raylib/src/textures.c

2686 lines
98 KiB
C

/**********************************************************************************************
*
* raylib.textures - Basic functions to load and draw Textures (2d)
*
* CONFIGURATION:
*
* #define SUPPORT_FILEFORMAT_BMP
* #define SUPPORT_FILEFORMAT_PNG
* #define SUPPORT_FILEFORMAT_TGA
* #define SUPPORT_FILEFORMAT_JPG
* #define SUPPORT_FILEFORMAT_GIF
* #define SUPPORT_FILEFORMAT_PSD
* #define SUPPORT_FILEFORMAT_HDR
* #define SUPPORT_FILEFORMAT_DDS
* #define SUPPORT_FILEFORMAT_PKM
* #define SUPPORT_FILEFORMAT_KTX
* #define SUPPORT_FILEFORMAT_PVR
* #define SUPPORT_FILEFORMAT_ASTC
* Selecte desired fileformats to be supported for image data loading. Some of those formats are
* supported by default, to remove support, just comment unrequired #define in this module
*
* #define SUPPORT_IMAGE_MANIPULATION
* Support multiple image editing functions to scale, adjust colors, flip, draw on images, crop...
* If not defined only three image editing functions supported: ImageFormat(), ImageAlphaMask(), ImageToPOT()
*
* #define SUPPORT_IMAGE_GENERATION
* Support proedural image generation functionality (gradient, spot, perlin-noise, cellular)
*
* DEPENDENCIES:
* stb_image - Multiple image formats loading (JPEG, PNG, BMP, TGA, PSD, GIF, PIC)
* NOTE: stb_image has been slightly modified to support Android platform.
* stb_image_resize - Multiple image resize algorythms
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2014-2018 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
// Default configuration flags (supported features)
//-------------------------------------------------
#define SUPPORT_FILEFORMAT_PNG
#define SUPPORT_FILEFORMAT_DDS
#define SUPPORT_FILEFORMAT_HDR
#define SUPPORT_FILEFORMAT_KTX
#define SUPPORT_FILEFORMAT_ASTC
#define SUPPORT_IMAGE_MANIPULATION
#define SUPPORT_IMAGE_GENERATION
//-------------------------------------------------
#include "raylib.h"
#include <stdlib.h> // Required for: malloc(), free()
#include <string.h> // Required for: strcmp(), strrchr(), strncmp()
#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 3.3 or ES2
// Required for: rlLoadTexture() rlDeleteTextures(),
// rlGenerateMipmaps(), some funcs for DrawTexturePro()
#include "utils.h" // Required for: fopen() Android mapping
#define STB_PERLIN_IMPLEMENTATION
#include "external/stb_perlin.h"// Required for: stb_perlin_fbm_noise3
// Support only desired texture formats on stb_image
#if !defined(SUPPORT_FILEFORMAT_BMP)
#define STBI_NO_BMP
#endif
#if !defined(SUPPORT_FILEFORMAT_PNG)
#define STBI_NO_PNG
#endif
#if !defined(SUPPORT_FILEFORMAT_TGA)
#define STBI_NO_TGA
#endif
#if !defined(SUPPORT_FILEFORMAT_JPG)
#define STBI_NO_JPEG // Image format .jpg and .jpeg
#endif
#if !defined(SUPPORT_FILEFORMAT_PSD)
#define STBI_NO_PSD
#endif
#if !defined(SUPPORT_FILEFORMAT_GIF)
#define STBI_NO_GIF
#endif
#if !defined(SUPPORT_FILEFORMAT_HDR)
#define STBI_NO_HDR
#endif
// Image fileformats not supported by default
#define STBI_NO_PIC
#define STBI_NO_PNM // Image format .ppm and .pgm
#if (defined(SUPPORT_FILEFORMAT_BMP) || defined(SUPPORT_FILEFORMAT_PNG) || defined(SUPPORT_FILEFORMAT_TGA) || \
defined(SUPPORT_FILEFORMAT_JPG) || defined(SUPPORT_FILEFORMAT_PSD) || defined(SUPPORT_FILEFORMAT_GIF) || \
defined(SUPPORT_FILEFORMAT_HDR))
#define STB_IMAGE_IMPLEMENTATION
#include "external/stb_image.h" // Required for: stbi_load_from_file()
// NOTE: Used to read image data (multiple formats support)
#endif
#if defined(SUPPORT_IMAGE_MANIPULATION)
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "external/stb_image_resize.h" // Required for: stbir_resize_uint8()
// NOTE: Used for image scaling on ImageResize()
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
// Nop...
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
// It's lonely here...
//----------------------------------------------------------------------------------
// Other Modules Functions Declaration (required by text)
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(SUPPORT_FILEFORMAT_DDS)
static Image LoadDDS(const char *fileName); // Load DDS file
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
static Image LoadPKM(const char *fileName); // Load PKM file
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
static Image LoadKTX(const char *fileName); // Load KTX file
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
static Image LoadPVR(const char *fileName); // Load PVR file
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
static Image LoadASTC(const char *fileName); // Load ASTC file
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Load image from file into CPU memory (RAM)
Image LoadImage(const char *fileName)
{
Image image = { 0 };
if ((IsFileExtension(fileName, ".png"))
#if defined(SUPPORT_FILEFORMAT_BMP)
|| (IsFileExtension(fileName, ".bmp"))
#endif
#if defined(SUPPORT_FILEFORMAT_TGA)
|| (IsFileExtension(fileName, ".tga"))
#endif
#if defined(SUPPORT_FILEFORMAT_JPG)
|| (IsFileExtension(fileName, ".jpg"))
#endif
#if defined(SUPPORT_FILEFORMAT_DDS)
|| (IsFileExtension(fileName, ".gif"))
#endif
#if defined(SUPPORT_FILEFORMAT_PSD)
|| (IsFileExtension(fileName, ".psd"))
#endif
)
{
int imgWidth = 0;
int imgHeight = 0;
int imgBpp = 0;
FILE *imFile = fopen(fileName, "rb");
if (imFile != NULL)
{
// NOTE: Using stb_image to load images (Supports: BMP, TGA, PNG, JPG, ...)
image.data = stbi_load_from_file(imFile, &imgWidth, &imgHeight, &imgBpp, 0);
fclose(imFile);
image.width = imgWidth;
image.height = imgHeight;
image.mipmaps = 1;
if (imgBpp == 1) image.format = UNCOMPRESSED_GRAYSCALE;
else if (imgBpp == 2) image.format = UNCOMPRESSED_GRAY_ALPHA;
else if (imgBpp == 3) image.format = UNCOMPRESSED_R8G8B8;
else if (imgBpp == 4) image.format = UNCOMPRESSED_R8G8B8A8;
}
}
#if defined(SUPPORT_FILEFORMAT_HDR)
else if (IsFileExtension(fileName, ".hdr"))
{
int imgBpp = 0;
FILE *imFile = fopen(fileName, "rb");
stbi_set_flip_vertically_on_load(true);
// Load 32 bit per channel floats data
image.data = stbi_loadf_from_file(imFile, &image.width, &image.height, &imgBpp, 0);
stbi_set_flip_vertically_on_load(false);
fclose(imFile);
image.mipmaps = 1;
if (imgBpp == 1) image.format = UNCOMPRESSED_R32;
else if (imgBpp == 3) image.format = UNCOMPRESSED_R32G32B32;
else if (imgBpp == 4) image.format = UNCOMPRESSED_R32G32B32A32;
else
{
TraceLog(LOG_WARNING, "[%s] Image fileformat not supported", fileName);
UnloadImage(image);
}
}
#endif
#if defined(SUPPORT_FILEFORMAT_DDS)
else if (IsFileExtension(fileName, ".dds")) image = LoadDDS(fileName);
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
else if (IsFileExtension(fileName, ".pkm")) image = LoadPKM(fileName);
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
else if (IsFileExtension(fileName, ".ktx")) image = LoadKTX(fileName);
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
else if (IsFileExtension(fileName, ".pvr")) image = LoadPVR(fileName);
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
else if (IsFileExtension(fileName, ".astc")) image = LoadASTC(fileName);
#endif
else TraceLog(LOG_WARNING, "[%s] Image fileformat not supported", fileName);
if (image.data != NULL) TraceLog(LOG_INFO, "[%s] Image loaded successfully (%ix%i)", fileName, image.width, image.height);
else TraceLog(LOG_WARNING, "[%s] Image could not be loaded", fileName);
return image;
}
// Load image from Color array data (RGBA - 32bit)
// NOTE: Creates a copy of pixels data array
Image LoadImageEx(Color *pixels, int width, int height)
{
Image image;
image.data = NULL;
image.width = width;
image.height = height;
image.mipmaps = 1;
image.format = UNCOMPRESSED_R8G8B8A8;
int k = 0;
image.data = (unsigned char *)malloc(image.width*image.height*4*sizeof(unsigned char));
for (int i = 0; i < image.width*image.height*4; i += 4)
{
((unsigned char *)image.data)[i] = pixels[k].r;
((unsigned char *)image.data)[i + 1] = pixels[k].g;
((unsigned char *)image.data)[i + 2] = pixels[k].b;
((unsigned char *)image.data)[i + 3] = pixels[k].a;
k++;
}
return image;
}
// Load image from raw data with parameters
// NOTE: This functions makes a copy of provided data
Image LoadImagePro(void *data, int width, int height, int format)
{
Image srcImage = { 0 };
srcImage.data = data;
srcImage.width = width;
srcImage.height = height;
srcImage.mipmaps = 1;
srcImage.format = format;
Image dstImage = ImageCopy(srcImage);
return dstImage;
}
// Load an image from RAW file data
Image LoadImageRaw(const char *fileName, int width, int height, int format, int headerSize)
{
Image image = { 0 };
FILE *rawFile = fopen(fileName, "rb");
if (rawFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] RAW image file could not be opened", fileName);
}
else
{
if (headerSize > 0) fseek(rawFile, headerSize, SEEK_SET);
unsigned int size = GetPixelDataSize(width, height, format);
image.data = malloc(size); // Allocate required memory in bytes
// NOTE: fread() returns num read elements instead of bytes,
// to get bytes we need to read (1 byte size, elements) instead of (x byte size, 1 element)
int bytes = fread(image.data, 1, size, rawFile);
// Check if data has been read successfully
if (bytes < size)
{
TraceLog(LOG_WARNING, "[%s] RAW image data can not be read, wrong requested format or size", fileName);
if (image.data != NULL) free(image.data);
}
else
{
image.width = width;
image.height = height;
image.mipmaps = 1;
image.format = format;
}
fclose(rawFile);
}
return image;
}
// Load texture from file into GPU memory (VRAM)
Texture2D LoadTexture(const char *fileName)
{
Texture2D texture = { 0 };
Image image = LoadImage(fileName);
if (image.data != NULL)
{
texture = LoadTextureFromImage(image);
UnloadImage(image);
}
else TraceLog(LOG_WARNING, "Texture could not be created");
return texture;
}
// Load a texture from image data
// NOTE: image is not unloaded, it must be done manually
Texture2D LoadTextureFromImage(Image image)
{
Texture2D texture = { 0 };
texture.id = rlLoadTexture(image.data, image.width, image.height, image.format, image.mipmaps);
texture.width = image.width;
texture.height = image.height;
texture.mipmaps = image.mipmaps;
texture.format = image.format;
return texture;
}
// Load texture for rendering (framebuffer)
RenderTexture2D LoadRenderTexture(int width, int height)
{
RenderTexture2D target = rlLoadRenderTexture(width, height);
return target;
}
// Unload image from CPU memory (RAM)
void UnloadImage(Image image)
{
if (image.data != NULL) free(image.data);
// NOTE: It becomes anoying every time a texture is loaded
//TraceLog(LOG_INFO, "Unloaded image data");
}
// Unload texture from GPU memory (VRAM)
void UnloadTexture(Texture2D texture)
{
if (texture.id > 0)
{
rlDeleteTextures(texture.id);
TraceLog(LOG_INFO, "[TEX ID %i] Unloaded texture data from VRAM (GPU)", texture.id);
}
}
// Unload render texture from GPU memory (VRAM)
void UnloadRenderTexture(RenderTexture2D target)
{
if (target.id > 0) rlDeleteRenderTextures(target);
}
// Get pixel data from image in the form of Color struct array
// TODO: Support float pixel data retrieval
Color *GetImageData(Image image)
{
Color *pixels = (Color *)malloc(image.width*image.height*sizeof(Color));
for (int i = 0, k = 0; i < image.width*image.height; i++)
{
switch (image.format)
{
case UNCOMPRESSED_GRAYSCALE:
{
pixels[i].r = ((unsigned char *)image.data)[i];
pixels[i].g = ((unsigned char *)image.data)[i];
pixels[i].b = ((unsigned char *)image.data)[i];
pixels[i].a = 255;
} break;
case UNCOMPRESSED_GRAY_ALPHA:
{
pixels[i].r = ((unsigned char *)image.data)[k];
pixels[i].g = ((unsigned char *)image.data)[k];
pixels[i].b = ((unsigned char *)image.data)[k];
pixels[i].a = ((unsigned char *)image.data)[k + 1];
k += 2;
} break;
case UNCOMPRESSED_R5G5B5A1:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111000000) >> 6)*(255/31));
pixels[i].b = (unsigned char)((float)((pixel & 0b0000000000111110) >> 1)*(255/31));
pixels[i].a = (unsigned char)((pixel & 0b0000000000000001)*255);
} break;
case UNCOMPRESSED_R5G6B5:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111100000) >> 5)*(255/63));
pixels[i].b = (unsigned char)((float)(pixel & 0b0000000000011111)*(255/31));
pixels[i].a = 255;
} break;
case UNCOMPRESSED_R4G4B4A4:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].r = (unsigned char)((float)((pixel & 0b1111000000000000) >> 12)*(255/15));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000111100000000) >> 8)*(255/15));
pixels[i].b = (unsigned char)((float)((pixel & 0b0000000011110000) >> 4)*(255/15));
pixels[i].a = (unsigned char)((float)(pixel & 0b0000000000001111)*(255/15));
} break;
case UNCOMPRESSED_R8G8B8A8:
{
pixels[i].r = ((unsigned char *)image.data)[k];
pixels[i].g = ((unsigned char *)image.data)[k + 1];
pixels[i].b = ((unsigned char *)image.data)[k + 2];
pixels[i].a = ((unsigned char *)image.data)[k + 3];
k += 4;
} break;
case UNCOMPRESSED_R8G8B8:
{
pixels[i].r = (unsigned char)((unsigned char *)image.data)[k];
pixels[i].g = (unsigned char)((unsigned char *)image.data)[k + 1];
pixels[i].b = (unsigned char)((unsigned char *)image.data)[k + 2];
pixels[i].a = 255;
k += 3;
} break;
default: TraceLog(LOG_WARNING, "Format not supported for pixel data retrieval"); break;
}
}
return pixels;
}
// Get pixel data size in bytes (image or texture)
// NOTE: Size depends on pixel format
int GetPixelDataSize(int width, int height, int format)
{
int dataSize = 0; // Size in bytes
int bpp = 0; // Bits per pixel
switch (format)
{
case UNCOMPRESSED_GRAYSCALE: bpp = 8; break;
case UNCOMPRESSED_GRAY_ALPHA:
case UNCOMPRESSED_R5G6B5:
case UNCOMPRESSED_R5G5B5A1:
case UNCOMPRESSED_R4G4B4A4: bpp = 16; break;
case UNCOMPRESSED_R8G8B8A8: bpp = 32; break;
case UNCOMPRESSED_R8G8B8: bpp = 24; break;
case UNCOMPRESSED_R32: bpp = 32; break;
case UNCOMPRESSED_R32G32B32: bpp = 32*3; break;
case UNCOMPRESSED_R32G32B32A32: bpp = 32*4; break;
case COMPRESSED_DXT1_RGB:
case COMPRESSED_DXT1_RGBA:
case COMPRESSED_ETC1_RGB:
case COMPRESSED_ETC2_RGB:
case COMPRESSED_PVRT_RGB:
case COMPRESSED_PVRT_RGBA: bpp = 4; break;
case COMPRESSED_DXT3_RGBA:
case COMPRESSED_DXT5_RGBA:
case COMPRESSED_ETC2_EAC_RGBA:
case COMPRESSED_ASTC_4x4_RGBA: bpp = 8; break;
case COMPRESSED_ASTC_8x8_RGBA: bpp = 2; break;
default: break;
}
dataSize = width*height*bpp/8; // Total data size in bytes
return dataSize;
}
// Get pixel data from GPU texture and return an Image
// NOTE: Compressed texture formats not supported
Image GetTextureData(Texture2D texture)
{
Image image = { 0 };
if (texture.format < 8)
{
image.data = rlReadTexturePixels(texture);
if (image.data != NULL)
{
image.width = texture.width;
image.height = texture.height;
image.format = texture.format;
image.mipmaps = 1;
// NOTE: Data retrieved on OpenGL ES 2.0 should be RGBA
// coming from FBO color buffer, but it seems original
// texture format is retrieved on RPI... weird...
//image.format = UNCOMPRESSED_R8G8B8A8;
TraceLog(LOG_INFO, "Texture pixel data obtained successfully");
}
else TraceLog(LOG_WARNING, "Texture pixel data could not be obtained");
}
else TraceLog(LOG_WARNING, "Compressed texture data could not be obtained");
return image;
}
// Update GPU texture with new data
// NOTE: pixels data must match texture.format
void UpdateTexture(Texture2D texture, const void *pixels)
{
rlUpdateTexture(texture.id, texture.width, texture.height, texture.format, pixels);
}
// Save image to a PNG file
void SaveImageAs(const char *fileName, Image image)
{
#if defined(PLATFORM_DESKTOP) || defined(PLATFORM_RPI)
// NOTE: Getting Color array as RGBA unsigned char values
unsigned char *imgData = (unsigned char *)GetImageData(image);
SavePNG(fileName, imgData, image.width, image.height, 4);
free(imgData);
TraceLog(LOG_INFO, "Image saved: %s", fileName);
#endif
}
// Copy an image to a new image
Image ImageCopy(Image image)
{
Image newImage = { 0 };
int width = image.width;
int height = image.height;
int size = 0;
for (int i = 0; i < image.mipmaps; i++)
{
size += GetPixelDataSize(width, height, image.format);
width /= 2;
height /= 2;
// Security check for NPOT textures
if (width < 1) width = 1;
if (height < 1) height = 1;
}
newImage.data = malloc(size);
if (newImage.data != NULL)
{
// NOTE: Size must be provided in bytes
memcpy(newImage.data, image.data, size);
newImage.width = image.width;
newImage.height = image.height;
newImage.mipmaps = image.mipmaps;
newImage.format = image.format;
}
return newImage;
}
// Convert image to POT (power-of-two)
// NOTE: It could be useful on OpenGL ES 2.0 (RPI, HTML5)
void ImageToPOT(Image *image, Color fillColor)
{
Color *pixels = GetImageData(*image); // Get pixels data
// Calculate next power-of-two values
// NOTE: Just add the required amount of pixels at the right and bottom sides of image...
int potWidth = (int)powf(2, ceilf(logf((float)image->width)/logf(2)));
int potHeight = (int)powf(2, ceilf(logf((float)image->height)/logf(2)));
// Check if POT texture generation is required (if texture is not already POT)
if ((potWidth != image->width) || (potHeight != image->height))
{
Color *pixelsPOT = NULL;
// Generate POT array from NPOT data
pixelsPOT = (Color *)malloc(potWidth*potHeight*sizeof(Color));
for (int j = 0; j < potHeight; j++)
{
for (int i = 0; i < potWidth; i++)
{
if ((j < image->height) && (i < image->width)) pixelsPOT[j*potWidth + i] = pixels[j*image->width + i];
else pixelsPOT[j*potWidth + i] = fillColor;
}
}
TraceLog(LOG_WARNING, "Image converted to POT: (%ix%i) -> (%ix%i)", image->width, image->height, potWidth, potHeight);
free(pixels); // Free pixels data
free(image->data); // Free old image data
int format = image->format; // Store image data format to reconvert later
// TODO: Image width and height changes... do we want to store new values or keep the old ones?
// NOTE: Issues when using image.width and image.height for sprite animations...
*image = LoadImageEx(pixelsPOT, potWidth, potHeight);
free(pixelsPOT); // Free POT pixels data
ImageFormat(image, format); // Reconvert image to previous format
}
}
// Convert image data to desired format
void ImageFormat(Image *image, int newFormat)
{
if (image->format != newFormat)
{
if ((image->format < COMPRESSED_DXT1_RGB) && (newFormat < COMPRESSED_DXT1_RGB))
{
Color *pixels = GetImageData(*image);
free(image->data); // WARNING! We loose mipmaps data --> Regenerated at the end...
image->format = newFormat;
int k = 0;
switch (image->format)
{
case UNCOMPRESSED_GRAYSCALE:
{
image->data = (unsigned char *)malloc(image->width*image->height*sizeof(unsigned char));
for (int i = 0; i < image->width*image->height; i++)
{
((unsigned char *)image->data)[i] = (unsigned char)((float)pixels[i].r*0.299f + (float)pixels[i].g*0.587f + (float)pixels[i].b*0.114f);
}
} break;
case UNCOMPRESSED_GRAY_ALPHA:
{
image->data = (unsigned char *)malloc(image->width*image->height*2*sizeof(unsigned char));
for (int i = 0; i < image->width*image->height*2; i += 2, k++)
{
((unsigned char *)image->data)[i] = (unsigned char)((float)pixels[k].r*0.299f + (float)pixels[k].g*0.587f + (float)pixels[k].b*0.114f);
((unsigned char *)image->data)[i + 1] = pixels[k].a;
}
} break;
case UNCOMPRESSED_R5G6B5:
{
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short));
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round((float)pixels[i].r*31.0f/255));
g = (unsigned char)(round((float)pixels[i].g*63.0f/255));
b = (unsigned char)(round((float)pixels[i].b*31.0f/255));
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b;
}
} break;
case UNCOMPRESSED_R8G8B8:
{
image->data = (unsigned char *)malloc(image->width*image->height*3*sizeof(unsigned char));
for (int i = 0; i < image->width*image->height*3; i += 3, k++)
{
((unsigned char *)image->data)[i] = pixels[k].r;
((unsigned char *)image->data)[i + 1] = pixels[k].g;
((unsigned char *)image->data)[i + 2] = pixels[k].b;
}
} break;
case UNCOMPRESSED_R5G5B5A1:
{
#define ALPHA_THRESHOLD 50
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short));
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
unsigned char a = 0;
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round((float)pixels[i].r*31.0f/255));
g = (unsigned char)(round((float)pixels[i].g*31.0f/255));
b = (unsigned char)(round((float)pixels[i].b*31.0f/255));
a = (pixels[i].a > ALPHA_THRESHOLD) ? 1 : 0;
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
}
} break;
case UNCOMPRESSED_R4G4B4A4:
{
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short));
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
unsigned char a = 0;
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round((float)pixels[i].r*15.0f/255));
g = (unsigned char)(round((float)pixels[i].g*15.0f/255));
b = (unsigned char)(round((float)pixels[i].b*15.0f/255));
a = (unsigned char)(round((float)pixels[i].a*15.0f/255));
((unsigned short *)image->data)[i] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
}
} break;
case UNCOMPRESSED_R8G8B8A8:
{
image->data = (unsigned char *)malloc(image->width*image->height*4*sizeof(unsigned char));
for (int i = 0; i < image->width*image->height*3; i += 3, k++)
{
((unsigned char *)image->data)[i] = pixels[k].r;
((unsigned char *)image->data)[i + 1] = pixels[k].g;
((unsigned char *)image->data)[i + 2] = pixels[k].b;
((unsigned char *)image->data)[i + 3] = pixels[k].a;
}
} break;
case UNCOMPRESSED_R32:
{
image->data = (float *)malloc(image->width*image->height*sizeof(float));
for (int i = 0; i < image->width*image->height; i++)
{
((float *)image->data)[i] = (float)((float)pixels[i].r*0.299f/255.0f + (float)pixels[i].g*0.587f/255.0f + (float)pixels[i].b*0.114f/255.0f);
}
} break;
case UNCOMPRESSED_R32G32B32:
{
image->data = (float *)malloc(image->width*image->height*3*sizeof(float));
for (int i = 0; i < image->width*image->height*3; i += 3, k++)
{
((float *)image->data)[i] = (float)pixels[k].r/255.0f;
((float *)image->data)[i + 1] = (float)pixels[k].g/255.0f;
((float *)image->data)[i + 2] = (float)pixels[k].b/255.0f;
}
} break;
case UNCOMPRESSED_R32G32B32A32:
{
image->data = (float *)malloc(image->width*image->height*4*sizeof(float));
for (int i = 0; i < image->width*image->height*4; i += 4, k++)
{
((float *)image->data)[i] = (float)pixels[k].r/255.0f;
((float *)image->data)[i + 1] = (float)pixels[k].g/255.0f;
((float *)image->data)[i + 2] = (float)pixels[k].b/255.0f;
((float *)image->data)[i + 3] = (float)pixels[k].a/255.0f;
}
} break;
default: break;
}
free(pixels);
// In case original image had mipmaps, generate mipmaps for formated image
// NOTE: Original mipmaps are replaced by new ones, if custom mipmaps were used, they are lost
if (image->mipmaps > 1)
{
image->mipmaps = 1;
ImageMipmaps(image);
}
}
else TraceLog(LOG_WARNING, "Image data format is compressed, can not be converted");
}
}
// Apply alpha mask to image
// NOTE 1: Returned image is GRAY_ALPHA (16bit) or RGBA (32bit)
// NOTE 2: alphaMask should be same size as image
void ImageAlphaMask(Image *image, Image alphaMask)
{
if ((image->width != alphaMask.width) || (image->height != alphaMask.height))
{
TraceLog(LOG_WARNING, "Alpha mask must be same size as image");
}
else if (image->format >= COMPRESSED_DXT1_RGB)
{
TraceLog(LOG_WARNING, "Alpha mask can not be applied to compressed data formats");
}
else
{
// Force mask to be Grayscale
Image mask = ImageCopy(alphaMask);
if (mask.format != UNCOMPRESSED_GRAYSCALE) ImageFormat(&mask, UNCOMPRESSED_GRAYSCALE);
// In case image is only grayscale, we just add alpha channel
if (image->format == UNCOMPRESSED_GRAYSCALE)
{
ImageFormat(image, UNCOMPRESSED_GRAY_ALPHA);
// Apply alpha mask to alpha channel
for (int i = 0, k = 1; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 2)
{
((unsigned char *)image->data)[k] = ((unsigned char *)mask.data)[i];
}
}
else
{
// Convert image to RGBA
if (image->format != UNCOMPRESSED_R8G8B8A8) ImageFormat(image, UNCOMPRESSED_R8G8B8A8);
// Apply alpha mask to alpha channel
for (int i = 0, k = 3; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 4)
{
((unsigned char *)image->data)[k] = ((unsigned char *)mask.data)[i];
}
}
UnloadImage(mask);
}
}
// Clear alpha channel to desired color
// NOTE: Threshold defines the alpha limit, 0.0f to 1.0f
void ImageAlphaClear(Image *image, Color color, float threshold)
{
Color *pixels = GetImageData(*image);
for (int i = 0; i < image->width*image->height; i++) if (pixels[i].a <= (unsigned char)(threshold*255.0f)) pixels[i] = color;
UnloadImage(*image);
int prevFormat = image->format;
*image = LoadImageEx(pixels, image->width, image->height);
ImageFormat(image, prevFormat);
}
// Crop image depending on alpha value
void ImageAlphaCrop(Image *image, float threshold)
{
Rectangle crop = { 0 };
Color *pixels = GetImageData(*image);
int minx = 0;
int miny = 0;
for (int i = 0; i < image->width*image->height; i++)
{
if (pixels[i].a > (unsigned char)(threshold*255.0f))
{
minx = i%image->width;
miny = -(-((i/image->width) + 1) + 1);
if (crop.y == 0) crop.y = miny;
if (crop.x == 0) crop.x = minx;
else if (minx < crop.x) crop.x = minx;
if (crop.width == 0) crop.width = minx;
else if (crop.width < minx) crop.width = minx;
if (crop.height == 0) crop.height = miny;
else if (crop.height < miny) crop.height = miny;
}
}
crop.width -= (crop.x - 1);
crop.height -= (crop.y - 1);
TraceLog(LOG_INFO, "Crop rectangle: (%i, %i, %i, %i)", crop.x, crop.y, crop.width, crop.height);
free(pixels);
// NOTE: Added this weird check to avoid additional 1px crop to
// image data that has already been cropped...
if ((crop.x != 1) &&
(crop.y != 1) &&
(crop.width != image->width - 1) &&
(crop.height != image->height - 1)) ImageCrop(image, crop);
}
// Premultiply alpha channel
void ImageAlphaPremultiply(Image *image)
{
float alpha = 0.0f;
Color *pixels = GetImageData(*image);
for (int i = 0; i < image->width*image->height; i++)
{
alpha = (float)pixels[i].a/255.0f;
pixels[i].r = (unsigned char)((float)pixels[i].r*alpha);
pixels[i].g = (unsigned char)((float)pixels[i].g*alpha);
pixels[i].b = (unsigned char)((float)pixels[i].b*alpha);
}
UnloadImage(*image);
int prevFormat = image->format;
*image = LoadImageEx(pixels, image->width, image->height);
ImageFormat(image, prevFormat);
}
#if defined(SUPPORT_IMAGE_MANIPULATION)
// Crop an image to area defined by a rectangle
// NOTE: Security checks are performed in case rectangle goes out of bounds
void ImageCrop(Image *image, Rectangle crop)
{
// Security checks to make sure cropping rectangle is inside margins
if ((crop.x + crop.width) > image->width)
{
crop.width = image->width - crop.x;
TraceLog(LOG_WARNING, "Crop rectangle width out of bounds, rescaled crop width: %i", crop.width);
}
if ((crop.y + crop.height) > image->height)
{
crop.height = image->height - crop.y;
TraceLog(LOG_WARNING, "Crop rectangle height out of bounds, rescaled crop height: %i", crop.height);
}
if ((crop.x < image->width) && (crop.y < image->height))
{
// Start the cropping process
Color *pixels = GetImageData(*image); // Get data as Color pixels array
Color *cropPixels = (Color *)malloc(crop.width*crop.height*sizeof(Color));
for (int j = crop.y; j < (crop.y + crop.height); j++)
{
for (int i = crop.x; i < (crop.x + crop.width); i++)
{
cropPixels[(j - crop.y)*crop.width + (i - crop.x)] = pixels[j*image->width + i];
}
}
free(pixels);
int format = image->format;
UnloadImage(*image);
*image = LoadImageEx(cropPixels, crop.width, crop.height);
free(cropPixels);
// Reformat 32bit RGBA image to original format
ImageFormat(image, format);
}
else
{
TraceLog(LOG_WARNING, "Image can not be cropped, crop rectangle out of bounds");
}
}
// Resize and image to new size
// NOTE: Uses stb default scaling filters (both bicubic):
// STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM
// STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL (high-quality Catmull-Rom)
void ImageResize(Image *image, int newWidth, int newHeight)
{
// Get data as Color pixels array to work with it
Color *pixels = GetImageData(*image);
Color *output = (Color *)malloc(newWidth*newHeight*sizeof(Color));
// NOTE: Color data is casted to (unsigned char *), there shouldn't been any problem...
stbir_resize_uint8((unsigned char *)pixels, image->width, image->height, 0, (unsigned char *)output, newWidth, newHeight, 0, 4);
int format = image->format;
UnloadImage(*image);
*image = LoadImageEx(output, newWidth, newHeight);
ImageFormat(image, format); // Reformat 32bit RGBA image to original format
free(output);
free(pixels);
}
// Resize and image to new size using Nearest-Neighbor scaling algorithm
void ImageResizeNN(Image *image,int newWidth,int newHeight)
{
Color *pixels = GetImageData(*image);
Color *output = (Color *)malloc(newWidth*newHeight*sizeof(Color));
// EDIT: added +1 to account for an early rounding problem
int xRatio = (int)((image->width << 16)/newWidth) + 1;
int yRatio = (int)((image->height << 16)/newHeight) + 1;
int x2, y2;
for (int y = 0; y < newHeight; y++)
{
for (int x = 0; x < newWidth; x++)
{
x2 = ((x*xRatio) >> 16);
y2 = ((y*yRatio) >> 16);
output[(y*newWidth) + x] = pixels[(y2*image->width) + x2] ;
}
}
int format = image->format;
UnloadImage(*image);
*image = LoadImageEx(output, newWidth, newHeight);
ImageFormat(image, format); // Reformat 32bit RGBA image to original format
free(output);
free(pixels);
}
// Generate all mipmap levels for a provided image
// NOTE 1: Supports POT and NPOT images
// NOTE 2: image.data is scaled to include mipmap levels
// NOTE 3: Mipmaps format is the same as base image
void ImageMipmaps(Image *image)
{
int mipCount = 1; // Required mipmap levels count (including base level)
int mipWidth = image->width; // Base image width
int mipHeight = image->height; // Base image height
int mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format); // Image data size (in bytes)
// Count mipmap levels required
while ((mipWidth != 1) || (mipHeight != 1))
{
if (mipWidth != 1) mipWidth /= 2;
if (mipHeight != 1) mipHeight /= 2;
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
TraceLog(LOG_DEBUG, "Next mipmap level: %i x %i - current size %i", mipWidth, mipHeight, mipSize);
mipCount++;
mipSize += GetPixelDataSize(mipWidth, mipHeight, image->format); // Add mipmap size (in bytes)
}
TraceLog(LOG_DEBUG, "Mipmaps available: %i - Mipmaps required: %i", image->mipmaps, mipCount);
TraceLog(LOG_DEBUG, "Mipmaps total size required: %i", mipSize);
TraceLog(LOG_DEBUG, "Image data memory start address: 0x%x", image->data);
if (image->mipmaps < mipCount)
{
void *temp = realloc(image->data, mipSize);
if (temp != NULL)
{
image->data = temp; // Assign new pointer (new size) to store mipmaps data
TraceLog(LOG_DEBUG, "Image data memory point reallocated: 0x%x", temp);
}
else TraceLog(LOG_WARNING, "Mipmaps required memory could not be allocated");
// Pointer to allocated memory point where store next mipmap level data
unsigned char *nextmip = (unsigned char *)image->data + GetPixelDataSize(image->width, image->height, image->format);
mipWidth = image->width/2;
mipHeight = image->height/2;
mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format);
Image imCopy = ImageCopy(*image);
for (int i = 1; i < mipCount; i++)
{
TraceLog(LOG_DEBUG, "Gen mipmap level: %i (%i x %i) - size: %i - offset: 0x%x", i, mipWidth, mipHeight, mipSize, nextmip);
ImageResize(&imCopy, mipWidth, mipHeight); // Uses internally Mitchell cubic downscale filter
memcpy(nextmip, imCopy.data, mipSize);
nextmip += mipSize;
image->mipmaps++;
mipWidth /= 2;
mipHeight /= 2;
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format);
}
UnloadImage(imCopy);
}
else TraceLog(LOG_WARNING, "Image mipmaps already available");
}
// Dither image data to 16bpp or lower (Floyd-Steinberg dithering)
// NOTE: In case selected bpp do not represent an known 16bit format,
// dithered data is stored in the LSB part of the unsigned short
void ImageDither(Image *image, int rBpp, int gBpp, int bBpp, int aBpp)
{
if (image->format >= COMPRESSED_DXT1_RGB)
{
TraceLog(LOG_WARNING, "Compressed data formats can not be dithered");
return;
}
if ((rBpp+gBpp+bBpp+aBpp) > 16)
{
TraceLog(LOG_WARNING, "Unsupported dithering bpps (%ibpp), only 16bpp or lower modes supported", (rBpp+gBpp+bBpp+aBpp));
}
else
{
Color *pixels = GetImageData(*image);
free(image->data); // free old image data
if ((image->format != UNCOMPRESSED_R8G8B8) && (image->format != UNCOMPRESSED_R8G8B8A8))
{
TraceLog(LOG_WARNING, "Image format is already 16bpp or lower, dithering could have no effect");
}
// Define new image format, check if desired bpp match internal known format
if ((rBpp == 5) && (gBpp == 6) && (bBpp == 5) && (aBpp == 0)) image->format = UNCOMPRESSED_R5G6B5;
else if ((rBpp == 5) && (gBpp == 5) && (bBpp == 5) && (aBpp == 1)) image->format = UNCOMPRESSED_R5G5B5A1;
else if ((rBpp == 4) && (gBpp == 4) && (bBpp == 4) && (aBpp == 4)) image->format = UNCOMPRESSED_R4G4B4A4;
else
{
image->format = 0;
TraceLog(LOG_WARNING, "Unsupported dithered OpenGL internal format: %ibpp (R%iG%iB%iA%i)", (rBpp+gBpp+bBpp+aBpp), rBpp, gBpp, bBpp, aBpp);
}
// NOTE: We will store the dithered data as unsigned short (16bpp)
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short));
Color oldPixel = WHITE;
Color newPixel = WHITE;
int rError, gError, bError;
unsigned short rPixel, gPixel, bPixel, aPixel; // Used for 16bit pixel composition
#define MIN(a,b) (((a)<(b))?(a):(b))
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
oldPixel = pixels[y*image->width + x];
// NOTE: New pixel obtained by bits truncate, it would be better to round values (check ImageFormat())
newPixel.r = oldPixel.r >> (8 - rBpp); // R bits
newPixel.g = oldPixel.g >> (8 - gBpp); // G bits
newPixel.b = oldPixel.b >> (8 - bBpp); // B bits
newPixel.a = oldPixel.a >> (8 - aBpp); // A bits (not used on dithering)
// NOTE: Error must be computed between new and old pixel but using same number of bits!
// We want to know how much color precision we have lost...
rError = (int)oldPixel.r - (int)(newPixel.r << (8 - rBpp));
gError = (int)oldPixel.g - (int)(newPixel.g << (8 - gBpp));
bError = (int)oldPixel.b - (int)(newPixel.b << (8 - bBpp));
pixels[y*image->width + x] = newPixel;
// NOTE: Some cases are out of the array and should be ignored
if (x < (image->width - 1))
{
pixels[y*image->width + x+1].r = MIN((int)pixels[y*image->width + x+1].r + (int)((float)rError*7.0f/16), 0xff);
pixels[y*image->width + x+1].g = MIN((int)pixels[y*image->width + x+1].g + (int)((float)gError*7.0f/16), 0xff);
pixels[y*image->width + x+1].b = MIN((int)pixels[y*image->width + x+1].b + (int)((float)bError*7.0f/16), 0xff);
}
if ((x > 0) && (y < (image->height - 1)))
{
pixels[(y+1)*image->width + x-1].r = MIN((int)pixels[(y+1)*image->width + x-1].r + (int)((float)rError*3.0f/16), 0xff);
pixels[(y+1)*image->width + x-1].g = MIN((int)pixels[(y+1)*image->width + x-1].g + (int)((float)gError*3.0f/16), 0xff);
pixels[(y+1)*image->width + x-1].b = MIN((int)pixels[(y+1)*image->width + x-1].b + (int)((float)bError*3.0f/16), 0xff);
}
if (y < (image->height - 1))
{
pixels[(y+1)*image->width + x].r = MIN((int)pixels[(y+1)*image->width + x].r + (int)((float)rError*5.0f/16), 0xff);
pixels[(y+1)*image->width + x].g = MIN((int)pixels[(y+1)*image->width + x].g + (int)((float)gError*5.0f/16), 0xff);
pixels[(y+1)*image->width + x].b = MIN((int)pixels[(y+1)*image->width + x].b + (int)((float)bError*5.0f/16), 0xff);
}
if ((x < (image->width - 1)) && (y < (image->height - 1)))
{
pixels[(y+1)*image->width + x+1].r = MIN((int)pixels[(y+1)*image->width + x+1].r + (int)((float)rError*1.0f/16), 0xff);
pixels[(y+1)*image->width + x+1].g = MIN((int)pixels[(y+1)*image->width + x+1].g + (int)((float)gError*1.0f/16), 0xff);
pixels[(y+1)*image->width + x+1].b = MIN((int)pixels[(y+1)*image->width + x+1].b + (int)((float)bError*1.0f/16), 0xff);
}
rPixel = (unsigned short)newPixel.r;
gPixel = (unsigned short)newPixel.g;
bPixel = (unsigned short)newPixel.b;
aPixel = (unsigned short)newPixel.a;
((unsigned short *)image->data)[y*image->width + x] = (rPixel << (gBpp + bBpp + aBpp)) | (gPixel << (bBpp + aBpp)) | (bPixel << aBpp) | aPixel;
}
}
free(pixels);
}
}
// Draw an image (source) within an image (destination)
// TODO: Feel this function could be simplified...
void ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dstRec)
{
bool cropRequired = false;
// Security checks to avoid size and rectangle issues (out of bounds)
// Check that srcRec is inside src image
if (srcRec.x < 0) srcRec.x = 0;
if (srcRec.y < 0) srcRec.y = 0;
if ((srcRec.x + srcRec.width) > src.width)
{
srcRec.width = src.width - srcRec.x;
TraceLog(LOG_WARNING, "Source rectangle width out of bounds, rescaled width: %i", srcRec.width);
}
if ((srcRec.y + srcRec.height) > src.height)
{
srcRec.height = src.height - srcRec.y;
TraceLog(LOG_WARNING, "Source rectangle height out of bounds, rescaled height: %i", srcRec.height);
cropRequired = true;
}
Image srcCopy = ImageCopy(src); // Make a copy of source image to work with it
ImageCrop(&srcCopy, srcRec); // Crop source image to desired source rectangle
// Check that dstRec is inside dst image
// TODO: Allow negative position within destination with cropping
if (dstRec.x < 0) dstRec.x = 0;
if (dstRec.y < 0) dstRec.y = 0;
// Scale source image in case destination rec size is different than source rec size
if ((dstRec.width != srcRec.width) || (dstRec.height != srcRec.height))
{
ImageResize(&srcCopy, dstRec.width, dstRec.height);
}
if ((dstRec.x + dstRec.width) > dst->width)
{
dstRec.width = dst->width - dstRec.x;
TraceLog(LOG_WARNING, "Destination rectangle width out of bounds, rescaled width: %i", dstRec.width);
cropRequired = true;
}
if ((dstRec.y + dstRec.height) > dst->height)
{
dstRec.height = dst->height - dstRec.y;
TraceLog(LOG_WARNING, "Destination rectangle height out of bounds, rescaled height: %i", dstRec.height);
cropRequired = true;
}
if (cropRequired)
{
// Crop destination rectangle if out of bounds
Rectangle crop = { 0, 0, dstRec.width, dstRec.height };
ImageCrop(&srcCopy, crop);
}
// Get image data as Color pixels array to work with it
Color *dstPixels = GetImageData(*dst);
Color *srcPixels = GetImageData(srcCopy);
UnloadImage(srcCopy); // Source copy not required any more...
Color srcCol, dstCol;
// Blit pixels, copy source image into destination
// TODO: Probably out-of-bounds blitting could be considered here instead of so much cropping...
for (int j = dstRec.y; j < (dstRec.y + dstRec.height); j++)
{
for (int i = dstRec.x; i < (dstRec.x + dstRec.width); i++)
{
// Alpha blending implementation
dstCol = dstPixels[j*dst->width + i];
srcCol = srcPixels[(j - dstRec.y)*dstRec.width + (i - dstRec.x)];
dstCol.r = ((srcCol.a*(srcCol.r - dstCol.r)) >> 8) + dstCol.r;
dstCol.g = ((srcCol.a*(srcCol.g - dstCol.g)) >> 8) + dstCol.g;
dstCol.b = ((srcCol.a*(srcCol.b - dstCol.b)) >> 8) + dstCol.b;
dstCol.a = ((srcCol.a*(srcCol.a - dstCol.a)) >> 8) + dstCol.a;
dstPixels[j*dst->width + i] = dstCol;
// TODO: Support other blending options
}
}
UnloadImage(*dst); // NOTE: Only dst->data is unloaded
*dst = LoadImageEx(dstPixels, dst->width, dst->height);
ImageFormat(dst, dst->format);
free(srcPixels);
free(dstPixels);
}
// Create an image from text (default font)
Image ImageText(const char *text, int fontSize, Color color)
{
int defaultFontSize = 10; // Default Font chars height in pixel
if (fontSize < defaultFontSize) fontSize = defaultFontSize;
int spacing = fontSize/defaultFontSize;
Image imText = ImageTextEx(GetDefaultFont(), text, (float)fontSize, spacing, color);
return imText;
}
// Create an image from text (custom sprite font)
Image ImageTextEx(SpriteFont font, const char *text, float fontSize, int spacing, Color tint)
{
int length = strlen(text);
int posX = 0;
int index; // Index position in sprite font
unsigned char character; // Current character
// TODO: ISSUE: Measured text size does not seem to be correct... issue on ImageDraw()
Vector2 imSize = MeasureTextEx(font, text, font.baseSize, spacing);
TraceLog(LOG_DEBUG, "Text Image size: %f, %f", imSize.x, imSize.y);
// NOTE: glGetTexImage() not available in OpenGL ES
// TODO: This is horrible, retrieving font texture from GPU!!!
// Define ImageFont struct? or include Image spritefont in SpriteFont struct?
Image imFont = GetTextureData(font.texture);
ImageColorTint(&imFont, tint); // Apply color tint to font
// Create image to store text
Image imText = GenImageColor((int)imSize.x, (int)imSize.y, BLANK);
for (int i = 0; i < length; i++)
{
if ((unsigned char)text[i] == '\n')
{
// TODO: Support line break
}
else
{
if ((unsigned char)text[i] == 0xc2) // UTF-8 encoding identification HACK!
{
// Support UTF-8 encoded values from [0xc2 0x80] -> [0xc2 0xbf](¿)
character = (unsigned char)text[i + 1];
index = GetGlyphIndex(font, (int)character);
i++;
}
else if ((unsigned char)text[i] == 0xc3) // UTF-8 encoding identification HACK!
{
// Support UTF-8 encoded values from [0xc3 0x80](À) -> [0xc3 0xbf](ÿ)
character = (unsigned char)text[i + 1];
index = GetGlyphIndex(font, (int)character + 64);
i++;
}
else index = GetGlyphIndex(font, (unsigned char)text[i]);
CharInfo letter = font.chars[index];
if ((unsigned char)text[i] != ' ')
{
ImageDraw(&imText, imFont, letter.rec, (Rectangle){ posX + letter.offsetX,
letter.offsetY, letter.rec.width, letter.rec.height });
}
if (letter.advanceX == 0) posX += letter.rec.width + spacing;
else posX += letter.advanceX + spacing;
}
}
UnloadImage(imFont);
// Scale image depending on text size
if (fontSize > imSize.y)
{
float scaleFactor = fontSize/imSize.y;
TraceLog(LOG_INFO, "Image text scaled by factor: %f", scaleFactor);
// Using nearest-neighbor scaling algorithm for default font
if (font.texture.id == GetDefaultFont().texture.id) ImageResizeNN(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor));
else ImageResize(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor));
}
return imText;
}
// Draw text (default font) within an image (destination)
void ImageDrawText(Image *dst, Vector2 position, const char *text, int fontSize, Color color)
{
// NOTE: For default font, sapcing is set to desired font size / default font size (10)
ImageDrawTextEx(dst, position, GetDefaultFont(), text, (float)fontSize, fontSize/10, color);
}
// Draw text (custom sprite font) within an image (destination)
void ImageDrawTextEx(Image *dst, Vector2 position, SpriteFont font, const char *text, float fontSize, int spacing, Color color)
{
Image imText = ImageTextEx(font, text, fontSize, spacing, color);
Rectangle srcRec = { 0, 0, imText.width, imText.height };
Rectangle dstRec = { (int)position.x, (int)position.y, imText.width, imText.height };
ImageDraw(dst, imText, srcRec, dstRec);
UnloadImage(imText);
}
// Flip image vertically
void ImageFlipVertical(Image *image)
{
Color *srcPixels = GetImageData(*image);
Color *dstPixels = (Color *)malloc(sizeof(Color)*image->width*image->height);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
dstPixels[y*image->width + x] = srcPixels[(image->height - 1 - y)*image->width + x];
}
}
Image processed = LoadImageEx(dstPixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(srcPixels);
free(dstPixels);
image->data = processed.data;
}
// Flip image horizontally
void ImageFlipHorizontal(Image *image)
{
Color *srcPixels = GetImageData(*image);
Color *dstPixels = (Color *)malloc(sizeof(Color)*image->width*image->height);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
dstPixels[y*image->width + x] = srcPixels[y*image->width + (image->width - 1 - x)];
}
}
Image processed = LoadImageEx(dstPixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(srcPixels);
free(dstPixels);
image->data = processed.data;
}
// Modify image color: tint
void ImageColorTint(Image *image, Color color)
{
Color *pixels = GetImageData(*image);
float cR = (float)color.r/255;
float cG = (float)color.g/255;
float cB = (float)color.b/255;
float cA = (float)color.a/255;
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
unsigned char r = 255*((float)pixels[y*image->width + x].r/255*cR);
unsigned char g = 255*((float)pixels[y*image->width + x].g/255*cG);
unsigned char b = 255*((float)pixels[y*image->width + x].b/255*cB);
unsigned char a = 255*((float)pixels[y*image->width + x].a/255*cA);
pixels[y*image->width + x].r = r;
pixels[y*image->width + x].g = g;
pixels[y*image->width + x].b = b;
pixels[y*image->width + x].a = a;
}
}
Image processed = LoadImageEx(pixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(pixels);
image->data = processed.data;
}
// Modify image color: invert
void ImageColorInvert(Image *image)
{
Color *pixels = GetImageData(*image);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
pixels[y*image->width + x].r = 255 - pixels[y*image->width + x].r;
pixels[y*image->width + x].g = 255 - pixels[y*image->width + x].g;
pixels[y*image->width + x].b = 255 - pixels[y*image->width + x].b;
}
}
Image processed = LoadImageEx(pixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(pixels);
image->data = processed.data;
}
// Modify image color: grayscale
void ImageColorGrayscale(Image *image)
{
ImageFormat(image, UNCOMPRESSED_GRAYSCALE);
}
// Modify image color: contrast
// NOTE: Contrast values between -100 and 100
void ImageColorContrast(Image *image, float contrast)
{
if (contrast < -100) contrast = -100;
if (contrast > 100) contrast = 100;
contrast = (100.0f + contrast)/100.0f;
contrast *= contrast;
Color *pixels = GetImageData(*image);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
float pR = (float)pixels[y*image->width + x].r/255.0f;
pR -= 0.5;
pR *= contrast;
pR += 0.5;
pR *= 255;
if (pR < 0) pR = 0;
if (pR > 255) pR = 255;
float pG = (float)pixels[y*image->width + x].g/255.0f;
pG -= 0.5;
pG *= contrast;
pG += 0.5;
pG *= 255;
if (pG < 0) pG = 0;
if (pG > 255) pG = 255;
float pB = (float)pixels[y*image->width + x].b/255.0f;
pB -= 0.5;
pB *= contrast;
pB += 0.5;
pB *= 255;
if (pB < 0) pB = 0;
if (pB > 255) pB = 255;
pixels[y*image->width + x].r = (unsigned char)pR;
pixels[y*image->width + x].g = (unsigned char)pG;
pixels[y*image->width + x].b = (unsigned char)pB;
}
}
Image processed = LoadImageEx(pixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(pixels);
image->data = processed.data;
}
// Modify image color: brightness
// NOTE: Brightness values between -255 and 255
void ImageColorBrightness(Image *image, int brightness)
{
if (brightness < -255) brightness = -255;
if (brightness > 255) brightness = 255;
Color *pixels = GetImageData(*image);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
int cR = pixels[y*image->width + x].r + brightness;
int cG = pixels[y*image->width + x].g + brightness;
int cB = pixels[y*image->width + x].b + brightness;
if (cR < 0) cR = 1;
if (cR > 255) cR = 255;
if (cG < 0) cG = 1;
if (cG > 255) cG = 255;
if (cB < 0) cB = 1;
if (cB > 255) cB = 255;
pixels[y*image->width + x].r = (unsigned char)cR;
pixels[y*image->width + x].g = (unsigned char)cG;
pixels[y*image->width + x].b = (unsigned char)cB;
}
}
Image processed = LoadImageEx(pixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(pixels);
image->data = processed.data;
}
#endif // SUPPORT_IMAGE_MANIPULATION
#if defined(SUPPORT_IMAGE_GENERATION)
// Generate image: plain color
Image GenImageColor(int width, int height, Color color)
{
Color *pixels = (Color *)calloc(width*height, sizeof(Color));
for (int i = 0; i < width*height; i++) pixels[i] = color;
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: vertical gradient
Image GenImageGradientV(int width, int height, Color top, Color bottom)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int j = 0; j < height; j++)
{
float factor = (float)j/(float)height;
for (int i = 0; i < width; i++)
{
pixels[j*width + i].r = (int)((float)bottom.r*factor + (float)top.r*(1.f - factor));
pixels[j*width + i].g = (int)((float)bottom.g*factor + (float)top.g*(1.f - factor));
pixels[j*width + i].b = (int)((float)bottom.b*factor + (float)top.b*(1.f - factor));
pixels[j*width + i].a = (int)((float)bottom.a*factor + (float)top.a*(1.f - factor));
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: horizontal gradient
Image GenImageGradientH(int width, int height, Color left, Color right)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int i = 0; i < width; i++)
{
float factor = (float)i/(float)width;
for (int j = 0; j < height; j++)
{
pixels[j*width + i].r = (int)((float)right.r*factor + (float)left.r*(1.f - factor));
pixels[j*width + i].g = (int)((float)right.g*factor + (float)left.g*(1.f - factor));
pixels[j*width + i].b = (int)((float)right.b*factor + (float)left.b*(1.f - factor));
pixels[j*width + i].a = (int)((float)right.a*factor + (float)left.a*(1.f - factor));
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: radial gradient
Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
float radius = (width < height) ? (float)width/2.0f : (float)height/2.0f;
float centerX = (float)width/2.0f;
float centerY = (float)height/2.0f;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
float dist = hypotf((float)x - centerX, (float)y - centerY);
float factor = (dist - radius*density)/(radius*(1.0f - density));
factor = fmax(factor, 0.f);
factor = fmin(factor, 1.f); // dist can be bigger than radius so we have to check
pixels[y*width + x].r = (int)((float)outer.r*factor + (float)inner.r*(1.0f - factor));
pixels[y*width + x].g = (int)((float)outer.g*factor + (float)inner.g*(1.0f - factor));
pixels[y*width + x].b = (int)((float)outer.b*factor + (float)inner.b*(1.0f - factor));
pixels[y*width + x].a = (int)((float)outer.a*factor + (float)inner.a*(1.0f - factor));
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: checked
Image GenImageChecked(int width, int height, int checksX, int checksY, Color col1, Color col2)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
if ((x/checksX + y/checksY)%2 == 0) pixels[y*width + x] = col1;
else pixels[y*width + x] = col2;
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: white noise
Image GenImageWhiteNoise(int width, int height, float factor)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int i = 0; i < width*height; i++)
{
if (GetRandomValue(0, 99) < (int)(factor*100.0f)) pixels[i] = WHITE;
else pixels[i] = BLACK;
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: perlin noise
Image GenImagePerlinNoise(int width, int height, int offsetX, int offsetY, float scale)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
float nx = (float)(x + offsetX)*scale/(float)width;
float ny = (float)(y + offsetY)*scale/(float)height;
// Typical values to start playing with:
// lacunarity = ~2.0 -- spacing between successive octaves (use exactly 2.0 for wrapping output)
// gain = 0.5 -- relative weighting applied to each successive octave
// octaves = 6 -- number of "octaves" of noise3() to sum
// NOTE: We need to translate the data from [-1..1] to [0..1]
float p = (stb_perlin_fbm_noise3(nx, ny, 1.0f, 2.0f, 0.5f, 6, 0, 0, 0) + 1.0f)/2.0f;
int intensity = (int)(p*255.0f);
pixels[y*width + x] = (Color){intensity, intensity, intensity, 255};
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: cellular algorithm. Bigger tileSize means bigger cells
Image GenImageCellular(int width, int height, int tileSize)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
int seedsPerRow = width/tileSize;
int seedsPerCol = height/tileSize;
int seedsCount = seedsPerRow * seedsPerCol;
Vector2 *seeds = (Vector2 *)malloc(seedsCount*sizeof(Vector2));
for (int i = 0; i < seedsCount; i++)
{
int y = (i/seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1);
int x = (i%seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1);
seeds[i] = (Vector2){x, y};
}
for (int y = 0; y < height; y++)
{
int tileY = y/tileSize;
for (int x = 0; x < width; x++)
{
int tileX = x/tileSize;
float minDistance = strtod("Inf", NULL);
// Check all adjacent tiles
for (int i = -1; i < 2; i++)
{
if ((tileX + i < 0) || (tileX + i >= seedsPerRow)) continue;
for (int j = -1; j < 2; j++)
{
if ((tileY + j < 0) || (tileY + j >= seedsPerCol)) continue;
Vector2 neighborSeed = seeds[(tileY + j)*seedsPerRow + tileX + i];
float dist = hypot(x - (int)neighborSeed.x, y - (int)neighborSeed.y);
minDistance = fmin(minDistance, dist);
}
}
// I made this up but it seems to give good results at all tile sizes
int intensity = (int)(minDistance*256.0f/tileSize);
if (intensity > 255) intensity = 255;
pixels[y*width + x] = (Color){ intensity, intensity, intensity, 255 };
}
}
free(seeds);
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
#endif // SUPPORT_IMAGE_GENERATION
// Generate GPU mipmaps for a texture
void GenTextureMipmaps(Texture2D *texture)
{
#if defined(PLATFORM_WEB)
// Calculate next power-of-two values
int potWidth = (int)powf(2, ceilf(logf((float)texture->width)/logf(2)));
int potHeight = (int)powf(2, ceilf(logf((float)texture->height)/logf(2)));
// Check if texture is POT
if ((potWidth != texture->width) || (potHeight != texture->height))
{
TraceLog(LOG_WARNING, "Limited NPOT support, no mipmaps available for NPOT textures");
}
else rlGenerateMipmaps(texture);
#else
rlGenerateMipmaps(texture);
#endif
}
// Set texture scaling filter mode
void SetTextureFilter(Texture2D texture, int filterMode)
{
switch (filterMode)
{
case FILTER_POINT:
{
if (texture.mipmaps > 1)
{
// RL_FILTER_MIP_NEAREST - tex filter: POINT, mipmaps filter: POINT (sharp switching between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_MIP_NEAREST);
// RL_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_NEAREST);
}
else
{
// RL_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_NEAREST);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_NEAREST);
}
} break;
case FILTER_BILINEAR:
{
if (texture.mipmaps > 1)
{
// RL_FILTER_LINEAR_MIP_NEAREST - tex filter: BILINEAR, mipmaps filter: POINT (sharp switching between mipmaps)
// Alternative: RL_FILTER_NEAREST_MIP_LINEAR - tex filter: POINT, mipmaps filter: BILINEAR (smooth transition between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_LINEAR_MIP_NEAREST);
// RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR);
}
else
{
// RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_LINEAR);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR);
}
} break;
case FILTER_TRILINEAR:
{
if (texture.mipmaps > 1)
{
// RL_FILTER_MIP_LINEAR - tex filter: BILINEAR, mipmaps filter: BILINEAR (smooth transition between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_MIP_LINEAR);
// RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR);
}
else
{
TraceLog(LOG_WARNING, "[TEX ID %i] No mipmaps available for TRILINEAR texture filtering", texture.id);
// RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_LINEAR);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR);
}
} break;
case FILTER_ANISOTROPIC_4X: rlTextureParameters(texture.id, RL_TEXTURE_ANISOTROPIC_FILTER, 4); break;
case FILTER_ANISOTROPIC_8X: rlTextureParameters(texture.id, RL_TEXTURE_ANISOTROPIC_FILTER, 8); break;
case FILTER_ANISOTROPIC_16X: rlTextureParameters(texture.id, RL_TEXTURE_ANISOTROPIC_FILTER, 16); break;
default: break;
}
}
// Set texture wrapping mode
void SetTextureWrap(Texture2D texture, int wrapMode)
{
switch (wrapMode)
{
case WRAP_REPEAT:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_REPEAT);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_REPEAT);
} break;
case WRAP_CLAMP:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_CLAMP);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_CLAMP);
} break;
case WRAP_MIRROR:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_CLAMP_MIRROR);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_CLAMP_MIRROR);
} break;
default: break;
}
}
// Draw a Texture2D
void DrawTexture(Texture2D texture, int posX, int posY, Color tint)
{
DrawTextureEx(texture, (Vector2){ (float)posX, (float)posY }, 0.0f, 1.0f, tint);
}
// Draw a Texture2D with position defined as Vector2
void DrawTextureV(Texture2D texture, Vector2 position, Color tint)
{
DrawTextureEx(texture, position, 0, 1.0f, tint);
}
// Draw a Texture2D with extended parameters
void DrawTextureEx(Texture2D texture, Vector2 position, float rotation, float scale, Color tint)
{
Rectangle sourceRec = { 0, 0, texture.width, texture.height };
Rectangle destRec = { (int)position.x, (int)position.y, texture.width*scale, texture.height*scale };
Vector2 origin = { 0, 0 };
DrawTexturePro(texture, sourceRec, destRec, origin, rotation, tint);
}
// Draw a part of a texture (defined by a rectangle)
void DrawTextureRec(Texture2D texture, Rectangle sourceRec, Vector2 position, Color tint)
{
Rectangle destRec = { (int)position.x, (int)position.y, abs(sourceRec.width), abs(sourceRec.height) };
Vector2 origin = { 0, 0 };
DrawTexturePro(texture, sourceRec, destRec, origin, 0.0f, tint);
}
// Draw a part of a texture (defined by a rectangle) with 'pro' parameters
// NOTE: origin is relative to destination rectangle size
void DrawTexturePro(Texture2D texture, Rectangle sourceRec, Rectangle destRec, Vector2 origin, float rotation, Color tint)
{
// Check if texture is valid
if (texture.id > 0)
{
if (sourceRec.width < 0) sourceRec.x -= sourceRec.width;
if (sourceRec.height < 0) sourceRec.y -= sourceRec.height;
rlEnableTexture(texture.id);
rlPushMatrix();
rlTranslatef((float)destRec.x, (float)destRec.y, 0);
rlRotatef(rotation, 0, 0, 1);
rlTranslatef(-origin.x, -origin.y, 0);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
// Bottom-left corner for texture and quad
rlTexCoord2f((float)sourceRec.x/texture.width, (float)sourceRec.y/texture.height);
rlVertex2f(0.0f, 0.0f);
// Bottom-right corner for texture and quad
rlTexCoord2f((float)sourceRec.x/texture.width, (float)(sourceRec.y + sourceRec.height)/texture.height);
rlVertex2f(0.0f, (float)destRec.height);
// Top-right corner for texture and quad
rlTexCoord2f((float)(sourceRec.x + sourceRec.width)/texture.width, (float)(sourceRec.y + sourceRec.height)/texture.height);
rlVertex2f((float)destRec.width, (float)destRec.height);
// Top-left corner for texture and quad
rlTexCoord2f((float)(sourceRec.x + sourceRec.width)/texture.width, (float)sourceRec.y/texture.height);
rlVertex2f((float)destRec.width, 0.0f);
rlEnd();
rlPopMatrix();
rlDisableTexture();
}
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(SUPPORT_FILEFORMAT_DDS)
// Loading DDS image data (compressed or uncompressed)
static Image LoadDDS(const char *fileName)
{
// Required extension:
// GL_EXT_texture_compression_s3tc
// Supported tokens (defined by extensions)
// GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
// GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
// GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
// GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII
#define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII
#define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII
// DDS Pixel Format
typedef struct {
unsigned int size;
unsigned int flags;
unsigned int fourCC;
unsigned int rgbBitCount;
unsigned int rBitMask;
unsigned int gBitMask;
unsigned int bBitMask;
unsigned int aBitMask;
} DDSPixelFormat;
// DDS Header (124 bytes)
typedef struct {
unsigned int size;
unsigned int flags;
unsigned int height;
unsigned int width;
unsigned int pitchOrLinearSize;
unsigned int depth;
unsigned int mipmapCount;
unsigned int reserved1[11];
DDSPixelFormat ddspf;
unsigned int caps;
unsigned int caps2;
unsigned int caps3;
unsigned int caps4;
unsigned int reserved2;
} DDSHeader;
Image image = { 0 };
FILE *ddsFile = fopen(fileName, "rb");
if (ddsFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] DDS file could not be opened", fileName);
}
else
{
// Verify the type of file
char filecode[4];
fread(filecode, 4, 1, ddsFile);
if (strncmp(filecode, "DDS ", 4) != 0)
{
TraceLog(LOG_WARNING, "[%s] DDS file does not seem to be a valid image", fileName);
}
else
{
DDSHeader ddsHeader;
// Get the image header
fread(&ddsHeader, sizeof(DDSHeader), 1, ddsFile);
TraceLog(LOG_DEBUG, "[%s] DDS file header size: %i", fileName, sizeof(DDSHeader));
TraceLog(LOG_DEBUG, "[%s] DDS file pixel format size: %i", fileName, ddsHeader.ddspf.size);
TraceLog(LOG_DEBUG, "[%s] DDS file pixel format flags: 0x%x", fileName, ddsHeader.ddspf.flags);
TraceLog(LOG_DEBUG, "[%s] DDS file format: 0x%x", fileName, ddsHeader.ddspf.fourCC);
TraceLog(LOG_DEBUG, "[%s] DDS file bit count: 0x%x", fileName, ddsHeader.ddspf.rgbBitCount);
image.width = ddsHeader.width;
image.height = ddsHeader.height;
if (ddsHeader.mipmapCount == 0) image.mipmaps = 1; // Parameter not used
else image.mipmaps = ddsHeader.mipmapCount;
if (ddsHeader.ddspf.rgbBitCount == 16) // 16bit mode, no compressed
{
if (ddsHeader.ddspf.flags == 0x40) // no alpha channel
{
image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short));
fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile);
image.format = UNCOMPRESSED_R5G6B5;
}
else if (ddsHeader.ddspf.flags == 0x41) // with alpha channel
{
if (ddsHeader.ddspf.aBitMask == 0x8000) // 1bit alpha
{
image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short));
fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile);
unsigned char alpha = 0;
// NOTE: Data comes as A1R5G5B5, it must be reordered to R5G5B5A1
for (int i = 0; i < image.width*image.height; i++)
{
alpha = ((unsigned short *)image.data)[i] >> 15;
((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 1;
((unsigned short *)image.data)[i] += alpha;
}
image.format = UNCOMPRESSED_R5G5B5A1;
}
else if (ddsHeader.ddspf.aBitMask == 0xf000) // 4bit alpha
{
image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short));
fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile);
unsigned char alpha = 0;
// NOTE: Data comes as A4R4G4B4, it must be reordered R4G4B4A4
for (int i = 0; i < image.width*image.height; i++)
{
alpha = ((unsigned short *)image.data)[i] >> 12;
((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 4;
((unsigned short *)image.data)[i] += alpha;
}
image.format = UNCOMPRESSED_R4G4B4A4;
}
}
}
if (ddsHeader.ddspf.flags == 0x40 && ddsHeader.ddspf.rgbBitCount == 24) // DDS_RGB, no compressed
{
// NOTE: not sure if this case exists...
image.data = (unsigned char *)malloc(image.width*image.height*3*sizeof(unsigned char));
fread(image.data, image.width*image.height*3, 1, ddsFile);
image.format = UNCOMPRESSED_R8G8B8;
}
else if (ddsHeader.ddspf.flags == 0x41 && ddsHeader.ddspf.rgbBitCount == 32) // DDS_RGBA, no compressed
{
image.data = (unsigned char *)malloc(image.width*image.height*4*sizeof(unsigned char));
fread(image.data, image.width*image.height*4, 1, ddsFile);
unsigned char blue = 0;
// NOTE: Data comes as A8R8G8B8, it must be reordered R8G8B8A8 (view next comment)
// DirecX understand ARGB as a 32bit DWORD but the actual memory byte alignment is BGRA
// So, we must realign B8G8R8A8 to R8G8B8A8
for (int i = 0; i < image.width*image.height*4; i += 4)
{
blue = ((unsigned char *)image.data)[i];
((unsigned char *)image.data)[i] = ((unsigned char *)image.data)[i + 2];
((unsigned char *)image.data)[i + 2] = blue;
}
image.format = UNCOMPRESSED_R8G8B8A8;
}
else if (((ddsHeader.ddspf.flags == 0x04) || (ddsHeader.ddspf.flags == 0x05)) && (ddsHeader.ddspf.fourCC > 0)) // Compressed
{
int size; // DDS image data size
// Calculate data size, including all mipmaps
if (ddsHeader.mipmapCount > 1) size = ddsHeader.pitchOrLinearSize*2;
else size = ddsHeader.pitchOrLinearSize;
TraceLog(LOG_DEBUG, "Pitch or linear size: %i", ddsHeader.pitchOrLinearSize);
image.data = (unsigned char*)malloc(size*sizeof(unsigned char));
fread(image.data, size, 1, ddsFile);
switch (ddsHeader.ddspf.fourCC)
{
case FOURCC_DXT1:
{
if (ddsHeader.ddspf.flags == 0x04) image.format = COMPRESSED_DXT1_RGB;
else image.format = COMPRESSED_DXT1_RGBA;
} break;
case FOURCC_DXT3: image.format = COMPRESSED_DXT3_RGBA; break;
case FOURCC_DXT5: image.format = COMPRESSED_DXT5_RGBA; break;
default: break;
}
}
}
fclose(ddsFile); // Close file pointer
}
return image;
}
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
// Loading PKM image data (ETC1/ETC2 compression)
// NOTE: KTX is the standard Khronos Group compression format (ETC1/ETC2, mipmaps)
// PKM is a much simpler file format used mainly to contain a single ETC1/ETC2 compressed image (no mipmaps)
static Image LoadPKM(const char *fileName)
{
// Required extensions:
// GL_OES_compressed_ETC1_RGB8_texture (ETC1) (OpenGL ES 2.0)
// GL_ARB_ES3_compatibility (ETC2/EAC) (OpenGL ES 3.0)
// Supported tokens (defined by extensions)
// GL_ETC1_RGB8_OES 0x8D64
// GL_COMPRESSED_RGB8_ETC2 0x9274
// GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278
// PKM file (ETC1) Header (16 bytes)
typedef struct {
char id[4]; // "PKM "
char version[2]; // "10" or "20"
unsigned short format; // Data format (big-endian) (Check list below)
unsigned short width; // Texture width (big-endian) (origWidth rounded to multiple of 4)
unsigned short height; // Texture height (big-endian) (origHeight rounded to multiple of 4)
unsigned short origWidth; // Original width (big-endian)
unsigned short origHeight; // Original height (big-endian)
} PKMHeader;
// Formats list
// version 10: format: 0=ETC1_RGB, [1=ETC1_RGBA, 2=ETC1_RGB_MIP, 3=ETC1_RGBA_MIP] (not used)
// version 20: format: 0=ETC1_RGB, 1=ETC2_RGB, 2=ETC2_RGBA_OLD, 3=ETC2_RGBA, 4=ETC2_RGBA1, 5=ETC2_R, 6=ETC2_RG, 7=ETC2_SIGNED_R, 8=ETC2_SIGNED_R
// NOTE: The extended width and height are the widths rounded up to a multiple of 4.
// NOTE: ETC is always 4bit per pixel (64 bit for each 4x4 block of pixels)
Image image = { 0 };
FILE *pkmFile = fopen(fileName, "rb");
if (pkmFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] PKM file could not be opened", fileName);
}
else
{
PKMHeader pkmHeader;
// Get the image header
fread(&pkmHeader, sizeof(PKMHeader), 1, pkmFile);
if (strncmp(pkmHeader.id, "PKM ", 4) != 0)
{
TraceLog(LOG_WARNING, "[%s] PKM file does not seem to be a valid image", fileName);
}
else
{
// NOTE: format, width and height come as big-endian, data must be swapped to little-endian
pkmHeader.format = ((pkmHeader.format & 0x00FF) << 8) | ((pkmHeader.format & 0xFF00) >> 8);
pkmHeader.width = ((pkmHeader.width & 0x00FF) << 8) | ((pkmHeader.width & 0xFF00) >> 8);
pkmHeader.height = ((pkmHeader.height & 0x00FF) << 8) | ((pkmHeader.height & 0xFF00) >> 8);
TraceLog(LOG_DEBUG, "PKM (ETC) image width: %i", pkmHeader.width);
TraceLog(LOG_DEBUG, "PKM (ETC) image height: %i", pkmHeader.height);
TraceLog(LOG_DEBUG, "PKM (ETC) image format: %i", pkmHeader.format);
image.width = pkmHeader.width;
image.height = pkmHeader.height;
image.mipmaps = 1;
int bpp = 4;
if (pkmHeader.format == 3) bpp = 8;
int size = image.width*image.height*bpp/8; // Total data size in bytes
image.data = (unsigned char*)malloc(size*sizeof(unsigned char));
fread(image.data, size, 1, pkmFile);
if (pkmHeader.format == 0) image.format = COMPRESSED_ETC1_RGB;
else if (pkmHeader.format == 1) image.format = COMPRESSED_ETC2_RGB;
else if (pkmHeader.format == 3) image.format = COMPRESSED_ETC2_EAC_RGBA;
}
fclose(pkmFile); // Close file pointer
}
return image;
}
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
// Load KTX compressed image data (ETC1/ETC2 compression)
static Image LoadKTX(const char *fileName)
{
// Required extensions:
// GL_OES_compressed_ETC1_RGB8_texture (ETC1)
// GL_ARB_ES3_compatibility (ETC2/EAC)
// Supported tokens (defined by extensions)
// GL_ETC1_RGB8_OES 0x8D64
// GL_COMPRESSED_RGB8_ETC2 0x9274
// GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278
// KTX file Header (64 bytes)
// https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/
typedef struct {
char id[12]; // Identifier: "«KTX 11»\r\n\x1A\n"
unsigned int endianness; // Little endian: 0x01 0x02 0x03 0x04
unsigned int glType; // For compressed textures, glType must equal 0
unsigned int glTypeSize; // For compressed texture data, usually 1
unsigned int glFormat; // For compressed textures is 0
unsigned int glInternalFormat; // Compressed internal format
unsigned int glBaseInternalFormat; // Same as glFormat (RGB, RGBA, ALPHA...)
unsigned int width; // Texture image width in pixels
unsigned int height; // Texture image height in pixels
unsigned int depth; // For 2D textures is 0
unsigned int elements; // Number of array elements, usually 0
unsigned int faces; // Cubemap faces, for no-cubemap = 1
unsigned int mipmapLevels; // Non-mipmapped textures = 1
unsigned int keyValueDataSize; // Used to encode any arbitrary data...
} KTXHeader;
// NOTE: Before start of every mipmap data block, we have: unsigned int dataSize
Image image = { 0 };
FILE *ktxFile = fopen(fileName, "rb");
if (ktxFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] KTX image file could not be opened", fileName);
}
else
{
KTXHeader ktxHeader;
// Get the image header
fread(&ktxHeader, sizeof(KTXHeader), 1, ktxFile);
if ((ktxHeader.id[1] != 'K') || (ktxHeader.id[2] != 'T') || (ktxHeader.id[3] != 'X') ||
(ktxHeader.id[4] != ' ') || (ktxHeader.id[5] != '1') || (ktxHeader.id[6] != '1'))
{
TraceLog(LOG_WARNING, "[%s] KTX file does not seem to be a valid file", fileName);
}
else
{
image.width = ktxHeader.width;
image.height = ktxHeader.height;
image.mipmaps = ktxHeader.mipmapLevels;
TraceLog(LOG_DEBUG, "KTX (ETC) image width: %i", ktxHeader.width);
TraceLog(LOG_DEBUG, "KTX (ETC) image height: %i", ktxHeader.height);
TraceLog(LOG_DEBUG, "KTX (ETC) image format: 0x%x", ktxHeader.glInternalFormat);
unsigned char unused;
if (ktxHeader.keyValueDataSize > 0)
{
for (int i = 0; i < ktxHeader.keyValueDataSize; i++) fread(&unused, sizeof(unsigned char), 1, ktxFile);
}
int dataSize;
fread(&dataSize, sizeof(unsigned int), 1, ktxFile);
image.data = (unsigned char*)malloc(dataSize*sizeof(unsigned char));
fread(image.data, dataSize, 1, ktxFile);
if (ktxHeader.glInternalFormat == 0x8D64) image.format = COMPRESSED_ETC1_RGB;
else if (ktxHeader.glInternalFormat == 0x9274) image.format = COMPRESSED_ETC2_RGB;
else if (ktxHeader.glInternalFormat == 0x9278) image.format = COMPRESSED_ETC2_EAC_RGBA;
}
fclose(ktxFile); // Close file pointer
}
return image;
}
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
// Loading PVR image data (uncompressed or PVRT compression)
// NOTE: PVR v2 not supported, use PVR v3 instead
static Image LoadPVR(const char *fileName)
{
// Required extension:
// GL_IMG_texture_compression_pvrtc
// Supported tokens (defined by extensions)
// GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
// GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#if 0 // Not used...
// PVR file v2 Header (52 bytes)
typedef struct {
unsigned int headerLength;
unsigned int height;
unsigned int width;
unsigned int numMipmaps;
unsigned int flags;
unsigned int dataLength;
unsigned int bpp;
unsigned int bitmaskRed;
unsigned int bitmaskGreen;
unsigned int bitmaskBlue;
unsigned int bitmaskAlpha;
unsigned int pvrTag;
unsigned int numSurfs;
} PVRHeaderV2;
#endif
// PVR file v3 Header (52 bytes)
// NOTE: After it could be metadata (15 bytes?)
typedef struct {
char id[4];
unsigned int flags;
unsigned char channels[4]; // pixelFormat high part
unsigned char channelDepth[4]; // pixelFormat low part
unsigned int colourSpace;
unsigned int channelType;
unsigned int height;
unsigned int width;
unsigned int depth;
unsigned int numSurfaces;
unsigned int numFaces;
unsigned int numMipmaps;
unsigned int metaDataSize;
} PVRHeaderV3;
#if 0 // Not used...
// Metadata (usually 15 bytes)
typedef struct {
unsigned int devFOURCC;
unsigned int key;
unsigned int dataSize; // Not used?
unsigned char *data; // Not used?
} PVRMetadata;
#endif
Image image = { 0 };
FILE *pvrFile = fopen(fileName, "rb");
if (pvrFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] PVR file could not be opened", fileName);
}
else
{
// Check PVR image version
unsigned char pvrVersion = 0;
fread(&pvrVersion, sizeof(unsigned char), 1, pvrFile);
fseek(pvrFile, 0, SEEK_SET);
// Load different PVR data formats
if (pvrVersion == 0x50)
{
PVRHeaderV3 pvrHeader;
// Get PVR image header
fread(&pvrHeader, sizeof(PVRHeaderV3), 1, pvrFile);
if ((pvrHeader.id[0] != 'P') || (pvrHeader.id[1] != 'V') || (pvrHeader.id[2] != 'R') || (pvrHeader.id[3] != 3))
{
TraceLog(LOG_WARNING, "[%s] PVR file does not seem to be a valid image", fileName);
}
else
{
image.width = pvrHeader.width;
image.height = pvrHeader.height;
image.mipmaps = pvrHeader.numMipmaps;
// Check data format
if (((pvrHeader.channels[0] == 'l') && (pvrHeader.channels[1] == 0)) && (pvrHeader.channelDepth[0] == 8))
image.format = UNCOMPRESSED_GRAYSCALE;
else if (((pvrHeader.channels[0] == 'l') && (pvrHeader.channels[1] == 'a')) && ((pvrHeader.channelDepth[0] == 8) && (pvrHeader.channelDepth[1] == 8)))
image.format = UNCOMPRESSED_GRAY_ALPHA;
else if ((pvrHeader.channels[0] == 'r') && (pvrHeader.channels[1] == 'g') && (pvrHeader.channels[2] == 'b'))
{
if (pvrHeader.channels[3] == 'a')
{
if ((pvrHeader.channelDepth[0] == 5) && (pvrHeader.channelDepth[1] == 5) && (pvrHeader.channelDepth[2] == 5) && (pvrHeader.channelDepth[3] == 1))
image.format = UNCOMPRESSED_R5G5B5A1;
else if ((pvrHeader.channelDepth[0] == 4) && (pvrHeader.channelDepth[1] == 4) && (pvrHeader.channelDepth[2] == 4) && (pvrHeader.channelDepth[3] == 4))
image.format = UNCOMPRESSED_R4G4B4A4;
else if ((pvrHeader.channelDepth[0] == 8) && (pvrHeader.channelDepth[1] == 8) && (pvrHeader.channelDepth[2] == 8) && (pvrHeader.channelDepth[3] == 8))
image.format = UNCOMPRESSED_R8G8B8A8;
}
else if (pvrHeader.channels[3] == 0)
{
if ((pvrHeader.channelDepth[0] == 5) && (pvrHeader.channelDepth[1] == 6) && (pvrHeader.channelDepth[2] == 5)) image.format = UNCOMPRESSED_R5G6B5;
else if ((pvrHeader.channelDepth[0] == 8) && (pvrHeader.channelDepth[1] == 8) && (pvrHeader.channelDepth[2] == 8)) image.format = UNCOMPRESSED_R8G8B8;
}
}
else if (pvrHeader.channels[0] == 2) image.format = COMPRESSED_PVRT_RGB;
else if (pvrHeader.channels[0] == 3) image.format = COMPRESSED_PVRT_RGBA;
// Skip meta data header
unsigned char unused = 0;
for (int i = 0; i < pvrHeader.metaDataSize; i++) fread(&unused, sizeof(unsigned char), 1, pvrFile);
// Calculate data size (depends on format)
int bpp = 0;
switch (image.format)
{
case UNCOMPRESSED_GRAYSCALE: bpp = 8; break;
case UNCOMPRESSED_GRAY_ALPHA:
case UNCOMPRESSED_R5G5B5A1:
case UNCOMPRESSED_R5G6B5:
case UNCOMPRESSED_R4G4B4A4: bpp = 16; break;
case UNCOMPRESSED_R8G8B8A8: bpp = 32; break;
case UNCOMPRESSED_R8G8B8: bpp = 24; break;
case COMPRESSED_PVRT_RGB:
case COMPRESSED_PVRT_RGBA: bpp = 4; break;
default: break;
}
int dataSize = image.width*image.height*bpp/8; // Total data size in bytes
image.data = (unsigned char*)malloc(dataSize*sizeof(unsigned char));
// Read data from file
fread(image.data, dataSize, 1, pvrFile);
}
}
else if (pvrVersion == 52) TraceLog(LOG_INFO, "PVR v2 not supported, update your files to PVR v3");
fclose(pvrFile); // Close file pointer
}
return image;
}
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
// Load ASTC compressed image data (ASTC compression)
static Image LoadASTC(const char *fileName)
{
// Required extensions:
// GL_KHR_texture_compression_astc_hdr
// GL_KHR_texture_compression_astc_ldr
// Supported tokens (defined by extensions)
// GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0
// GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7
// ASTC file Header (16 bytes)
typedef struct {
unsigned char id[4]; // Signature: 0x13 0xAB 0xA1 0x5C
unsigned char blockX; // Block X dimensions
unsigned char blockY; // Block Y dimensions
unsigned char blockZ; // Block Z dimensions (1 for 2D images)
unsigned char width[3]; // Image width in pixels (24bit value)
unsigned char height[3]; // Image height in pixels (24bit value)
unsigned char length[3]; // Image Z-size (1 for 2D images)
} ASTCHeader;
Image image = { 0 };
FILE *astcFile = fopen(fileName, "rb");
if (astcFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] ASTC file could not be opened", fileName);
}
else
{
ASTCHeader astcHeader;
// Get ASTC image header
fread(&astcHeader, sizeof(ASTCHeader), 1, astcFile);
if ((astcHeader.id[3] != 0x5c) || (astcHeader.id[2] != 0xa1) || (astcHeader.id[1] != 0xab) || (astcHeader.id[0] != 0x13))
{
TraceLog(LOG_WARNING, "[%s] ASTC file does not seem to be a valid image", fileName);
}
else
{
// NOTE: Assuming Little Endian (could it be wrong?)
image.width = 0x00000000 | ((int)astcHeader.width[2] << 16) | ((int)astcHeader.width[1] << 8) | ((int)astcHeader.width[0]);
image.height = 0x00000000 | ((int)astcHeader.height[2] << 16) | ((int)astcHeader.height[1] << 8) | ((int)astcHeader.height[0]);
TraceLog(LOG_DEBUG, "ASTC image width: %i", image.width);
TraceLog(LOG_DEBUG, "ASTC image height: %i", image.height);
TraceLog(LOG_DEBUG, "ASTC image blocks: %ix%i", astcHeader.blockX, astcHeader.blockY);
image.mipmaps = 1; // NOTE: ASTC format only contains one mipmap level
// NOTE: Each block is always stored in 128bit so we can calculate the bpp
int bpp = 128/(astcHeader.blockX*astcHeader.blockY);
// NOTE: Currently we only support 2 blocks configurations: 4x4 and 8x8
if ((bpp == 8) || (bpp == 2))
{
int dataSize = image.width*image.height*bpp/8; // Data size in bytes
image.data = (unsigned char *)malloc(dataSize*sizeof(unsigned char));
fread(image.data, dataSize, 1, astcFile);
if (bpp == 8) image.format = COMPRESSED_ASTC_4x4_RGBA;
else if (bpp == 2) image.format = COMPRESSED_ASTC_4x4_RGBA;
}
else TraceLog(LOG_WARNING, "[%s] ASTC block size configuration not supported", fileName);
}
fclose(astcFile);
}
return image;
}
#endif