raylib/examples/resources/shaders/standard.fs
victorfisac c320a21f2b Add standard lighting (2/3)
- 3 light types added (point, directional, spot).
- DrawLights() function added using line shapes.
- Standard lighting example added.
- Removed useless struct variables from material and light.
- Fixed light attributes dynamic locations errors.
- Standard vertex and fragment shaders temporally added until rewrite it
as char pointers in rlgl.
TODO:
- Add normal and specular maps calculations in standard shader.
- Add control structs to handle which attributes needs to be calculated
(textures, specular...).
- Adapt standard shader to version 110.
- Rewrite standard shader as char pointers in rlgl.
2016-05-21 18:16:39 +02:00

137 lines
3.7 KiB
GLSL

#version 330
in vec3 fragPosition;
in vec2 fragTexCoord;
in vec4 fragColor;
in vec3 fragNormal;
out vec4 finalColor;
uniform sampler2D texture0;
uniform vec4 colAmbient;
uniform vec4 colDiffuse;
uniform vec4 colSpecular;
uniform float glossiness;
uniform mat4 modelMatrix;
uniform vec3 viewDir;
struct Light {
int enabled;
int type;
vec3 position;
vec3 direction;
vec4 diffuse;
float intensity;
float attenuation;
float coneAngle;
};
const int maxLights = 8;
uniform int lightsCount;
uniform Light lights[maxLights];
vec3 CalcPointLight(Light l, vec3 n, vec3 v)
{
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
vec3 surfaceToLight = l.position - surfacePos;
// Diffuse shading
float brightness = clamp(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n)), 0, 1);
float diff = 1.0/dot(surfaceToLight/l.attenuation, surfaceToLight/l.attenuation)*brightness*l.intensity;
// Specular shading
float spec = 0.0;
if(diff > 0.0)
{
vec3 h = normalize(-l.direction + v);
spec = pow(dot(n, h), 3 + glossiness);
}
return (diff*l.diffuse.rgb*colDiffuse.rgb + spec*colSpecular.rgb);
}
vec3 CalcDirectionalLight(Light l, vec3 n, vec3 v)
{
vec3 lightDir = normalize(-l.direction);
// Diffuse shading
float diff = clamp(dot(n, lightDir), 0.0, 1.0)*l.intensity;
// Specular shading
float spec = 0.0;
if(diff > 0.0)
{
vec3 h = normalize(lightDir + v);
spec = pow(dot(n, h), 3 + glossiness);
}
// Combine results
return (diff*l.intensity*l.diffuse.rgb*colDiffuse.rgb + spec*colSpecular.rgb);
}
vec3 CalcSpotLight(Light l, vec3 n, vec3 v)
{
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
vec3 lightToSurface = normalize(surfacePos - l.position);
vec3 lightDir = normalize(-l.direction);
// Diffuse shading
float diff = clamp(dot(n, lightDir), 0.0, 1.0)*l.intensity;
// Spot attenuation
float attenuation = clamp(dot(n, lightToSurface), 0.0, 1.0);
attenuation = dot(lightToSurface, -lightDir);
float lightToSurfaceAngle = degrees(acos(attenuation));
if(lightToSurfaceAngle > l.coneAngle) attenuation = 0.0;
float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle;
// Combine diffuse and attenuation
float diffAttenuation = diff*attenuation;
// Specular shading
float spec = 0.0;
if(diffAttenuation > 0.0)
{
vec3 h = normalize(lightDir + v);
spec = pow(dot(n, h), 3 + glossiness);
}
return falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb);
}
void main()
{
// Calculate fragment normal in screen space
mat3 normalMatrix = transpose(inverse(mat3(modelMatrix)));
vec3 normal = normalize(normalMatrix*fragNormal);
// Normalize normal and view direction vectors
vec3 n = normalize(normal);
vec3 v = normalize(viewDir);
// Calculate diffuse texture color fetching
vec4 texelColor = texture(texture0, fragTexCoord);
vec3 lighting = colAmbient.rgb;
for(int i = 0; i < lightsCount; i++)
{
// Check if light is enabled
if(lights[i].enabled == 1)
{
// Calculate lighting based on light type
switch(lights[i].type)
{
case 0: lighting += CalcPointLight(lights[i], n, v); break;
case 1: lighting += CalcDirectionalLight(lights[i], n, v); break;
case 2: lighting += CalcSpotLight(lights[i], n, v); break;
default: break;
}
}
}
// Calculate final fragment color
finalColor = vec4(texelColor.rgb*lighting, texelColor.a);
}