FROM ota_imposter2 WHERE %z)", zList
);
}else{
const char *zSep = "";
int i;
for(i=0; i<pIter->nTblCol; i++){
if( pIter->abTblPk[i] ){
const char *zCol = pIter->azTblCol[i];
zList = otaMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, zCol, i+1);
zSep = " AND ";
}
}
}
return zList;
}
/*
** The SELECT statement iterating through the keys for the current object
** (p->objiter.pSelect) currently points to a valid row. However, there
** is something wrong with the ota_control value in the ota_control value
** stored in the (p->nCol+1)'th column. Set the error code and error message
** of the OTA handle to something reflecting this.
*/
static void otaBadControlError(sqlite3ota *p){
p->rc = SQLITE_ERROR;
p->zErrmsg = sqlite3_mprintf("invalid ota_control value");
}
/*
** Return a nul-terminated string containing the comma separated list of
** assignments that should be included following the "SET" keyword of
** an UPDATE statement used to update the table object that the iterator
** passed as the second argument currently points to if the ota_control
** column of the data_xxx table entry is set to zMask.
**
** The memory for the returned string is obtained from sqlite3_malloc().
** It is the responsibility of the caller to eventually free it using
** sqlite3_free().
**
** If an OOM error is encountered when allocating space for the new
** string, an error code is left in the ota handle passed as the first
** argument and NULL is returned. Or, if an error has already occurred
** when this function is called, NULL is returned immediately, without
** attempting the allocation or modifying the stored error code.
*/
static char *otaObjIterGetSetlist(
sqlite3ota *p,
OtaObjIter *pIter,
const char *zMask
){
char *zList = 0;
if( p->rc==SQLITE_OK ){
int i;
if( strlen(zMask)!=pIter->nTblCol ){
otaBadControlError(p);
}else{
const char *zSep = "";
for(i=0; i<pIter->nTblCol; i++){
char c = zMask[pIter->aiSrcOrder[i]];
if( c=='x' ){
zList = otaMPrintf(p, "%z%s\"%w\"=?%d",
zList, zSep, pIter->azTblCol[i], i+1
);
zSep = ", ";
}
if( c=='d' ){
zList = otaMPrintf(p, "%z%s\"%w\"=ota_delta(\"%w\", ?%d)",
zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
);
zSep = ", ";
}
}
}
}
return zList;
}
/*
** Return a nul-terminated string consisting of nByte comma separated
** "?" expressions. For example, if nByte is 3, return a pointer to
** a buffer containing the string "?,?,?".
**
** The memory for the returned string is obtained from sqlite3_malloc().
** It is the responsibility of the caller to eventually free it using
** sqlite3_free().
**
** If an OOM error is encountered when allocating space for the new
** string, an error code is left in the ota handle passed as the first
** argument and NULL is returned. Or, if an error has already occurred
** when this function is called, NULL is returned immediately, without
** attempting the allocation or modifying the stored error code.
*/
static char *otaObjIterGetBindlist(sqlite3ota *p, int nBind){
char *zRet = 0;
int nByte = nBind*2 + 1;
zRet = (char*)otaMalloc(p, nByte);
if( zRet ){
int i;
for(i=0; i<nBind; i++){
zRet[i*2] = '?';
zRet[i*2+1] = (i+1==nBind) ? '\0' : ',';
}
}
return zRet;
}
/*
** The iterator currently points to a table (not index) of type
** OTA_PK_WITHOUT_ROWID. This function creates the PRIMARY KEY
** declaration for the corresponding imposter table. For example,
** if the iterator points to a table created as:
**
** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, a DESC)) WITHOUT ROWID
**
** this function returns:
**
** PRIMARY KEY("b", "a" DESC)
*/
static char *otaWithoutRowidPK(sqlite3ota *p, OtaObjIter *pIter){
char *z = 0;
assert( pIter->zIdx==0 );
if( p->rc==SQLITE_OK ){
const char *zSep = "PRIMARY KEY(";
sqlite3_stmt *pXList = 0; /* PRAGMA index_list = (pIter->zTbl) */
sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = <pk-index> */
p->rc = prepareFreeAndCollectError(p->dbMain, &pXList, &p->zErrmsg,
sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
);
while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXList) ){
const char *zOrig = (const char*)sqlite3_column_text(pXList,3);
if( zOrig && strcmp(zOrig, "pk")==0 ){
const char *zIdx = (const char*)sqlite3_column_text(pXList,1);
if( zIdx ){
p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
);
}
break;
}
}
otaFinalize(p, pXList);
while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
if( sqlite3_column_int(pXInfo, 5) ){
/* int iCid = sqlite3_column_int(pXInfo, 0); */
const char *zCol = (const char*)sqlite3_column_text(pXInfo, 2);
const char *zDesc = sqlite3_column_int(pXInfo, 3) ? " DESC" : "";
z = otaMPrintf(p, "%z%s\"%w\"%s", z, zSep, zCol, zDesc);
zSep = ", ";
}
}
z = otaMPrintf(p, "%z)", z);
otaFinalize(p, pXInfo);
}
return z;
}
/*
** This function creates the second imposter table used when writing to
** a table b-tree where the table has an external primary key. If the
** iterator passed as the second argument does not currently point to
** a table (not index) with an external primary key, this function is a
** no-op.
**
** Assuming the iterator does point to a table with an external PK, this
** function creates a WITHOUT ROWID imposter table named "ota_imposter2"
** used to access that PK index. For example, if the target table is
** declared as follows:
**
** CREATE TABLE t1(a, b TEXT, c REAL, PRIMARY KEY(b, c));
**
** then the imposter table schema is:
**
** CREATE TABLE ota_imposter2(c1 TEXT, c2 REAL, id INTEGER) WITHOUT ROWID;
**
*/
static void otaCreateImposterTable2(sqlite3ota *p, OtaObjIter *pIter){
if( p->rc==SQLITE_OK && pIter->eType==OTA_PK_EXTERNAL ){
int tnum = pIter->iPkTnum; /* Root page of PK index */
sqlite3_stmt *pQuery = 0; /* SELECT name ... WHERE rootpage = $tnum */
const char *zIdx = 0; /* Name of PK index */
sqlite3_stmt *pXInfo = 0; /* PRAGMA main.index_xinfo = $zIdx */
const char *zComma = "";
char *zCols = 0; /* Used to build up list of table cols */
char *zPk = 0; /* Used to build up table PK declaration */
/* Figure out the name of the primary key index for the current table.
** This is needed for the argument to "PRAGMA index_xinfo". Set
** zIdx to point to a nul-terminated string containing this name. */
p->rc = prepareAndCollectError(p->dbMain, &pQuery, &p->zErrmsg,
"SELECT name FROM sqlite_master WHERE rootpage = ?"
);
if( p->rc==SQLITE_OK ){
sqlite3_bind_int(pQuery, 1, tnum);
if( SQLITE_ROW==sqlite3_step(pQuery) ){
zIdx = (const char*)sqlite3_column_text(pQuery, 0);
}
}
if( zIdx ){
p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
);
}
otaFinalize(p, pQuery);
while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
int bKey = sqlite3_column_int(pXInfo, 5);
if( bKey ){
int iCid = sqlite3_column_int(pXInfo, 1);
int bDesc = sqlite3_column_int(pXInfo, 3);
const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
zCols = otaMPrintf(p, "%z%sc%d %s COLLATE %s", zCols, zComma,
iCid, pIter->azTblType[iCid], zCollate
);
zPk = otaMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":"");
zComma = ", ";
}
}
zCols = otaMPrintf(p, "%z, id INTEGER", zCols);
otaFinalize(p, pXInfo);
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
otaMPrintfExec(p, p->dbMain,
"CREATE TABLE ota_imposter2(%z, PRIMARY KEY(%z)) WITHOUT ROWID",
zCols, zPk
);
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
}
}
/*
** If an error has already occurred when this function is called, it
** immediately returns zero (without doing any work). Or, if an error
** occurs during the execution of this function, it sets the error code
** in the sqlite3ota object indicated by the first argument and returns
** zero.
**
** The iterator passed as the second argument is guaranteed to point to
** a table (not an index) when this function is called. This function
** attempts to create any imposter table required to write to the main
** table b-tree of the table before returning. Non-zero is returned if
** an imposter table are created, or zero otherwise.
**
** An imposter table is required in all cases except OTA_PK_VTAB. Only
** virtual tables are written to directly. The imposter table has the
** same schema as the actual target table (less any UNIQUE constraints).
** More precisely, the "same schema" means the same columns, types,
** collation sequences. For tables that do not have an external PRIMARY
** KEY, it also means the same PRIMARY KEY declaration.
*/
static void otaCreateImposterTable(sqlite3ota *p, OtaObjIter *pIter){
if( p->rc==SQLITE_OK && pIter->eType!=OTA_PK_VTAB ){
int tnum = pIter->iTnum;
const char *zComma = "";
char *zSql = 0;
int iCol;
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
for(iCol=0; p->rc==SQLITE_OK && iCol<pIter->nTblCol; iCol++){
const char *zPk = "";
const char *zCol = pIter->azTblCol[iCol];
const char *zColl = 0;
p->rc = sqlite3_table_column_metadata(
p->dbMain, "main", pIter->zTbl, zCol, 0, &zColl, 0, 0, 0
);
if( pIter->eType==OTA_PK_IPK && pIter->abTblPk[iCol] ){
/* If the target table column is an "INTEGER PRIMARY KEY", add
** "PRIMARY KEY" to the imposter table column declaration. */
zPk = "PRIMARY KEY ";
}
zSql = otaMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %s%s",
zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl,
(pIter->abNotNull[iCol] ? " NOT NULL" : "")
);
zComma = ", ";
}
if( pIter->eType==OTA_PK_WITHOUT_ROWID ){
char *zPk = otaWithoutRowidPK(p, pIter);
if( zPk ){
zSql = otaMPrintf(p, "%z, %z", zSql, zPk);
}
}
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
otaMPrintfExec(p, p->dbMain, "CREATE TABLE \"ota_imp_%w\"(%z)%s",
pIter->zTbl, zSql,
(pIter->eType==OTA_PK_WITHOUT_ROWID ? " WITHOUT ROWID" : "")
);
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
}
}
/*
** Prepare a statement used to insert rows into the "ota_tmp_xxx" table.
** Specifically a statement of the form:
**
** INSERT INTO ota_tmp_xxx VALUES(?, ?, ? ...);
**
** The number of bound variables is equal to the number of columns in
** the target table, plus one (for the ota_control column), plus one more
** (for the ota_rowid column) if the target table is an implicit IPK or
** virtual table.
*/
static void otaObjIterPrepareTmpInsert(
sqlite3ota *p,
OtaObjIter *pIter,
const char *zCollist,
const char *zOtaRowid
){
int bOtaRowid = (pIter->eType==OTA_PK_EXTERNAL || pIter->eType==OTA_PK_NONE);
char *zBind = otaObjIterGetBindlist(p, pIter->nTblCol + 1 + bOtaRowid);
if( zBind ){
assert( pIter->pTmpInsert==0 );
p->rc = prepareFreeAndCollectError(
p->dbOta, &pIter->pTmpInsert, &p->zErrmsg, sqlite3_mprintf(
"INSERT INTO 'ota_tmp_%q'(ota_control,%s%s) VALUES(%z)",
pIter->zTbl, zCollist, zOtaRowid, zBind
));
}
}
static void otaTmpInsertFunc(
sqlite3_context *pCtx,
int nVal,
sqlite3_value **apVal
){
sqlite3ota *p = sqlite3_user_data(pCtx);
int rc = SQLITE_OK;
int i;
for(i=0; rc==SQLITE_OK && i<nVal; i++){
rc = sqlite3_bind_value(p->objiter.pTmpInsert, i+1, apVal[i]);
}
if( rc==SQLITE_OK ){
sqlite3_step(p->objiter.pTmpInsert);
rc = sqlite3_reset(p->objiter.pTmpInsert);
}
if( rc!=SQLITE_OK ){
sqlite3_result_error_code(pCtx, rc);
}
}
/*
** Ensure that the SQLite statement handles required to update the
** target database object currently indicated by the iterator passed
** as the second argument are available.
*/
static int otaObjIterPrepareAll(
sqlite3ota *p,
OtaObjIter *pIter,
int nOffset /* Add "LIMIT -1 OFFSET $nOffset" to SELECT */
){
assert( pIter->bCleanup==0 );
if( pIter->pSelect==0 && otaObjIterCacheTableInfo(p, pIter)==SQLITE_OK ){
const int tnum = pIter->iTnum;
char *zCollist = 0; /* List of indexed columns */
char **pz = &p->zErrmsg;
const char *zIdx = pIter->zIdx;
char *zLimit = 0;
if( nOffset ){
zLimit = sqlite3_mprintf(" LIMIT -1 OFFSET %d", nOffset);
if( !zLimit ) p->rc = SQLITE_NOMEM;
}
if( zIdx ){
const char *zTbl = pIter->zTbl;
char *zImposterCols = 0; /* Columns for imposter table */
char *zImposterPK = 0; /* Primary key declaration for imposter */
char *zWhere = 0; /* WHERE clause on PK columns */
char *zBind = 0;
int nBind = 0;
assert( pIter->eType!=OTA_PK_VTAB );
zCollist = otaObjIterGetIndexCols(
p, pIter, &zImposterCols, &zImposterPK, &zWhere, &nBind
);
zBind = otaObjIterGetBindlist(p, nBind);
/* Create the imposter table used to write to this index. */
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1,tnum);
otaMPrintfExec(p, p->dbMain,
"CREATE TABLE \"ota_imp_%w\"( %s, PRIMARY KEY( %s ) ) WITHOUT ROWID",
zTbl, zImposterCols, zImposterPK
);
sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
/* Create the statement to insert index entries */
pIter->nCol = nBind;
if( p->rc==SQLITE_OK ){
p->rc = prepareFreeAndCollectError(
p->dbMain, &pIter->pInsert, &p->zErrmsg,
sqlite3_mprintf("INSERT INTO \"ota_imp_%w\" VALUES(%s)", zTbl, zBind)
);
}
/* And to delete index entries */
if( p->rc==SQLITE_OK ){
p->rc = prepareFreeAndCollectError(
p->dbMain, &pIter->pDelete, &p->zErrmsg,
sqlite3_mprintf("DELETE FROM \"ota_imp_%w\" WHERE %s", zTbl, zWhere)
);
}
/* Create the SELECT statement to read keys in sorted order */
if( p->rc==SQLITE_OK ){
char *zSql;
if( pIter->eType==OTA_PK_EXTERNAL || pIter->eType==OTA_PK_NONE ){
zSql = sqlite3_mprintf(
"SELECT %s, ota_control FROM 'ota_tmp_%q' ORDER BY %s%s",
zCollist, pIter->zTbl,
zCollist, zLimit
);
}else{
zSql = sqlite3_mprintf(
"SELECT %s, ota_control FROM 'data_%q' "
"WHERE typeof(ota_control)='integer' AND ota_control!=1 "
"UNION ALL "
"SELECT %s, ota_control FROM 'ota_tmp_%q' "
"ORDER BY %s%s",
zCollist, pIter->zTbl,
zCollist, pIter->zTbl,
zCollist, zLimit
);
}
p->rc = prepareFreeAndCollectError(p->dbOta, &pIter->pSelect, pz, zSql);
}
sqlite3_free(zImposterCols);
sqlite3_free(zImposterPK);
sqlite3_free(zWhere);
sqlite3_free(zBind);
}else{
int bOtaRowid = (pIter->eType==OTA_PK_VTAB || pIter->eType==OTA_PK_NONE);
const char *zTbl = pIter->zTbl; /* Table this step applies to */
const char *zWrite; /* Imposter table name */
char *zBindings = otaObjIterGetBindlist(p, pIter->nTblCol + bOtaRowid);
char *zWhere = otaObjIterGetWhere(p, pIter);
char *zOldlist = otaObjIterGetOldlist(p, pIter, "old");
char *zNewlist = otaObjIterGetOldlist(p, pIter, "new");
zCollist = otaObjIterGetCollist(p, pIter);
pIter->nCol = pIter->nTblCol;
/* Create the SELECT statement to read keys from data_xxx */
if( p->rc==SQLITE_OK ){
p->rc = prepareFreeAndCollectError(p->dbOta, &pIter->pSelect, pz,
sqlite3_mprintf(
"SELECT %s, ota_control%s FROM 'data_%q'%s",
zCollist, (bOtaRowid ? ", ota_rowid" : ""), zTbl, zLimit
)
);
}
/* Create the imposter table or tables (if required). */
otaCreateImposterTable(p, pIter);
otaCreateImposterTable2(p, pIter);
zWrite = (pIter->eType==OTA_PK_VTAB ? "" : "ota_imp_");
/* Create the INSERT statement to write to the target PK b-tree */
if( p->rc==SQLITE_OK ){
p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pInsert, pz,
sqlite3_mprintf(
"INSERT INTO \"%s%w\"(%s%s) VALUES(%s)",
zWrite, zTbl, zCollist, (bOtaRowid ? ", _rowid_" : ""), zBindings
)
);
}
/* Create the DELETE statement to write to the target PK b-tree */
if( p->rc==SQLITE_OK ){
p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pDelete, pz,
sqlite3_mprintf(
"DELETE FROM \"%s%w\" WHERE %s", zWrite, zTbl, zWhere
)
);
}
if( pIter->abIndexed ){
const char *zOtaRowid = "";
if( pIter->eType==OTA_PK_EXTERNAL || pIter->eType==OTA_PK_NONE ){
zOtaRowid = ", ota_rowid";
}
/* Create the ota_tmp_xxx table and the triggers to populate it. */
otaMPrintfExec(p, p->dbOta,
"CREATE TABLE IF NOT EXISTS 'ota_tmp_%q' AS "
"SELECT *%s FROM 'data_%q' WHERE 0;"
, zTbl, (pIter->eType==OTA_PK_EXTERNAL ? ", 0 AS ota_rowid" : "")
, zTbl
);
otaMPrintfExec(p, p->dbMain,
"CREATE TEMP TRIGGER ota_delete_tr BEFORE DELETE ON \"%s%w\" "
"BEGIN "
" SELECT ota_tmp_insert(2, %s);"
"END;"
"CREATE TEMP TRIGGER ota_update1_tr BEFORE UPDATE ON \"%s%w\" "
"BEGIN "
" SELECT ota_tmp_insert(2, %s);"
"END;"
"CREATE TEMP TRIGGER ota_update2_tr AFTER UPDATE ON \"%s%w\" "
"BEGIN "
" SELECT ota_tmp_insert(3, %s);"
"END;",
zWrite, zTbl, zOldlist,
zWrite, zTbl, zOldlist,
zWrite, zTbl, zNewlist
);
if( pIter->eType==OTA_PK_EXTERNAL || pIter->eType==OTA_PK_NONE ){
otaMPrintfExec(p, p->dbMain,
"CREATE TEMP TRIGGER ota_insert_tr AFTER INSERT ON \"%s%w\" "
"BEGIN "
" SELECT ota_tmp_insert(0, %s);"
"END;",
zWrite, zTbl, zNewlist
);
}
otaObjIterPrepareTmpInsert(p, pIter, zCollist, zOtaRowid);
}
/* Allocate space required for the zMask field. */
pIter->zMask = (char*)otaMalloc(p, pIter->nTblCol+1);
sqlite3_free(zWhere);
sqlite3_free(zOldlist);
sqlite3_free(zNewlist);
sqlite3_free(zBindings);
}
sqlite3_free(zCollist);
sqlite3_free(zLimit);
}
return p->rc;
}
/*
** Set output variable *ppStmt to point to an UPDATE statement that may
** be used to update the imposter table for the main table b-tree of the
** table object that pIter currently points to, assuming that the
** ota_control column of the data_xyz table contains zMask.
*/
static int otaGetUpdateStmt(
sqlite3ota *p, /* OTA handle */
OtaObjIter *pIter, /* Object iterator */
const char *zMask, /* ota_control value ('x.x.') */
sqlite3_stmt **ppStmt /* OUT: UPDATE statement handle */
){
if( pIter->pUpdate && strcmp(zMask, pIter->zMask)==0 ){
*ppStmt = pIter->pUpdate;
}else{
char *zWhere = otaObjIterGetWhere(p, pIter);
char *zSet = otaObjIterGetSetlist(p, pIter, zMask);
char *zUpdate = 0;
sqlite3_finalize(pIter->pUpdate);
pIter->pUpdate = 0;
if( p->rc==SQLITE_OK ){
const char *zPrefix = "";
if( pIter->eType!=OTA_PK_VTAB ) zPrefix = "ota_imp_";
zUpdate = sqlite3_mprintf("UPDATE \"%s%w\" SET %s WHERE %s",
zPrefix, pIter->zTbl, zSet, zWhere
);
p->rc = prepareFreeAndCollectError(
p->dbMain, &pIter->pUpdate, &p->zErrmsg, zUpdate
);
*ppStmt = pIter->pUpdate;
}
if( p->rc==SQLITE_OK ){
memcpy(pIter->zMask, zMask, pIter->nTblCol);
}
sqlite3_free(zWhere);
sqlite3_free(zSet);
}
return p->rc;
}
static sqlite3 *otaOpenDbhandle(sqlite3ota *p, const char *zName){
sqlite3 *db = 0;
if( p->rc==SQLITE_OK ){
const int flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE;
p->rc = sqlite3_open_v2(zName, &db, flags, p->zVfsName);
if( p->rc ){
p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
sqlite3_close(db);
db = 0;
}
}
return db;
}
/*
** Open the database handle and attach the OTA database as "ota". If an
** error occurs, leave an error code and message in the OTA handle.
*/
static void otaOpenDatabase(sqlite3ota *p){
assert( p->rc==SQLITE_OK );
assert( p->dbMain==0 && p->dbOta==0 );
p->eStage = 0;
p->dbMain = otaOpenDbhandle(p, p->zTarget);
p->dbOta = otaOpenDbhandle(p, p->zOta);
if( p->rc==SQLITE_OK ){
p->rc = sqlite3_create_function(p->dbMain,
"ota_tmp_insert", -1, SQLITE_UTF8, (void*)p, otaTmpInsertFunc, 0, 0
);
}
if( p->rc==SQLITE_OK ){
p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_OTA, (void*)p);
}
otaMPrintfExec(p, p->dbMain, "SELECT * FROM sqlite_master");
/* Mark the database file just opened as an OTA target database. If
** this call returns SQLITE_NOTFOUND, then the OTA vfs is not in use.
** This is an error. */
if( p->rc==SQLITE_OK ){
p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_OTA, (void*)p);
}
if( p->rc==SQLITE_NOTFOUND ){
p->rc = SQLITE_ERROR;
p->zErrmsg = sqlite3_mprintf("ota vfs not found");
}
}
/*
** This routine is a copy of the sqlite3FileSuffix3() routine from the core.
** It is a no-op unless SQLITE_ENABLE_8_3_NAMES is defined.
**
** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
** three characters, then shorten the suffix on z[] to be the last three
** characters of the original suffix.
**
** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
** do the suffix shortening regardless of URI parameter.
**
** Examples:
**
** test.db-journal => test.nal
** test.db-wal => test.wal
** test.db-shm => test.shm
** test.db-mj7f3319fa => test.9fa
*/
static void otaFileSuffix3(const char *zBase, char *z){
#ifdef SQLITE_ENABLE_8_3_NAMES
#if SQLITE_ENABLE_8_3_NAMES<2
if( sqlite3_uri_boolean(zBase, "8_3_names", 0) )
#endif
{
int i, sz;
sz = sqlite3Strlen30(z);
for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
}
#endif
}
/*
** Return the current wal-index header checksum for the target database
** as a 64-bit integer.
**
** The checksum is store in the first page of xShmMap memory as an 8-byte
** blob starting at byte offset 40.
*/
static i64 otaShmChecksum(sqlite3ota *p){
i64 iRet;
if( p->rc==SQLITE_OK ){
sqlite3_file *pDb = p->pTargetFd->pReal;
u32 volatile *ptr;
p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, (void volatile**)&ptr);
if( p->rc==SQLITE_OK ){
iRet = ((i64)ptr[10] << 32) + ptr[11];
}
}
return iRet;
}
/*
** This function is called as part of initializing or reinitializing an
** incremental checkpoint.
**
** It populates the sqlite3ota.aFrame[] array with the set of
** (wal frame -> db page) copy operations required to checkpoint the
** current wal file, and obtains the set of shm locks required to safely
** perform the copy operations directly on the file-system.
**
** If argument pState is not NULL, then the incremental checkpoint is
** being resumed. In this case, if the checksum of the wal-index-header
** following recovery is not the same as the checksum saved in the OtaState
** object, then the ota handle is set to DONE state. This occurs if some
** other client appends a transaction to the wal file in the middle of
** an incremental checkpoint.
*/
static void otaSetupCheckpoint(sqlite3ota *p, OtaState *pState){
/* If pState is NULL, then the wal file may not have been opened and
** recovered. Running a read-statement here to ensure that doing so
** does not interfere with the "capture" process below. */
if( pState==0 ){
p->eStage = 0;
if( p->rc==SQLITE_OK ){
p->rc = sqlite3_exec(p->dbMain, "SELECT * FROM sqlite_master", 0, 0, 0);
}
}
/* Assuming no error has occurred, run a "restart" checkpoint with the
** sqlite3ota.eStage variable set to CAPTURE. This turns on the following
** special behaviour in the ota VFS:
**
** * If the exclusive shm WRITER or READ0 lock cannot be obtained,
** the checkpoint fails with SQLITE_BUSY (normally SQLite would
** proceed with running a passive checkpoint instead of failing).
**
** * Attempts to read from the *-wal file or write to the database file
** do not perform any IO. Instead, the frame/page combinations that
** would be read/written are recorded in the sqlite3ota.aFrame[]
** array.
**
** * Calls to xShmLock(UNLOCK) to release the exclusive shm WRITER,
** READ0 and CHECKPOINT locks taken as part of the checkpoint are
** no-ops. These locks will not be released until the connection
** is closed.
**
** * Attempting to xSync() the database file causes an SQLITE_INTERNAL
** error.
**
** As a result, unless an error (i.e. OOM or SQLITE_BUSY) occurs, the
** checkpoint below fails with SQLITE_INTERNAL, and leaves the aFrame[]
** array populated with a set of (frame -> page) mappings. Because the
** WRITER, CHECKPOINT and READ0 locks are still held, it is safe to copy
** data from the wal file into the database file according to the
** contents of aFrame[].
*/
if( p->rc==SQLITE_OK ){
int rc2;
p->eStage = OTA_STAGE_CAPTURE;
rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0);
if( rc2!=SQLITE_INTERNAL ) p->rc = rc2;
}
if( p->rc==SQLITE_OK ){
p->eStage = OTA_STAGE_CKPT;
p->nStep = (pState ? pState->nRow : 0);
p->aBuf = otaMalloc(p, p->pgsz);
p->iWalCksum = otaShmChecksum(p);
}
if( p->rc==SQLITE_OK && pState && pState->iWalCksum!=p->iWalCksum ){
p->rc = SQLITE_DONE;
p->eStage = OTA_STAGE_DONE;
}
}
/*
** Called when iAmt bytes are read from offset iOff of the wal file while
** the ota object is in capture mode. Record the frame number of the frame
** being read in the aFrame[] array.
*/
static int otaCaptureWalRead(sqlite3ota *pOta, i64 iOff, int iAmt){
const u32 mReq = (1<<WAL_LOCK_WRITE)|(1<<WAL_LOCK_CKPT)|(1<<WAL_LOCK_READ0);
u32 iFrame;
if( pOta->mLock!=mReq ){
pOta->rc = SQLITE_BUSY;
return SQLITE_INTERNAL;
}
pOta->pgsz = iAmt;
if( pOta->nFrame==pOta->nFrameAlloc ){
int nNew = (pOta->nFrameAlloc ? pOta->nFrameAlloc : 64) * 2;
OtaFrame *aNew;
aNew = (OtaFrame*)sqlite3_realloc(pOta->aFrame, nNew * sizeof(OtaFrame));
if( aNew==0 ) return SQLITE_NOMEM;
pOta->aFrame = aNew;
pOta->nFrameAlloc = nNew;
}
iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1;
if( pOta->iMaxFrame<iFrame ) pOta->iMaxFrame = iFrame;
pOta->aFrame[pOta->nFrame].iWalFrame = iFrame;
pOta->aFrame[pOta->nFrame].iDbPage = 0;
pOta->nFrame++;
return SQLITE_OK;
}
/*
** Called when a page of data is written to offset iOff of the database
** file while the ota handle is in capture mode. Record the page number
** of the page being written in the aFrame[] array.
*/
static int otaCaptureDbWrite(sqlite3ota *pOta, i64 iOff){
pOta->aFrame[pOta->nFrame-1].iDbPage = (u32)(iOff / pOta->pgsz) + 1;
return SQLITE_OK;
}
/*
** This is called as part of an incremental checkpoint operation. Copy
** a single frame of data from the wal file into the database file, as
** indicated by the OtaFrame object.
*/
static void otaCheckpointFrame(sqlite3ota *p, OtaFrame *pFrame){
sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
sqlite3_file *pDb = p->pTargetFd->pReal;
i64 iOff;
assert( p->rc==SQLITE_OK );
iOff = (i64)(pFrame->iWalFrame-1) * (p->pgsz + 24) + 32 + 24;
p->rc = pWal->pMethods->xRead(pWal, p->aBuf, p->pgsz, iOff);
if( p->rc ) return;
iOff = (i64)(pFrame->iDbPage-1) * p->pgsz;
p->rc = pDb->pMethods->xWrite(pDb, p->aBuf, p->pgsz, iOff);
}
/*
** Take an EXCLUSIVE lock on the database file.
*/
static void otaLockDatabase(sqlite3ota *p){
sqlite3_file *pReal = p->pTargetFd->pReal;
assert( p->rc==SQLITE_OK );
p->rc = pReal->pMethods->xLock(pReal, SQLITE_LOCK_SHARED);
if( p->rc==SQLITE_OK ){
p->rc = pReal->pMethods->xLock(pReal, SQLITE_LOCK_EXCLUSIVE);
}
}
/*
** The OTA handle is currently in OTA_STAGE_OAL state, with a SHARED lock
** on the database file. This proc moves the *-oal file to the *-wal path,
** then reopens the database file (this time in vanilla, non-oal, WAL mode).
** If an error occurs, leave an error code and error message in the ota
** handle.
*/
static void otaMoveOalFile(sqlite3ota *p){
const char *zBase = sqlite3_db_filename(p->dbMain, "main");
char *zWal = sqlite3_mprintf("%s-wal", zBase);
char *zOal = sqlite3_mprintf("%s-oal", zBase);
assert( p->eStage==OTA_STAGE_MOVE );
assert( p->rc==SQLITE_OK && p->zErrmsg==0 );
if( zWal==0 || zOal==0 ){
p->rc = SQLITE_NOMEM;
}else{
/* Move the *-oal file to *-wal. At this point connection p->db is
** holding a SHARED lock on the target database file (because it is
** in WAL mode). So no other connection may be writing the db.
**
** In order to ensure that there are no database readers, an EXCLUSIVE
** lock is obtained here before the *-oal is moved to *-wal.
*/
otaLockDatabase(p);
if( p->rc==SQLITE_OK ){
otaFileSuffix3(zBase, zWal);
otaFileSuffix3(zBase, zOal);
/* Re-open the databases. */
otaObjIterFinalize(&p->objiter);
sqlite3_close(p->dbMain);
sqlite3_close(p->dbOta);
p->rc = rename(zOal, zWal) ? SQLITE_IOERR : SQLITE_OK;
if( p->rc==SQLITE_OK ){
p->dbMain = 0;
p->dbOta = 0;
otaOpenDatabase(p);
otaSetupCheckpoint(p, 0);
}
}
}
sqlite3_free(zWal);
sqlite3_free(zOal);
}
/*
** The SELECT statement iterating through the keys for the current object
** (p->objiter.pSelect) currently points to a valid row. This function
** determines the type of operation requested by this row and returns
** one of the following values to indicate the result:
**
** * OTA_INSERT
** * OTA_DELETE
** * OTA_IDX_DELETE
** * OTA_UPDATE
**
** If OTA_UPDATE is returned, then output variable *pzMask is set to
** point to the text value indicating the columns to update.
**
** If the ota_control field contains an invalid value, an error code and
** message are left in the OTA handle and zero returned.
*/
static int otaStepType(sqlite3ota *p, const char **pzMask){
int iCol = p->objiter.nCol; /* Index of ota_control column */
int res = 0; /* Return value */
switch( sqlite3_column_type(p->objiter.pSelect, iCol) ){
case SQLITE_INTEGER: {
int iVal = sqlite3_column_int(p->objiter.pSelect, iCol);
if( iVal==0 ){
res = OTA_INSERT;
}else if( iVal==1 ){
res = OTA_DELETE;
}else if( iVal==2 ){
res = OTA_IDX_DELETE;
}else if( iVal==3 ){
res = OTA_IDX_INSERT;
}
break;
}
case SQLITE_TEXT: {
const unsigned char *z = sqlite3_column_text(p->objiter.pSelect, iCol);
if( z==0 ){
p->rc = SQLITE_NOMEM;
}else{
*pzMask = (const char*)z;
}
res = OTA_UPDATE;
break;
}
default:
break;
}
if( res==0 ){
otaBadControlError(p);
}
return res;
}
#ifdef SQLITE_DEBUG
/*
** Assert that column iCol of statement pStmt is named zName.
*/
static void assertColumnName(sqlite3_stmt *pStmt, int iCol, const char *zName){
const char *zCol = sqlite3_column_name(pStmt, iCol);
assert( 0==sqlite3_stricmp(zName, zCol) );
}
#else
# define assertColumnName(x,y,z)
#endif
/*
** This function does the work for an sqlite3ota_step() call.
**
** The object-iterator (p->objiter) currently points to a valid object,
** and the input cursor (p->objiter.pSelect) currently points to a valid
** input row. Perform whatever processing is required and return.
**
** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
** and message is left in the OTA handle and a copy of the error code
** returned.
*/
static int otaStep(sqlite3ota *p){
OtaObjIter *pIter = &p->objiter;
const char *zMask = 0;
int i;
int eType = otaStepType(p, &zMask);
if( eType ){
assert( eType!=OTA_UPDATE || pIter->zIdx==0 );
if( pIter->zIdx==0 && eType==OTA_IDX_DELETE ){
otaBadControlError(p);
}
else if(
eType==OTA_INSERT
|| eType==OTA_DELETE
|| eType==OTA_IDX_DELETE
|| eType==OTA_IDX_INSERT
){
sqlite3_value *pVal;
sqlite3_stmt *pWriter;
assert( eType!=OTA_UPDATE );
assert( eType!=OTA_DELETE || pIter->zIdx==0 );
if( eType==OTA_IDX_DELETE || eType==OTA_DELETE ){
pWriter = pIter->pDelete;
}else{
pWriter = pIter->pInsert;
}
for(i=0; i<pIter->nCol; i++){
/* If this is an INSERT into a table b-tree and the table has an
** explicit INTEGER PRIMARY KEY, check that this is not an attempt
** to write a NULL into the IPK column. That is not permitted. */
if( eType==OTA_INSERT
&& pIter->zIdx==0 && pIter->eType==OTA_PK_IPK && pIter->abTblPk[i]
&& sqlite3_column_type(pIter->pSelect, i)==SQLITE_NULL
){
p->rc = SQLITE_MISMATCH;
p->zErrmsg = sqlite3_mprintf("datatype mismatch");
goto step_out;
}
if( eType==OTA_DELETE && pIter->abTblPk[i]==0 ){
continue;
}
pVal = sqlite3_column_value(pIter->pSelect, i);
p->rc = sqlite3_bind_value(pWriter, i+1, pVal);
if( p->rc ) goto step_out;
}
if( pIter->zIdx==0
&& (pIter->eType==OTA_PK_VTAB || pIter->eType==OTA_PK_NONE)
){
/* For a virtual table, or a table with no primary key, the
** SELECT statement is:
**
** SELECT <cols>, ota_control, ota_rowid FROM ....
**
** Hence column_value(pIter->nCol+1).
*/
assertColumnName(pIter->pSelect, pIter->nCol+1, "ota_rowid");
pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
p->rc = sqlite3_bind_value(pWriter, pIter->nCol+1, pVal);
}
if( p->rc==SQLITE_OK ){
sqlite3_step(pWriter);
p->rc = resetAndCollectError(pWriter, &p->zErrmsg);
}
}else{
sqlite3_value *pVal;
sqlite3_stmt *pUpdate = 0;
assert( eType==OTA_UPDATE );
otaGetUpdateStmt(p, pIter, zMask, &pUpdate);
if( pUpdate ){
for(i=0; p->rc==SQLITE_OK && i<pIter->nCol; i++){
char c = zMask[pIter->aiSrcOrder[i]];
pVal = sqlite3_column_value(pIter->pSelect, i);
if( pIter->abTblPk[i] || c=='x' || c=='d' ){
p->rc = sqlite3_bind_value(pUpdate, i+1, pVal);
}
}
if( p->rc==SQLITE_OK
&& (pIter->eType==OTA_PK_VTAB || pIter->eType==OTA_PK_NONE)
){
/* Bind the ota_rowid value to column _rowid_ */
assertColumnName(pIter->pSelect, pIter->nCol+1, "ota_rowid");
pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
p->rc = sqlite3_bind_value(pUpdate, pIter->nCol+1, pVal);
}
if( p->rc==SQLITE_OK ){
sqlite3_step(pUpdate);
p->rc = resetAndCollectError(pUpdate, &p->zErrmsg);
}
}
}
}
step_out:
return p->rc;
}
/*
** Increment the schema cookie of the main database opened by p->dbMain.
*/
static void otaIncrSchemaCookie(sqlite3ota *p){
if( p->rc==SQLITE_OK ){
int iCookie = 1000000;
sqlite3_stmt *pStmt;
p->rc = prepareAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
"PRAGMA schema_version"
);
if( p->rc==SQLITE_OK ){
/* Coverage: it may be that this sqlite3_step() cannot fail. There
** is already a transaction open, so the prepared statement cannot
** throw an SQLITE_SCHEMA exception. The only database page the
** statement reads is page 1, which is guaranteed to be in the cache.
** And no memory allocations are required. */
if( SQLITE_ROW==sqlite3_step(pStmt) ){
iCookie = sqlite3_column_int(pStmt, 0);
}
otaFinalize(p, pStmt);
}
if( p->rc==SQLITE_OK ){
otaMPrintfExec(p, p->dbMain, "PRAGMA schema_version = %d", iCookie+1);
}
}
}
/*
** Update the contents of the ota_state table within the ota database. The
** value stored in the OTA_STATE_STAGE column is eStage. All other values
** are determined by inspecting the ota handle passed as the first argument.
*/
static void otaSaveState(sqlite3ota *p, int eStage){
if( p->rc==SQLITE_OK || p->rc==SQLITE_DONE ){
sqlite3_stmt *pInsert = 0;
int rc;
assert( p->zErrmsg==0 );
rc = prepareFreeAndCollectError(p->dbOta, &pInsert, &p->zErrmsg,
sqlite3_mprintf(
"INSERT OR REPLACE INTO ota_state(k, v) VALUES "
"(%d, %d), "
"(%d, %Q), "
"(%d, %Q), "
"(%d, %d), "
"(%d, %lld), "
"(%d, %lld), "
"(%d, %lld), "
"(%d, %lld) ",
OTA_STATE_STAGE, eStage,
OTA_STATE_TBL, p->objiter.zTbl,
OTA_STATE_IDX, p->objiter.zIdx,
OTA_STATE_ROW, p->nStep,
OTA_STATE_PROGRESS, p->nProgress,
OTA_STATE_CKPT, p->iWalCksum,
OTA_STATE_COOKIE, (i64)p->pTargetFd->iCookie,
OTA_STATE_OALSZ, p->iOalSz
)
);
assert( pInsert==0 || rc==SQLITE_OK );
if( rc==SQLITE_OK ){
sqlite3_step(pInsert);
rc = sqlite3_finalize(pInsert);
}
if( rc!=SQLITE_OK ) p->rc = rc;
}
}
/*
** Step the OTA object.
*/
int sqlite3ota_step(sqlite3ota *p){
if( p ){
switch( p->eStage ){
case OTA_STAGE_OAL: {
OtaObjIter *pIter = &p->objiter;
while( p->rc==SQLITE_OK && pIter->zTbl ){
if( pIter->bCleanup ){
/* Clean up the ota_tmp_xxx table for the previous table. It
** cannot be dropped as there are currently active SQL statements.
** But the contents can be deleted. */
if( pIter->abIndexed ){
const char *zTbl = pIter->zTbl;
otaMPrintfExec(p, p->dbOta, "DELETE FROM 'ota_tmp_%q'", zTbl);
}
}else{
otaObjIterPrepareAll(p, pIter, 0);
/* Advance to the next row to process. */
if( p->rc==SQLITE_OK ){
int rc = sqlite3_step(pIter->pSelect);
if( rc==SQLITE_ROW ){
p->nProgress++;
p->nStep++;
return otaStep(p);
}
p->rc = sqlite3_reset(pIter->pSelect);
p->nStep = 0;
}
}
otaObjIterNext(p, pIter);
}
if( p->rc==SQLITE_OK ){
assert( pIter->zTbl==0 );
otaSaveState(p, OTA_STAGE_MOVE);
otaIncrSchemaCookie(p);
if( p->rc==SQLITE_OK ){
p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
}
if( p->rc==SQLITE_OK ){
p->rc = sqlite3_exec(p->dbOta, "COMMIT", 0, 0, &p->zErrmsg);
}
p->eStage = OTA_STAGE_MOVE;
}
break;
}
case OTA_STAGE_MOVE: {
if( p->rc==SQLITE_OK ){
otaMoveOalFile(p);
p->nProgress++;
}
break;
}
case OTA_STAGE_CKPT: {
if( p->rc==SQLITE_OK ){
if( p->nStep>=p->nFrame ){
sqlite3_file *pDb = p->pTargetFd->pReal;
/* Sync the db file */
p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
/* Update nBackfill */
if( p->rc==SQLITE_OK ){
void volatile *ptr;
p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, &ptr);
if( p->rc==SQLITE_OK ){
((u32*)ptr)[12] = p->iMaxFrame;
}
}
if( p->rc==SQLITE_OK ){
p->eStage = OTA_STAGE_DONE;
p->rc = SQLITE_DONE;
}
}else{
OtaFrame *pFrame = &p->aFrame[p->nStep];
otaCheckpointFrame(p, pFrame);
p->nStep++;
}
p->nProgress++;
}
break;
}
default:
break;
}
return p->rc;
}else{
return SQLITE_NOMEM;
}
}
/*
** Free an OtaState object allocated by otaLoadState().
*/
static void otaFreeState(OtaState *p){
if( p ){
sqlite3_free(p->zTbl);
sqlite3_free(p->zIdx);
sqlite3_free(p);
}
}
/*
** Allocate an OtaState object and load the contents of the ota_state
** table into it. Return a pointer to the new object. It is the
** responsibility of the caller to eventually free the object using
** sqlite3_free().
**
** If an error occurs, leave an error code and message in the ota handle
** and return NULL.
*/
static OtaState *otaLoadState(sqlite3ota *p){
const char *zSelect = "SELECT k, v FROM ota_state";
OtaState *pRet = 0;
sqlite3_stmt *pStmt = 0;
int rc;
int rc2;
pRet = (OtaState*)otaMalloc(p, sizeof(OtaState));
if( pRet==0 ) return 0;
rc = prepareAndCollectError(p->dbOta, &pStmt, &p->zErrmsg, zSelect);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
switch( sqlite3_column_int(pStmt, 0) ){
case OTA_STATE_STAGE:
pRet->eStage = sqlite3_column_int(pStmt, 1);
if( pRet->eStage!=OTA_STAGE_OAL
&& pRet->eStage!=OTA_STAGE_MOVE
&& pRet->eStage!=OTA_STAGE_CKPT
){
p->rc = SQLITE_CORRUPT;
}
break;
case OTA_STATE_TBL:
pRet->zTbl = otaStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
break;
case OTA_STATE_IDX:
pRet->zIdx = otaStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
break;
case OTA_STATE_ROW:
pRet->nRow = sqlite3_column_int(pStmt, 1);
break;
case OTA_STATE_PROGRESS:
pRet->nProgress = sqlite3_column_int64(pStmt, 1);
break;
case OTA_STATE_CKPT:
pRet->iWalCksum = sqlite3_column_int64(pStmt, 1);
break;
case OTA_STATE_COOKIE:
pRet->iCookie = (u32)sqlite3_column_int64(pStmt, 1);
break;
case OTA_STATE_OALSZ:
pRet->iOalSz = (u32)sqlite3_column_int64(pStmt, 1);
break;
default:
rc = SQLITE_CORRUPT;
break;
}
}
rc2 = sqlite3_finalize(pStmt);
if( rc==SQLITE_OK ) rc = rc2;
p->rc = rc;
return pRet;
}
/*
** Compare strings z1 and z2, returning 0 if they are identical, or non-zero
** otherwise. Either or both argument may be NULL. Two NULL values are
** considered equal, and NULL is considered distinct from all other values.
*/
static int otaStrCompare(const char *z1, const char *z2){
if( z1==0 && z2==0 ) return 0;
if( z1==0 || z2==0 ) return 1;
return (sqlite3_stricmp(z1, z2)!=0);
}
/*
** This function is called as part of sqlite3ota_open() when initializing
** an ota handle in OAL stage. If the ota update has not started (i.e.
** the ota_state table was empty) it is a no-op. Otherwise, it arranges
** things so that the next call to sqlite3ota_step() continues on from
** where the previous ota handle left off.
**
** If an error occurs, an error code and error message are left in the
** ota handle passed as the first argument.
*/
static void otaSetupOal(sqlite3ota *p, OtaState *pState){
assert( p->rc==SQLITE_OK );
if( pState->zTbl ){
OtaObjIter *pIter = &p->objiter;
int rc = SQLITE_OK;
while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup
|| otaStrCompare(pIter->zIdx, pState->zIdx)
|| otaStrCompare(pIter->zTbl, pState->zTbl)
)){
rc = otaObjIterNext(p, pIter);
}
if( rc==SQLITE_OK && !pIter->zTbl ){
rc = SQLITE_ERROR;
p->zErrmsg = sqlite3_mprintf("ota_state mismatch error");
}
if( rc==SQLITE_OK ){
p->nStep = pState->nRow;
rc = otaObjIterPrepareAll(p, &p->objiter, p->nStep);
}
p->rc = rc;
}
}
/*
** If there is a "*-oal" file in the file-system corresponding to the
** target database in the file-system, delete it. If an error occurs,
** leave an error code and error message in the ota handle.
*/
static void otaDeleteOalFile(sqlite3ota *p){
char *zOal = sqlite3_mprintf("%s-oal", p->zTarget);
assert( p->rc==SQLITE_OK && p->zErrmsg==0 );
unlink(zOal);
sqlite3_free(zOal);
}
/*
** Allocate a private ota VFS for the ota handle passed as the only
** argument. This VFS will be used unless the call to sqlite3ota_open()
** specified a URI with a vfs=? option in place of a target database
** file name.
*/
static void otaCreateVfs(sqlite3ota *p){
int rnd;
char zRnd[64];
assert( p->rc==SQLITE_OK );
sqlite3_randomness(sizeof(int), (void*)&rnd);
sprintf(zRnd, "ota_vfs_%d", rnd);
p->rc = sqlite3ota_create_vfs(zRnd, 0);
if( p->rc==SQLITE_OK ){
sqlite3_vfs *pVfs = sqlite3_vfs_find(zRnd);
assert( pVfs );
p->zVfsName = pVfs->zName;
}
}
/*
** Destroy the private VFS created for the ota handle passed as the only
** argument by an earlier call to otaCreateVfs().
*/
static void otaDeleteVfs(sqlite3ota *p){
if( p->zVfsName ){
sqlite3ota_destroy_vfs(p->zVfsName);
p->zVfsName = 0;
}
}
/*
** Open and return a new OTA handle.
*/
sqlite3ota *sqlite3ota_open(const char *zTarget, const char *zOta){
sqlite3ota *p;
int nTarget = strlen(zTarget);
int nOta = strlen(zOta);
p = (sqlite3ota*)sqlite3_malloc(sizeof(sqlite3ota)+nTarget+1+nOta+1);
if( p ){
OtaState *pState = 0;
/* Create the custom VFS. */
memset(p, 0, sizeof(sqlite3ota));
otaCreateVfs(p);
/* Open the target database */
if( p->rc==SQLITE_OK ){
p->zTarget = (char*)&p[1];
memcpy(p->zTarget, zTarget, nTarget+1);
p->zOta = &p->zTarget[nTarget+1];
memcpy(p->zOta, zOta, nOta+1);
otaOpenDatabase(p);
}
/* If it has not already been created, create the ota_state table */
if( p->rc==SQLITE_OK ){
p->rc = sqlite3_exec(p->dbOta, OTA_CREATE_STATE, 0, 0, &p->zErrmsg);
}
if( p->rc==SQLITE_OK ){
pState = otaLoadState(p);
assert( pState || p->rc!=SQLITE_OK );
if( p->rc==SQLITE_OK ){
if( pState->eStage==0 ){
otaDeleteOalFile(p);
p->eStage = OTA_STAGE_OAL;
}else{
p->eStage = pState->eStage;
}
p->nProgress = pState->nProgress;
p->iOalSz = pState->iOalSz;
}
}
assert( p->rc!=SQLITE_OK || p->eStage!=0 );
if( p->rc==SQLITE_OK && p->pTargetFd->pWalFd ){
if( p->eStage==OTA_STAGE_OAL ){
p->rc = SQLITE_ERROR;
p->zErrmsg = sqlite3_mprintf("cannot update wal mode database");
}else if( p->eStage==OTA_STAGE_MOVE ){
p->eStage = OTA_STAGE_CKPT;
p->nStep = 0;
}
}
if( p->rc==SQLITE_OK
&& (p->eStage==OTA_STAGE_OAL || p->eStage==OTA_STAGE_MOVE)
&& pState->eStage!=0 && p->pTargetFd->iCookie!=pState->iCookie
){
/* At this point (pTargetFd->iCookie) contains the value of the
** change-counter cookie (the thing that gets incremented when a
** transaction is committed in rollback mode) currently stored on
** page 1 of the database file. */
p->rc = SQLITE_BUSY;
p->zErrmsg = sqlite3_mprintf("database modified during ota update");
}
if( p->rc==SQLITE_OK ){
if( p->eStage==OTA_STAGE_OAL ){
/* Open transactions both databases. The *-oal file is opened or
** created at this point. */
p->rc = sqlite3_exec(p->dbMain, "BEGIN IMMEDIATE", 0, 0, &p->zErrmsg);
if( p->rc==SQLITE_OK ){
p->rc = sqlite3_exec(p->dbOta, "BEGIN IMMEDIATE", 0, 0, &p->zErrmsg);
}
/* Point the object iterator at the first object */
if( p->rc==SQLITE_OK ){
p->rc = otaObjIterFirst(p, &p->objiter);
}
/* If the OTA database contains no data_xxx tables, declare the OTA
** update finished. */
if( p->rc==SQLITE_OK && p->objiter.zTbl==0 ){
p->rc = SQLITE_DONE;
}
if( p->rc==SQLITE_OK ){
otaSetupOal(p, pState);
}
}else if( p->eStage==OTA_STAGE_MOVE ){
/* no-op */
}else if( p->eStage==OTA_STAGE_CKPT ){
otaSetupCheckpoint(p, pState);
}else if( p->eStage==OTA_STAGE_DONE ){
p->rc = SQLITE_DONE;
}else{
p->rc = SQLITE_CORRUPT;
}
}
otaFreeState(pState);
}
return p;
}
/*
** Return the database handle used by pOta.
*/
sqlite3 *sqlite3ota_db(sqlite3ota *pOta, int bOta){
sqlite3 *db = 0;
if( pOta ){
db = (bOta ? pOta->dbOta : pOta->dbMain);
}
return db;
}
/*
** If the error code currently stored in the OTA handle is SQLITE_CONSTRAINT,
** then edit any error message string so as to remove all occurrences of
** the pattern "ota_imp_[0-9]*".
*/
static void otaEditErrmsg(sqlite3ota *p){
if( p->rc==SQLITE_CONSTRAINT && p->zErrmsg ){
int i;
int nErrmsg = strlen(p->zErrmsg);
for(i=0; i<(nErrmsg-8); i++){
if( memcmp(&p->zErrmsg[i], "ota_imp_", 8)==0 ){
int nDel = 8;
while( p->zErrmsg[i+nDel]>='0' && p->zErrmsg[i+nDel]<='9' ) nDel++;
memmove(&p->zErrmsg[i], &p->zErrmsg[i+nDel], nErrmsg + 1 - i - nDel);
nErrmsg -= nDel;
}
}
}
}
/*
** Close the OTA handle.
*/
int sqlite3ota_close(sqlite3ota *p, char **pzErrmsg){
int rc;
if( p ){
/* Commit the transaction to the *-oal file. */
if( p->rc==SQLITE_OK && p->eStage==OTA_STAGE_OAL ){
p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
}
otaSaveState(p, p->eStage);
if( p->rc==SQLITE_OK && p->eStage==OTA_STAGE_OAL ){
p->rc = sqlite3_exec(p->dbOta, "COMMIT", 0, 0, &p->zErrmsg);
}
/* Close any open statement handles. */
otaObjIterFinalize(&p->objiter);
/* Close the open database handle and VFS object. */
sqlite3_close(p->dbMain);
sqlite3_close(p->dbOta);
otaDeleteVfs(p);
sqlite3_free(p->aBuf);
sqlite3_free(p->aFrame);
otaEditErrmsg(p);
rc = p->rc;
*pzErrmsg = p->zErrmsg;
sqlite3_free(p);
}else{
rc = SQLITE_NOMEM;
*pzErrmsg = 0;
}
return rc;
}
/*
** Return the total number of key-value operations (inserts, deletes or
** updates) that have been performed on the target database since the
** current OTA update was started.
*/
sqlite3_int64 sqlite3ota_progress(sqlite3ota *pOta){
return pOta->nProgress;
}
/**************************************************************************
** Beginning of OTA VFS shim methods. The VFS shim modifies the behaviour
** of a standard VFS in the following ways:
**
** 1. Whenever the first page of a main database file is read or
** written, the value of the change-counter cookie is stored in
** ota_file.iCookie. Similarly, the value of the "write-version"
** database header field is stored in ota_file.iWriteVer. This ensures
** that the values are always trustworthy within an open transaction.
**
** 2. Whenever an SQLITE_OPEN_WAL file is opened, the (ota_file.pWalFd)
** member variable of the associated database file descriptor is set
** to point to the new file. A mutex protected linked list of all main
** db fds opened using a particular OTA VFS is maintained at
** ota_vfs.pMain to facilitate this.
**
** 3. Using a new file-control "SQLITE_FCNTL_OTA", a main db ota_file
** object can be marked as the target database of an OTA update. This
** turns on the following extra special behaviour:
**
** 3a. If xAccess() is called to check if there exists a *-wal file
** associated with an OTA target database currently in OTA_STAGE_OAL
** stage (preparing the *-oal file), the following special handling
** applies:
**
** * if the *-wal file does exist, return SQLITE_CANTOPEN. An OTA
** target database may not be in wal mode already.
**
** * if the *-wal file does not exist, set the output parameter to
** non-zero (to tell SQLite that it does exist) anyway.
**
** Then, when xOpen() is called to open the *-wal file associated with
** the OTA target in OTA_STAGE_OAL stage, instead of opening the *-wal
** file, the ota vfs opens the corresponding *-oal file instead.
**
** 3b. The *-shm pages returned by xShmMap() for a target db file in
** OTA_STAGE_OAL mode are actually stored in heap memory. This is to
** avoid creating a *-shm file on disk. Additionally, xShmLock() calls
** are no-ops on target database files in OTA_STAGE_OAL mode. This is
** because assert() statements in some VFS implementations fail if
** xShmLock() is called before xShmMap().
**
** 3c. If an EXCLUSIVE lock is attempted on a target database file in any
** mode except OTA_STAGE_DONE (all work completed and checkpointed), it
** fails with an SQLITE_BUSY error. This is to stop OTA connections
** from automatically checkpointing a *-wal (or *-oal) file from within
** sqlite3_close().
**
** 3d. In OTA_STAGE_CAPTURE mode, all xRead() calls on the wal file, and
** all xWrite() calls on the target database file perform no IO.
** Instead the frame and page numbers that would be read and written
** are recorded. Additionally, successful attempts to obtain exclusive
** xShmLock() WRITER, CHECKPOINTER and READ0 locks on the target
** database file are recorded. xShmLock() calls to unlock the same
** locks are no-ops (so that once obtained, these locks are never
** relinquished). Finally, calls to xSync() on the target database
** file fail with SQLITE_INTERNAL errors.
*/
/*
** Close an ota file.
*/
static int otaVfsClose(sqlite3_file *pFile){
ota_file *p = (ota_file*)pFile;
int rc;
int i;
/* Free the contents of the apShm[] array. And the array itself. */
for(i=0; i<p->nShm; i++){
sqlite3_free(p->apShm[i]);
}
sqlite3_free(p->apShm);
p->apShm = 0;
sqlite3_free(p->zDel);
if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
ota_file **pp;
sqlite3_mutex_enter(p->pOtaVfs->mutex);
for(pp=&p->pOtaVfs->pMain; *pp!=p; pp=&((*pp)->pMainNext));
*pp = p->pMainNext;
sqlite3_mutex_leave(p->pOtaVfs->mutex);
p->pReal->pMethods->xShmUnmap(p->pReal, 0);
}
/* Close the underlying file handle */
rc = p->pReal->pMethods->xClose(p->pReal);
return rc;
}
/*
** Read and return an unsigned 32-bit big-endian integer from the buffer
** passed as the only argument.
*/
static u32 otaGetU32(u8 *aBuf){
return ((u32)aBuf[0] << 24)
+ ((u32)aBuf[1] << 16)
+ ((u32)aBuf[2] << 8)
+ ((u32)aBuf[3]);
}
/*
** Read data from an otaVfs-file.
*/
static int otaVfsRead(
sqlite3_file *pFile,
void *zBuf,
int iAmt,
sqlite_int64 iOfst
){
ota_file *p = (ota_file*)pFile;
sqlite3ota *pOta = p->pOta;
int rc;
if( pOta && pOta->eStage==OTA_STAGE_CAPTURE ){
assert( p->openFlags & SQLITE_OPEN_WAL );
rc = otaCaptureWalRead(p->pOta, iOfst, iAmt);
}else{
if( pOta && pOta->eStage==OTA_STAGE_OAL
&& (p->openFlags & SQLITE_OPEN_WAL)
&& iOfst>=pOta->iOalSz
){
rc = SQLITE_OK;
memset(zBuf, 0, iAmt);
}else{
rc = p->pReal->pMethods->xRead(p->pReal, zBuf, iAmt, iOfst);
}
if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
/* These look like magic numbers. But they are stable, as they are part
** of the definition of the SQLite file format, which may not change. */
u8 *pBuf = (u8*)zBuf;
p->iCookie = otaGetU32(&pBuf[24]);
p->iWriteVer = pBuf[19];
}
}
return rc;
}
/*
** Write data to an otaVfs-file.
*/
static int otaVfsWrite(
sqlite3_file *pFile,
const void *zBuf,
int iAmt,
sqlite_int64 iOfst
){
ota_file *p = (ota_file*)pFile;
sqlite3ota *pOta = p->pOta;
int rc;
if( pOta && pOta->eStage==OTA_STAGE_CAPTURE ){
assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
rc = otaCaptureDbWrite(p->pOta, iOfst);
}else{
if( pOta && pOta->eStage==OTA_STAGE_OAL
&& (p->openFlags & SQLITE_OPEN_WAL)
&& iOfst>=pOta->iOalSz
){
pOta->iOalSz = iAmt + iOfst;
}
rc = p->pReal->pMethods->xWrite(p->pReal, zBuf, iAmt, iOfst);
if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
/* These look like magic numbers. But they are stable, as they are part
** of the definition of the SQLite file format, which may not change. */
u8 *pBuf = (u8*)zBuf;
p->iCookie = otaGetU32(&pBuf[24]);
p->iWriteVer = pBuf[19];
}
}
return rc;
}
/*
** Truncate an otaVfs-file.
*/
static int otaVfsTruncate(sqlite3_file *pFile, sqlite_int64 size){
ota_file *p = (ota_file*)pFile;
return p->pReal->pMethods->xTruncate(p->pReal, size);
}
/*
** Sync an otaVfs-file.
*/
static int otaVfsSync(sqlite3_file *pFile, int flags){
ota_file *p = (ota_file *)pFile;
if( p->pOta && p->pOta->eStage==OTA_STAGE_CAPTURE ){
if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
return SQLITE_INTERNAL;
}
return SQLITE_OK;
}
return p->pReal->pMethods->xSync(p->pReal, flags);
}
/*
** Return the current file-size of an otaVfs-file.
*/
static int otaVfsFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
ota_file *p = (ota_file *)pFile;
return p->pReal->pMethods->xFileSize(p->pReal, pSize);
}
/*
** Lock an otaVfs-file.
*/
static int otaVfsLock(sqlite3_file *pFile, int eLock){
ota_file *p = (ota_file*)pFile;
sqlite3ota *pOta = p->pOta;
int rc = SQLITE_OK;
assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
if( pOta && eLock==SQLITE_LOCK_EXCLUSIVE && pOta->eStage!=OTA_STAGE_DONE ){
/* Do not allow EXCLUSIVE locks. Preventing SQLite from taking this
** prevents it from checkpointing the database from sqlite3_close(). */
rc = SQLITE_BUSY;
}else{
rc = p->pReal->pMethods->xLock(p->pReal, eLock);
}
return rc;
}
/*
** Unlock an otaVfs-file.
*/
static int otaVfsUnlock(sqlite3_file *pFile, int eLock){
ota_file *p = (ota_file *)pFile;
return p->pReal->pMethods->xUnlock(p->pReal, eLock);
}
/*
** Check if another file-handle holds a RESERVED lock on an otaVfs-file.
*/
static int otaVfsCheckReservedLock(sqlite3_file *pFile, int *pResOut){
ota_file *p = (ota_file *)pFile;
return p->pReal->pMethods->xCheckReservedLock(p->pReal, pResOut);
}
/*
** File control method. For custom operations on an otaVfs-file.
*/
static int otaVfsFileControl(sqlite3_file *pFile, int op, void *pArg){
ota_file *p = (ota_file *)pFile;
int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl;
int rc;
assert( p->openFlags &
(SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB|SQLITE_OPEN_TRANSIENT_DB)
);
if( op==SQLITE_FCNTL_OTA ){
sqlite3ota *pOta = (sqlite3ota*)pArg;
/* First try to find another OTA vfs lower down in the vfs stack. If
** one is found, this vfs will operate in pass-through mode. The lower
** level vfs will do the special OTA handling. */
rc = xControl(p->pReal, op, pArg);
if( rc==SQLITE_NOTFOUND ){
/* Now search for a zipvfs instance lower down in the VFS stack. If
** one is found, this is an error. */
void *dummy = 0;
rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy);
if( rc==SQLITE_OK ){
rc = SQLITE_ERROR;
pOta->zErrmsg = sqlite3_mprintf("ota/zipvfs setup error");
}else if( rc==SQLITE_NOTFOUND ){
pOta->pTargetFd = p;
p->pOta = pOta;
if( p->pWalFd ) p->pWalFd->pOta = pOta;
rc = SQLITE_OK;
}
}
return rc;
}
rc = xControl(p->pReal, op, pArg);
if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){
ota_vfs *pOtaVfs = p->pOtaVfs;
char *zIn = *(char**)pArg;
char *zOut = sqlite3_mprintf("ota(%s)/%z", pOtaVfs->base.zName, zIn);
*(char**)pArg = zOut;
if( zOut==0 ) rc = SQLITE_NOMEM;
}
return rc;
}
/*
** Return the sector-size in bytes for an otaVfs-file.
*/
static int otaVfsSectorSize(sqlite3_file *pFile){
ota_file *p = (ota_file *)pFile;
return p->pReal->pMethods->xSectorSize(p->pReal);
}
/*
** Return the device characteristic flags supported by an otaVfs-file.
*/
static int otaVfsDeviceCharacteristics(sqlite3_file *pFile){
ota_file *p = (ota_file *)pFile;
return p->pReal->pMethods->xDeviceCharacteristics(p->pReal);
}
/*
** Take or release a shared-memory lock.
*/
static int otaVfsShmLock(sqlite3_file *pFile, int ofst, int n, int flags){
ota_file *p = (ota_file*)pFile;
sqlite3ota *pOta = p->pOta;
int rc = SQLITE_OK;
#ifdef SQLITE_AMALGAMATION
assert( WAL_CKPT_LOCK==1 );
#endif
assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
if( pOta && (pOta->eStage==OTA_STAGE_OAL || pOta->eStage==OTA_STAGE_MOVE) ){
/* Magic number 1 is the WAL_CKPT_LOCK lock. Preventing SQLite from
** taking this lock also prevents any checkpoints from occurring.
** todo: really, it's not clear why this might occur, as
** wal_autocheckpoint ought to be turned off. */
if( ofst==WAL_LOCK_CKPT && n==1 ) rc = SQLITE_BUSY;
}else{
int bCapture = 0;
if( n==1 && (flags & SQLITE_SHM_EXCLUSIVE)
&& pOta && pOta->eStage==OTA_STAGE_CAPTURE
&& (ofst==WAL_LOCK_WRITE || ofst==WAL_LOCK_CKPT || ofst==WAL_LOCK_READ0)
){
bCapture = 1;
}
if( bCapture==0 || 0==(flags & SQLITE_SHM_UNLOCK) ){
rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags);
if( bCapture && rc==SQLITE_OK ){
pOta->mLock |= (1 << ofst);
}
}
}
return rc;
}
/*
** Obtain a pointer to a mapping of a single 32KiB page of the *-shm file.
*/
static int otaVfsShmMap(
sqlite3_file *pFile,
int iRegion,
int szRegion,
int isWrite,
void volatile **pp
){
ota_file *p = (ota_file*)pFile;
int rc = SQLITE_OK;
int eStage = (p->pOta ? p->pOta->eStage : 0);
/* If not in OTA_STAGE_OAL, allow this call to pass through. Or, if this
** ota is in the OTA_STAGE_OAL state, use heap memory for *-shm space
** instead of a file on disk. */
assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
if( eStage==OTA_STAGE_OAL || eStage==OTA_STAGE_MOVE ){
if( iRegion<=p->nShm ){
int nByte = (iRegion+1) * sizeof(char*);
char **apNew = (char**)sqlite3_realloc(p->apShm, nByte);
if( apNew==0 ){
rc = SQLITE_NOMEM;
}else{
memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
p->apShm = apNew;
p->nShm = iRegion+1;
}
}
if( rc==SQLITE_OK && p->apShm[iRegion]==0 ){
char *pNew = (char*)sqlite3_malloc(szRegion);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pNew, 0, szRegion);
p->apShm[iRegion] = pNew;
}
}
if( rc==SQLITE_OK ){
*pp = p->apShm[iRegion];
}else{
*pp = 0;
}
}else{
assert( p->apShm==0 );
rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp);
}
return rc;
}
/*
** Memory barrier.
*/
static void otaVfsShmBarrier(sqlite3_file *pFile){
ota_file *p = (ota_file *)pFile;
p->pReal->pMethods->xShmBarrier(p->pReal);
}
/*
** The xShmUnmap method.
*/
static int otaVfsShmUnmap(sqlite3_file *pFile, int delFlag){
ota_file *p = (ota_file*)pFile;
int rc = SQLITE_OK;
int eStage = (p->pOta ? p->pOta->eStage : 0);
assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
if( eStage==OTA_STAGE_OAL || eStage==OTA_STAGE_MOVE ){
/* no-op */
}else{
rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
}
return rc;
}
/*
** Given that zWal points to a buffer containing a wal file name passed to
** either the xOpen() or xAccess() VFS method, return a pointer to the
** file-handle opened by the same database connection on the corresponding
** database file.
*/
static ota_file *otaFindMaindb(ota_vfs *pOtaVfs, const char *zWal){
ota_file *pDb;
sqlite3_mutex_enter(pOtaVfs->mutex);
for(pDb=pOtaVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext);
sqlite3_mutex_leave(pOtaVfs->mutex);
return pDb;
}
/*
** Open an ota file handle.
*/
static int otaVfsOpen(
sqlite3_vfs *pVfs,
const char *zName,
sqlite3_file *pFile,
int flags,
int *pOutFlags
){
static sqlite3_io_methods otavfs_io_methods = {
2, /* iVersion */
otaVfsClose, /* xClose */
otaVfsRead, /* xRead */
otaVfsWrite, /* xWrite */
otaVfsTruncate, /* xTruncate */
otaVfsSync, /* xSync */
otaVfsFileSize, /* xFileSize */
otaVfsLock, /* xLock */
otaVfsUnlock, /* xUnlock */
otaVfsCheckReservedLock, /* xCheckReservedLock */
otaVfsFileControl, /* xFileControl */
otaVfsSectorSize, /* xSectorSize */
otaVfsDeviceCharacteristics, /* xDeviceCharacteristics */
otaVfsShmMap, /* xShmMap */
otaVfsShmLock, /* xShmLock */
otaVfsShmBarrier, /* xShmBarrier */
otaVfsShmUnmap /* xShmUnmap */
};
ota_vfs *pOtaVfs = (ota_vfs*)pVfs;
sqlite3_vfs *pRealVfs = pOtaVfs->pRealVfs;
ota_file *pFd = (ota_file *)pFile;
int rc = SQLITE_OK;
const char *zOpen = zName;
memset(pFd, 0, sizeof(ota_file));
pFd->pReal = (sqlite3_file*)&pFd[1];
pFd->pOtaVfs = pOtaVfs;
pFd->openFlags = flags;
if( zName ){
if( flags & SQLITE_OPEN_MAIN_DB ){
/* A main database has just been opened. The following block sets
** (pFd->zWal) to point to a buffer owned by SQLite that contains
** the name of the *-wal file this db connection will use. SQLite
** happens to pass a pointer to this buffer when using xAccess()
** or xOpen() to operate on the *-wal file. */
int n = strlen(zName);
const char *z = &zName[n];
if( flags & SQLITE_OPEN_URI ){
int odd = 0;
while( 1 ){
if( z[0]==0 ){
odd = 1 - odd;
if( odd && z[1]==0 ) break;
}
z++;
}
z += 2;
}else{
while( *z==0 ) z++;
}
z += (n + 8 + 1);
pFd->zWal = z;
}
else if( flags & SQLITE_OPEN_WAL ){
ota_file *pDb = otaFindMaindb(pOtaVfs, zName);
if( pDb ){
if( pDb->pOta && pDb->pOta->eStage==OTA_STAGE_OAL ){
char *zCopy = otaStrndup(zName, &rc);
if( zCopy ){
int nCopy = strlen(zCopy);
zCopy[nCopy-3] = 'o';
zOpen = (const char*)(pFd->zDel = zCopy);
}
pFd->pOta = pDb->pOta;
}
pDb->pWalFd = pFd;
}
}
}
if( rc==SQLITE_OK ){
rc = pRealVfs->xOpen(pRealVfs, zOpen, pFd->pReal, flags, pOutFlags);
}
if( pFd->pReal->pMethods ){
/* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods
** pointer and, if the file is a main database file, link it into the
** mutex protected linked list of all such files. */
pFile->pMethods = &otavfs_io_methods;
if( flags & SQLITE_OPEN_MAIN_DB ){
sqlite3_mutex_enter(pOtaVfs->mutex);
pFd->pMainNext = pOtaVfs->pMain;
pOtaVfs->pMain = pFd;
sqlite3_mutex_leave(pOtaVfs->mutex);
}
}
return rc;
}
/*
** Delete the file located at zPath.
*/
static int otaVfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
sqlite3_vfs *pRealVfs = ((ota_vfs*)pVfs)->pRealVfs;
return pRealVfs->xDelete(pRealVfs, zPath, dirSync);
}
/*
** Test for access permissions. Return true if the requested permission
** is available, or false otherwise.
*/
static int otaVfsAccess(
sqlite3_vfs *pVfs,
const char *zPath,
int flags,
int *pResOut
){
ota_vfs *pOtaVfs = (ota_vfs*)pVfs;
sqlite3_vfs *pRealVfs = pOtaVfs->pRealVfs;
int rc;
rc = pRealVfs->xAccess(pRealVfs, zPath, flags, pResOut);
/* If this call is to check if a *-wal file associated with an OTA target
** database connection exists, and the OTA update is in OTA_STAGE_OAL,
** the following special handling is activated:
**
** a) if the *-wal file does exist, return SQLITE_CANTOPEN. This
** ensures that the OTA extension never tries to update a database
** in wal mode, even if the first page of the database file has
** been damaged.
**
** b) if the *-wal file does not exist, claim that it does anyway,
** causing SQLite to call xOpen() to open it. This call will also
** be intercepted (see the otaVfsOpen() function) and the *-oal
** file opened instead.
*/
if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
ota_file *pDb = otaFindMaindb(pOtaVfs, zPath);
if( pDb && pDb->pOta && pDb->pOta->eStage==OTA_STAGE_OAL ){
if( *pResOut ){
rc = SQLITE_CANTOPEN;
}else{
*pResOut = 1;
}
}
}
return rc;
}
/*
** Populate buffer zOut with the full canonical pathname corresponding
** to the pathname in zPath. zOut is guaranteed to point to a buffer
** of at least (DEVSYM_MAX_PATHNAME+1) bytes.
*/
static int otaVfsFullPathname(
sqlite3_vfs *pVfs,
const char *zPath,
int nOut,
char *zOut
){
sqlite3_vfs *pRealVfs = ((ota_vfs*)pVfs)->pRealVfs;
return pRealVfs->xFullPathname(pRealVfs, zPath, nOut, zOut);
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Open the dynamic library located at zPath and return a handle.
*/
static void *otaVfsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
sqlite3_vfs *pRealVfs = ((ota_vfs*)pVfs)->pRealVfs;
return pRealVfs->xDlOpen(pRealVfs, zPath);
}
/*
** Populate the buffer zErrMsg (size nByte bytes) with a human readable
** utf-8 string describing the most recent error encountered associated
** with dynamic libraries.
*/
static void otaVfsDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
sqlite3_vfs *pRealVfs = ((ota_vfs*)pVfs)->pRealVfs;
pRealVfs->xDlError(pRealVfs, nByte, zErrMsg);
}
/*
** Return a pointer to the symbol zSymbol in the dynamic library pHandle.
*/
static void (*otaVfsDlSym(
sqlite3_vfs *pVfs,
void *pArg,
const char *zSym
))(void){
sqlite3_vfs *pRealVfs = ((ota_vfs*)pVfs)->pRealVfs;
return pRealVfs->xDlSym(pRealVfs, pArg, zSym);
}
/*
** Close the dynamic library handle pHandle.
*/
static void otaVfsDlClose(sqlite3_vfs *pVfs, void *pHandle){
sqlite3_vfs *pRealVfs = ((ota_vfs*)pVfs)->pRealVfs;
return pRealVfs->xDlClose(pRealVfs, pHandle);
}
#endif /* SQLITE_OMIT_LOAD_EXTENSION */
/*
** Populate the buffer pointed to by zBufOut with nByte bytes of
** random data.
*/
static int otaVfsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
sqlite3_vfs *pRealVfs = ((ota_vfs*)pVfs)->pRealVfs;
return pRealVfs->xRandomness(pRealVfs, nByte, zBufOut);
}
/*
** Sleep for nMicro microseconds. Return the number of microseconds
** actually slept.
*/
static int otaVfsSleep(sqlite3_vfs *pVfs, int nMicro){
sqlite3_vfs *pRealVfs = ((ota_vfs*)pVfs)->pRealVfs;
return pRealVfs->xSleep(pRealVfs, nMicro);
}
/*
** Return the current time as a Julian Day number in *pTimeOut.
*/
static int otaVfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
sqlite3_vfs *pRealVfs = ((ota_vfs*)pVfs)->pRealVfs;
return pRealVfs->xCurrentTime(pRealVfs, pTimeOut);
}
/*
** No-op.
*/
static int otaVfsGetLastError(sqlite3_vfs *pVfs, int a, char *b){
return 0;
}
/*
** Deregister and destroy an OTA vfs created by an earlier call to
** sqlite3ota_create_vfs().
*/
void sqlite3ota_destroy_vfs(const char *zName){
sqlite3_vfs *pVfs = sqlite3_vfs_find(zName);
if( pVfs && pVfs->xOpen==otaVfsOpen ){
sqlite3_mutex_free(((ota_vfs*)pVfs)->mutex);
sqlite3_vfs_unregister(pVfs);
sqlite3_free(pVfs);
}
}
/*
** Create an OTA VFS named zName that accesses the underlying file-system
** via existing VFS zParent. The new object is registered as a non-default
** VFS with SQLite before returning.
*/
int sqlite3ota_create_vfs(const char *zName, const char *zParent){
/* Template for VFS */
static sqlite3_vfs vfs_template = {
1, /* iVersion */
0, /* szOsFile */
0, /* mxPathname */
0, /* pNext */
0, /* zName */
0, /* pAppData */
otaVfsOpen, /* xOpen */
otaVfsDelete, /* xDelete */
otaVfsAccess, /* xAccess */
otaVfsFullPathname, /* xFullPathname */
#ifndef SQLITE_OMIT_LOAD_EXTENSION
otaVfsDlOpen, /* xDlOpen */
otaVfsDlError, /* xDlError */
otaVfsDlSym, /* xDlSym */
otaVfsDlClose, /* xDlClose */
#else
0, 0, 0, 0,
#endif
otaVfsRandomness, /* xRandomness */
otaVfsSleep, /* xSleep */
otaVfsCurrentTime, /* xCurrentTime */
otaVfsGetLastError, /* xGetLastError */
0, /* xCurrentTimeInt64 (version 2) */
0, 0, 0 /* Unimplemented version 3 methods */
};
ota_vfs *pNew = 0; /* Newly allocated VFS */
int nName;
int rc = SQLITE_OK;
int nByte;
nName = strlen(zName);
nByte = sizeof(ota_vfs) + nName + 1;
pNew = (ota_vfs*)sqlite3_malloc(nByte);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
sqlite3_vfs *pParent; /* Parent VFS */
memset(pNew, 0, nByte);
pParent = sqlite3_vfs_find(zParent);
if( pParent==0 ){
rc = SQLITE_NOTFOUND;
}else{
char *zSpace;
memcpy(&pNew->base, &vfs_template, sizeof(sqlite3_vfs));
pNew->base.mxPathname = pParent->mxPathname;
pNew->base.szOsFile = sizeof(ota_file) + pParent->szOsFile;
pNew->pRealVfs = pParent;
pNew->base.zName = (const char*)(zSpace = (char*)&pNew[1]);
memcpy(zSpace, zName, nName);
/* Allocate the mutex and register the new VFS (not as the default) */
pNew->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
if( pNew->mutex==0 ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_vfs_register(&pNew->base, 0);
}
}
if( rc!=SQLITE_OK ){
sqlite3_mutex_free(pNew->mutex);
sqlite3_free(pNew);
}
}
return rc;
}
/**************************************************************************/
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_OTA) */