raylib/examples/oculus_glfw_sample/rlgl.c
2016-06-14 18:37:06 +02:00

3802 lines
149 KiB
C

/**********************************************************************************************
*
* rlgl - raylib OpenGL abstraction layer
*
* raylib now uses OpenGL 1.1 style functions (rlVertex) that are mapped to selected OpenGL version:
* OpenGL 1.1 - Direct map rl* -> gl*
* OpenGL 3.3 - Vertex data is stored in VAOs, call rlglDraw() to render
* OpenGL ES 2 - Vertex data is stored in VBOs or VAOs (when available), call rlglDraw() to render
*
* Copyright (c) 2014 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#include "rlgl.h"
#include <stdio.h> // Required for: fopen(), fclose(), fread()... [Used only on ReadTextFile()]
#include <stdlib.h> // Required for: malloc(), free(), rand()
#include <string.h> // Required for: strcmp(), strlen(), strtok()
#ifndef RLGL_STANDALONE
#include "raymath.h" // Required for Vector3 and Matrix functions
#endif
#if defined(GRAPHICS_API_OPENGL_11)
#ifdef __APPLE__
#include <OpenGL/gl.h> // OpenGL 1.1 library for OSX
#else
#include <GL/gl.h> // OpenGL 1.1 library
#endif
#endif
#if defined(GRAPHICS_API_OPENGL_33)
#ifdef __APPLE__
#include <OpenGL/gl3.h> // OpenGL 3 library for OSX
#else
#define GLAD_IMPLEMENTATION
#if defined(RLGL_STANDALONE)
#include "glad.h" // GLAD extensions loading library, includes OpenGL headers
#else
#include "external/glad.h" // GLAD extensions loading library, includes OpenGL headers
#endif
#endif
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
#include <EGL/egl.h> // EGL library
#include <GLES2/gl2.h> // OpenGL ES 2.0 library
#include <GLES2/gl2ext.h> // OpenGL ES 2.0 extensions library
#endif
#if defined(RLGL_STANDALONE)
#include <stdarg.h> // Required for: va_list, va_start(), vfprintf(), va_end() [Used only on TraceLog()]
#endif
#if !defined(GRAPHICS_API_OPENGL_11)
#include "standard_shader.h" // Standard shader to embed
#endif
#if defined(RLGL_OCULUS_SUPPORT)
#include "external/OculusSDK/LibOVR/Include/OVR_CAPI_GL.h" // Oculus SDK for OpenGL
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MATRIX_STACK_SIZE 16 // Matrix stack max size
#define MAX_DRAWS_BY_TEXTURE 256 // Draws are organized by texture changes
#define TEMP_VERTEX_BUFFER_SIZE 4096 // Temporal Vertex Buffer (required for vertex-transformations)
// NOTE: Every vertex are 3 floats (12 bytes)
#define MAX_LIGHTS 8 // Max lights supported by standard shader
#ifndef GL_SHADING_LANGUAGE_VERSION
#define GL_SHADING_LANGUAGE_VERSION 0x8B8C
#endif
#ifndef GL_COMPRESSED_RGB_S3TC_DXT1_EXT
#define GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
#endif
#ifndef GL_COMPRESSED_RGBA_S3TC_DXT1_EXT
#define GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#endif
#ifndef GL_COMPRESSED_RGBA_S3TC_DXT3_EXT
#define GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#endif
#ifndef GL_COMPRESSED_RGBA_S3TC_DXT5_EXT
#define GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#endif
#ifndef GL_ETC1_RGB8_OES
#define GL_ETC1_RGB8_OES 0x8D64
#endif
#ifndef GL_COMPRESSED_RGB8_ETC2
#define GL_COMPRESSED_RGB8_ETC2 0x9274
#endif
#ifndef GL_COMPRESSED_RGBA8_ETC2_EAC
#define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278
#endif
#ifndef GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG
#define GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#endif
#ifndef GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG
#define GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#endif
#ifndef GL_COMPRESSED_RGBA_ASTC_4x4_KHR
#define GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0
#endif
#ifndef GL_COMPRESSED_RGBA_ASTC_8x8_KHR
#define GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7
#endif
#if defined(GRAPHICS_API_OPENGL_11)
#define GL_UNSIGNED_SHORT_5_6_5 0x8363
#define GL_UNSIGNED_SHORT_5_5_5_1 0x8034
#define GL_UNSIGNED_SHORT_4_4_4_4 0x8033
#endif
// Default vertex attribute names on shader to set location points
#define DEFAULT_ATTRIB_POSITION_NAME "vertexPosition" // shader-location = 0
#define DEFAULT_ATTRIB_TEXCOORD_NAME "vertexTexCoord" // shader-location = 1
#define DEFAULT_ATTRIB_NORMAL_NAME "vertexNormal" // shader-location = 2
#define DEFAULT_ATTRIB_COLOR_NAME "vertexColor" // shader-location = 3
#define DEFAULT_ATTRIB_TANGENT_NAME "vertexTangent" // shader-location = 4
#define DEFAULT_ATTRIB_TEXCOORD2_NAME "vertexTexCoord2" // shader-location = 5
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Dynamic vertex buffers (position + texcoords + colors + indices arrays)
typedef struct {
int vCounter; // vertex position counter to process (and draw) from full buffer
int tcCounter; // vertex texcoord counter to process (and draw) from full buffer
int cCounter; // vertex color counter to process (and draw) from full buffer
float *vertices; // vertex position (XYZ - 3 components per vertex) (shader-location = 0)
float *texcoords; // vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1)
unsigned char *colors; // vertex colors (RGBA - 4 components per vertex) (shader-location = 3)
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
unsigned int *indices; // vertex indices (in case vertex data comes indexed) (6 indices per quad)
#elif defined(GRAPHICS_API_OPENGL_ES2)
unsigned short *indices; // vertex indices (in case vertex data comes indexed) (6 indices per quad)
// NOTE: 6*2 byte = 12 byte, not alignment problem!
#endif
unsigned int vaoId; // OpenGL Vertex Array Object id
unsigned int vboId[4]; // OpenGL Vertex Buffer Objects id (4 types of vertex data)
} DynamicBuffer;
// Draw call type
// NOTE: Used to track required draw-calls, organized by texture
typedef struct {
int vertexCount;
GLuint vaoId;
GLuint textureId;
GLuint shaderId;
Matrix projection;
Matrix modelview;
// TODO: Store additional draw state data
//int blendMode;
//Guint fboId;
} DrawCall;
#if defined(RLGL_OCULUS_SUPPORT)
typedef struct OculusBuffer {
ovrTextureSwapChain textureChain;
GLuint depthId;
GLuint fboId;
int width;
int height;
} OculusBuffer;
typedef struct OculusMirror {
ovrMirrorTexture texture;
GLuint fboId;
int width;
int height;
} OculusMirror;
typedef struct OculusLayer {
ovrViewScaleDesc viewScaleDesc;
ovrLayerEyeFov eyeLayer; // layer 0
//ovrLayerQuad quadLayer; // TODO: layer 1: '2D' quad for GUI
Matrix eyeProjections[2];
int width;
int height;
} OculusLayer;
#endif
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
static Matrix stack[MATRIX_STACK_SIZE];
static int stackCounter = 0;
static Matrix modelview;
static Matrix projection;
static Matrix *currentMatrix;
static int currentMatrixMode;
static DrawMode currentDrawMode;
static float currentDepth = -1.0f;
static DynamicBuffer lines;
static DynamicBuffer triangles;
static DynamicBuffer quads;
// Default buffers draw calls
static DrawCall *draws;
static int drawsCounter;
// Temp vertex buffer to be used with rlTranslate, rlRotate, rlScale
static Vector3 *tempBuffer;
static int tempBufferCount = 0;
static bool useTempBuffer = false;
// Shader Programs
static Shader defaultShader;
static Shader standardShader; // Lazy initialization when GetStandardShader()
static Shader currentShader; // By default, defaultShader
static bool standardShaderLoaded = false;
// Flags for supported extensions
static bool vaoSupported = false; // VAO support (OpenGL ES2 could not support VAO extension)
// Compressed textures support flags
static bool texCompETC1Supported = false; // ETC1 texture compression support
static bool texCompETC2Supported = false; // ETC2/EAC texture compression support
static bool texCompPVRTSupported = false; // PVR texture compression support
static bool texCompASTCSupported = false; // ASTC texture compression support
// Lighting data
static Light lights[MAX_LIGHTS]; // Lights pool
static int lightsCount; // Counts current enabled physic objects
#endif
#if defined(RLGL_OCULUS_SUPPORT)
// OVR device variables
static ovrSession session; // Oculus session (pointer to ovrHmdStruct)
static ovrHmdDesc hmdDesc; // Oculus device descriptor parameters
static ovrGraphicsLuid luid; // Oculus locally unique identifier for the program (64 bit)
static OculusLayer layer; // Oculus drawing layer (similar to photoshop)
static OculusBuffer buffer; // Oculus internal buffers (texture chain and fbo)
static OculusMirror mirror; // Oculus mirror texture and fbo
static unsigned int frameIndex = 0; // Oculus frames counter, used to discard frames from chain
#endif
// Compressed textures support flags
static bool texCompDXTSupported = false; // DDS texture compression support
static bool npotSupported = false; // NPOT textures full support
#if defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: VAO functionality is exposed through extensions (OES)
static PFNGLGENVERTEXARRAYSOESPROC glGenVertexArrays;
static PFNGLBINDVERTEXARRAYOESPROC glBindVertexArray;
static PFNGLDELETEVERTEXARRAYSOESPROC glDeleteVertexArrays;
//static PFNGLISVERTEXARRAYOESPROC glIsVertexArray; // NOTE: Fails in WebGL, omitted
#endif
static int blendMode = 0;
// White texture useful for plain color polys (required by shader)
static unsigned int whiteTexture;
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
static void LoadCompressedTexture(unsigned char *data, int width, int height, int mipmapCount, int compressedFormat);
static unsigned int LoadShaderProgram(const char *vShaderStr, const char *fShaderStr); // Load custom shader strings and return program id
static Shader LoadDefaultShader(void); // Load default shader (just vertex positioning and texture coloring)
static Shader LoadStandardShader(void); // Load standard shader (support materials and lighting)
static void LoadDefaultShaderLocations(Shader *shader); // Bind default shader locations (attributes and uniforms)
static void UnloadDefaultShader(void); // Unload default shader
static void UnloadStandardShader(void); // Unload standard shader
static void LoadDefaultBuffers(void); // Load default internal buffers (lines, triangles, quads)
static void UpdateDefaultBuffers(void); // Update default internal buffers (VAOs/VBOs) with vertex data
static void DrawDefaultBuffers(void); // Draw default internal buffers vertex data
static void UnloadDefaultBuffers(void); // Unload default internal buffers vertex data from CPU and GPU
static void SetShaderLights(Shader shader); // Sets shader uniform values for lights array
static char *ReadTextFile(const char *fileName);
#endif
#if defined(RLGL_OCULUS_SUPPORT) // Oculus Rift functions
static OculusBuffer LoadOculusBuffer(ovrSession session, int width, int height); // Load Oculus required buffers
static void UnloadOculusBuffer(ovrSession session, OculusBuffer buffer); // Unload texture required buffers
static OculusMirror LoadOculusMirror(ovrSession session, int width, int height); // Load Oculus mirror buffers
static void UnloadOculusMirror(ovrSession session, OculusMirror mirror); // Unload Oculus mirror buffers
static void BlitOculusMirror(ovrSession session, OculusMirror mirror); // Copy Oculus screen buffer to mirror texture
static OculusLayer InitOculusLayer(ovrSession session); // Init Oculus layer (similar to photoshop)
static Matrix FromOvrMatrix(ovrMatrix4f ovrM); // Convert from Oculus ovrMatrix4f struct to raymath Matrix struct
#endif
#if defined(GRAPHICS_API_OPENGL_11)
static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight);
static Color *GenNextMipmap(Color *srcData, int srcWidth, int srcHeight);
#endif
#if defined(RLGL_STANDALONE)
float *MatrixToFloat(Matrix mat); // Converts Matrix to float array
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition - Matrix operations
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_11)
// Fallback to OpenGL 1.1 function calls
//---------------------------------------
void rlMatrixMode(int mode)
{
switch (mode)
{
case RL_PROJECTION: glMatrixMode(GL_PROJECTION); break;
case RL_MODELVIEW: glMatrixMode(GL_MODELVIEW); break;
case RL_TEXTURE: glMatrixMode(GL_TEXTURE); break;
default: break;
}
}
void rlFrustum(double left, double right, double bottom, double top, double near, double far)
{
glFrustum(left, right, bottom, top, near, far);
}
void rlOrtho(double left, double right, double bottom, double top, double near, double far)
{
glOrtho(left, right, bottom, top, near, far);
}
void rlPushMatrix(void) { glPushMatrix(); }
void rlPopMatrix(void) { glPopMatrix(); }
void rlLoadIdentity(void) { glLoadIdentity(); }
void rlTranslatef(float x, float y, float z) { glTranslatef(x, y, z); }
void rlRotatef(float angleDeg, float x, float y, float z) { glRotatef(angleDeg, x, y, z); }
void rlScalef(float x, float y, float z) { glScalef(x, y, z); }
void rlMultMatrixf(float *mat) { glMultMatrixf(mat); }
#elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Choose the current matrix to be transformed
void rlMatrixMode(int mode)
{
if (mode == RL_PROJECTION) currentMatrix = &projection;
else if (mode == RL_MODELVIEW) currentMatrix = &modelview;
//else if (mode == RL_TEXTURE) // Not supported
currentMatrixMode = mode;
}
// Push the current matrix to stack
void rlPushMatrix(void)
{
if (stackCounter == MATRIX_STACK_SIZE - 1)
{
TraceLog(ERROR, "Stack Buffer Overflow (MAX %i Matrix)", MATRIX_STACK_SIZE);
}
stack[stackCounter] = *currentMatrix;
rlLoadIdentity();
stackCounter++;
if (currentMatrixMode == RL_MODELVIEW) useTempBuffer = true;
}
// Pop lattest inserted matrix from stack
void rlPopMatrix(void)
{
if (stackCounter > 0)
{
Matrix mat = stack[stackCounter - 1];
*currentMatrix = mat;
stackCounter--;
}
}
// Reset current matrix to identity matrix
void rlLoadIdentity(void)
{
*currentMatrix = MatrixIdentity();
}
// Multiply the current matrix by a translation matrix
void rlTranslatef(float x, float y, float z)
{
Matrix matTranslation = MatrixTranslate(x, y, z);
MatrixTranspose(&matTranslation);
*currentMatrix = MatrixMultiply(*currentMatrix, matTranslation);
}
// Multiply the current matrix by a rotation matrix
void rlRotatef(float angleDeg, float x, float y, float z)
{
Matrix matRotation = MatrixIdentity();
Vector3 axis = (Vector3){ x, y, z };
VectorNormalize(&axis);
matRotation = MatrixRotate(axis, angleDeg*DEG2RAD);
MatrixTranspose(&matRotation);
*currentMatrix = MatrixMultiply(*currentMatrix, matRotation);
}
// Multiply the current matrix by a scaling matrix
void rlScalef(float x, float y, float z)
{
Matrix matScale = MatrixScale(x, y, z);
MatrixTranspose(&matScale);
*currentMatrix = MatrixMultiply(*currentMatrix, matScale);
}
// Multiply the current matrix by another matrix
void rlMultMatrixf(float *m)
{
// Matrix creation from array
Matrix mat = { m[0], m[1], m[2], m[3],
m[4], m[5], m[6], m[7],
m[8], m[9], m[10], m[11],
m[12], m[13], m[14], m[15] };
*currentMatrix = MatrixMultiply(*currentMatrix, mat);
}
// Multiply the current matrix by a perspective matrix generated by parameters
void rlFrustum(double left, double right, double bottom, double top, double near, double far)
{
Matrix matPerps = MatrixFrustum(left, right, bottom, top, near, far);
MatrixTranspose(&matPerps);
*currentMatrix = MatrixMultiply(*currentMatrix, matPerps);
}
// Multiply the current matrix by an orthographic matrix generated by parameters
void rlOrtho(double left, double right, double bottom, double top, double near, double far)
{
Matrix matOrtho = MatrixOrtho(left, right, bottom, top, near, far);
MatrixTranspose(&matOrtho);
*currentMatrix = MatrixMultiply(*currentMatrix, matOrtho);
}
#endif
// Set the viewport area (trasnformation from normalized device coordinates to window coordinates)
void rlViewport(int x, int y, int width, int height)
{
glViewport(x, y, width, height);
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Vertex level operations
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_11)
// Fallback to OpenGL 1.1 function calls
//---------------------------------------
void rlBegin(int mode)
{
switch (mode)
{
case RL_LINES: glBegin(GL_LINES); break;
case RL_TRIANGLES: glBegin(GL_TRIANGLES); break;
case RL_QUADS: glBegin(GL_QUADS); break;
default: break;
}
}
void rlEnd() { glEnd(); }
void rlVertex2i(int x, int y) { glVertex2i(x, y); }
void rlVertex2f(float x, float y) { glVertex2f(x, y); }
void rlVertex3f(float x, float y, float z) { glVertex3f(x, y, z); }
void rlTexCoord2f(float x, float y) { glTexCoord2f(x, y); }
void rlNormal3f(float x, float y, float z) { glNormal3f(x, y, z); }
void rlColor4ub(byte r, byte g, byte b, byte a) { glColor4ub(r, g, b, a); }
void rlColor3f(float x, float y, float z) { glColor3f(x, y, z); }
void rlColor4f(float x, float y, float z, float w) { glColor4f(x, y, z, w); }
#elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Initialize drawing mode (how to organize vertex)
void rlBegin(int mode)
{
// Draw mode can only be RL_LINES, RL_TRIANGLES and RL_QUADS
currentDrawMode = mode;
}
// Finish vertex providing
void rlEnd(void)
{
if (useTempBuffer)
{
// NOTE: In this case, *currentMatrix is already transposed because transposing has been applied
// independently to translation-scale-rotation matrices -> t(M1 x M2) = t(M2) x t(M1)
// This way, rlTranslatef(), rlRotatef()... behaviour is the same than OpenGL 1.1
// Apply transformation matrix to all temp vertices
for (int i = 0; i < tempBufferCount; i++) VectorTransform(&tempBuffer[i], *currentMatrix);
// Deactivate tempBuffer usage to allow rlVertex3f do its job
useTempBuffer = false;
// Copy all transformed vertices to right VAO
for (int i = 0; i < tempBufferCount; i++) rlVertex3f(tempBuffer[i].x, tempBuffer[i].y, tempBuffer[i].z);
// Reset temp buffer
tempBufferCount = 0;
}
// Make sure vertexCount is the same for vertices-texcoords-normals-colors
// NOTE: In OpenGL 1.1, one glColor call can be made for all the subsequent glVertex calls.
switch (currentDrawMode)
{
case RL_LINES:
{
if (lines.vCounter != lines.cCounter)
{
int addColors = lines.vCounter - lines.cCounter;
for (int i = 0; i < addColors; i++)
{
lines.colors[4*lines.cCounter] = lines.colors[4*lines.cCounter - 4];
lines.colors[4*lines.cCounter + 1] = lines.colors[4*lines.cCounter - 3];
lines.colors[4*lines.cCounter + 2] = lines.colors[4*lines.cCounter - 2];
lines.colors[4*lines.cCounter + 3] = lines.colors[4*lines.cCounter - 1];
lines.cCounter++;
}
}
} break;
case RL_TRIANGLES:
{
if (triangles.vCounter != triangles.cCounter)
{
int addColors = triangles.vCounter - triangles.cCounter;
for (int i = 0; i < addColors; i++)
{
triangles.colors[4*triangles.cCounter] = triangles.colors[4*triangles.cCounter - 4];
triangles.colors[4*triangles.cCounter + 1] = triangles.colors[4*triangles.cCounter - 3];
triangles.colors[4*triangles.cCounter + 2] = triangles.colors[4*triangles.cCounter - 2];
triangles.colors[4*triangles.cCounter + 3] = triangles.colors[4*triangles.cCounter - 1];
triangles.cCounter++;
}
}
} break;
case RL_QUADS:
{
// Make sure colors count match vertex count
if (quads.vCounter != quads.cCounter)
{
int addColors = quads.vCounter - quads.cCounter;
for (int i = 0; i < addColors; i++)
{
quads.colors[4*quads.cCounter] = quads.colors[4*quads.cCounter - 4];
quads.colors[4*quads.cCounter + 1] = quads.colors[4*quads.cCounter - 3];
quads.colors[4*quads.cCounter + 2] = quads.colors[4*quads.cCounter - 2];
quads.colors[4*quads.cCounter + 3] = quads.colors[4*quads.cCounter - 1];
quads.cCounter++;
}
}
// Make sure texcoords count match vertex count
if (quads.vCounter != quads.tcCounter)
{
int addTexCoords = quads.vCounter - quads.tcCounter;
for (int i = 0; i < addTexCoords; i++)
{
quads.texcoords[2*quads.tcCounter] = 0.0f;
quads.texcoords[2*quads.tcCounter + 1] = 0.0f;
quads.tcCounter++;
}
}
// TODO: Make sure normals count match vertex count... if normals support is added in a future... :P
} break;
default: break;
}
// NOTE: Depth increment is dependant on rlOrtho(): z-near and z-far values,
// as well as depth buffer bit-depth (16bit or 24bit or 32bit)
// Correct increment formula would be: depthInc = (zfar - znear)/pow(2, bits)
currentDepth += (1.0f/20000.0f);
}
// Define one vertex (position)
void rlVertex3f(float x, float y, float z)
{
if (useTempBuffer)
{
tempBuffer[tempBufferCount].x = x;
tempBuffer[tempBufferCount].y = y;
tempBuffer[tempBufferCount].z = z;
tempBufferCount++;
}
else
{
switch (currentDrawMode)
{
case RL_LINES:
{
// Verify that MAX_LINES_BATCH limit not reached
if (lines.vCounter / 2 < MAX_LINES_BATCH)
{
lines.vertices[3*lines.vCounter] = x;
lines.vertices[3*lines.vCounter + 1] = y;
lines.vertices[3*lines.vCounter + 2] = z;
lines.vCounter++;
}
else TraceLog(ERROR, "MAX_LINES_BATCH overflow");
} break;
case RL_TRIANGLES:
{
// Verify that MAX_TRIANGLES_BATCH limit not reached
if (triangles.vCounter / 3 < MAX_TRIANGLES_BATCH)
{
triangles.vertices[3*triangles.vCounter] = x;
triangles.vertices[3*triangles.vCounter + 1] = y;
triangles.vertices[3*triangles.vCounter + 2] = z;
triangles.vCounter++;
}
else TraceLog(ERROR, "MAX_TRIANGLES_BATCH overflow");
} break;
case RL_QUADS:
{
// Verify that MAX_QUADS_BATCH limit not reached
if (quads.vCounter / 4 < MAX_QUADS_BATCH)
{
quads.vertices[3*quads.vCounter] = x;
quads.vertices[3*quads.vCounter + 1] = y;
quads.vertices[3*quads.vCounter + 2] = z;
quads.vCounter++;
draws[drawsCounter - 1].vertexCount++;
}
else TraceLog(ERROR, "MAX_QUADS_BATCH overflow");
} break;
default: break;
}
}
}
// Define one vertex (position)
void rlVertex2f(float x, float y)
{
rlVertex3f(x, y, currentDepth);
}
// Define one vertex (position)
void rlVertex2i(int x, int y)
{
rlVertex3f((float)x, (float)y, currentDepth);
}
// Define one vertex (texture coordinate)
// NOTE: Texture coordinates are limited to QUADS only
void rlTexCoord2f(float x, float y)
{
if (currentDrawMode == RL_QUADS)
{
quads.texcoords[2*quads.tcCounter] = x;
quads.texcoords[2*quads.tcCounter + 1] = y;
quads.tcCounter++;
}
}
// Define one vertex (normal)
// NOTE: Normals limited to TRIANGLES only ?
void rlNormal3f(float x, float y, float z)
{
// TODO: Normals usage...
}
// Define one vertex (color)
void rlColor4ub(byte x, byte y, byte z, byte w)
{
switch (currentDrawMode)
{
case RL_LINES:
{
lines.colors[4*lines.cCounter] = x;
lines.colors[4*lines.cCounter + 1] = y;
lines.colors[4*lines.cCounter + 2] = z;
lines.colors[4*lines.cCounter + 3] = w;
lines.cCounter++;
} break;
case RL_TRIANGLES:
{
triangles.colors[4*triangles.cCounter] = x;
triangles.colors[4*triangles.cCounter + 1] = y;
triangles.colors[4*triangles.cCounter + 2] = z;
triangles.colors[4*triangles.cCounter + 3] = w;
triangles.cCounter++;
} break;
case RL_QUADS:
{
quads.colors[4*quads.cCounter] = x;
quads.colors[4*quads.cCounter + 1] = y;
quads.colors[4*quads.cCounter + 2] = z;
quads.colors[4*quads.cCounter + 3] = w;
quads.cCounter++;
} break;
default: break;
}
}
// Define one vertex (color)
void rlColor4f(float r, float g, float b, float a)
{
rlColor4ub((byte)(r*255), (byte)(g*255), (byte)(b*255), (byte)(a*255));
}
// Define one vertex (color)
void rlColor3f(float x, float y, float z)
{
rlColor4ub((byte)(x*255), (byte)(y*255), (byte)(z*255), 255);
}
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition - OpenGL equivalent functions (common to 1.1, 3.3+, ES2)
//----------------------------------------------------------------------------------
// Enable texture usage
void rlEnableTexture(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_11)
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, id);
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (draws[drawsCounter - 1].textureId != id)
{
if (draws[drawsCounter - 1].vertexCount > 0) drawsCounter++;
draws[drawsCounter - 1].textureId = id;
draws[drawsCounter - 1].vertexCount = 0;
}
#endif
}
// Disable texture usage
void rlDisableTexture(void)
{
#if defined(GRAPHICS_API_OPENGL_11)
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
}
// Enable rendering to texture (fbo)
void rlEnableRenderTexture(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindFramebuffer(GL_FRAMEBUFFER, id);
//glDisable(GL_CULL_FACE); // Allow double side drawing for texture flipping
//glCullFace(GL_FRONT);
#endif
}
// Disable rendering to texture
void rlDisableRenderTexture(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindFramebuffer(GL_FRAMEBUFFER, 0);
//glEnable(GL_CULL_FACE);
//glCullFace(GL_BACK);
#endif
}
// Enable depth test
void rlEnableDepthTest(void)
{
glEnable(GL_DEPTH_TEST);
}
// Disable depth test
void rlDisableDepthTest(void)
{
glDisable(GL_DEPTH_TEST);
}
// Enable wire mode
void rlEnableWireMode(void)
{
#if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: glPolygonMode() not available on OpenGL ES
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
#endif
}
// Disable wire mode
void rlDisableWireMode(void)
{
#if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: glPolygonMode() not available on OpenGL ES
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
#endif
}
// Unload texture from GPU memory
void rlDeleteTextures(unsigned int id)
{
if (id != 0) glDeleteTextures(1, &id);
}
// Unload render texture from GPU memory
void rlDeleteRenderTextures(RenderTexture2D target)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (target.id != 0) glDeleteFramebuffers(1, &target.id);
if (target.texture.id != 0) glDeleteTextures(1, &target.texture.id);
if (target.depth.id != 0) glDeleteTextures(1, &target.depth.id);
#endif
}
// Unload shader from GPU memory
void rlDeleteShader(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (id != 0) glDeleteProgram(id);
#endif
}
// Unload vertex data (VAO) from GPU memory
void rlDeleteVertexArrays(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (vaoSupported)
{
if (id != 0) glDeleteVertexArrays(1, &id);
TraceLog(INFO, "[VAO ID %i] Unloaded model data from VRAM (GPU)", id);
}
#endif
}
// Unload vertex data (VBO) from GPU memory
void rlDeleteBuffers(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (id != 0)
{
glDeleteBuffers(1, &id);
if (!vaoSupported) TraceLog(INFO, "[VBO ID %i] Unloaded model vertex data from VRAM (GPU)", id);
}
#endif
}
// Clear color buffer with color
void rlClearColor(byte r, byte g, byte b, byte a)
{
// Color values clamp to 0.0f(0) and 1.0f(255)
float cr = (float)r/255;
float cg = (float)g/255;
float cb = (float)b/255;
float ca = (float)a/255;
glClearColor(cr, cg, cb, ca);
}
// Clear used screen buffers (color and depth)
void rlClearScreenBuffers(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers: Color and Depth (Depth is used for 3D)
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Stencil buffer not used...
}
// Returns current OpenGL version
int rlGetVersion(void)
{
#if defined(GRAPHICS_API_OPENGL_11)
return OPENGL_11;
#elif defined(GRAPHICS_API_OPENGL_33)
return OPENGL_33;
#elif defined(GRAPHICS_API_OPENGL_ES2)
return OPENGL_ES_20;
#endif
}
//----------------------------------------------------------------------------------
// Module Functions Definition - rlgl Functions
//----------------------------------------------------------------------------------
// Init OpenGL 3.3+ required data
void rlglInit(void)
{
// Check OpenGL information and capabilities
//------------------------------------------------------------------------------
// Print current OpenGL and GLSL version
TraceLog(INFO, "GPU: Vendor: %s", glGetString(GL_VENDOR));
TraceLog(INFO, "GPU: Renderer: %s", glGetString(GL_RENDERER));
TraceLog(INFO, "GPU: Version: %s", glGetString(GL_VERSION));
TraceLog(INFO, "GPU: GLSL: %s", glGetString(GL_SHADING_LANGUAGE_VERSION));
// NOTE: We can get a bunch of extra information about GPU capabilities (glGet*)
//int maxTexSize;
//glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTexSize);
//TraceLog(INFO, "GL_MAX_TEXTURE_SIZE: %i", maxTexSize);
//GL_MAX_TEXTURE_IMAGE_UNITS
//GL_MAX_VIEWPORT_DIMS
//int numAuxBuffers;
//glGetIntegerv(GL_AUX_BUFFERS, &numAuxBuffers);
//TraceLog(INFO, "GL_AUX_BUFFERS: %i", numAuxBuffers);
//GLint numComp = 0;
//GLint format[32] = { 0 };
//glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numComp);
//glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, format);
//for (int i = 0; i < numComp; i++) TraceLog(INFO, "Supported compressed format: 0x%x", format[i]);
// NOTE: We don't need that much data on screen... right now...
#if defined(GRAPHICS_API_OPENGL_11)
//TraceLog(INFO, "OpenGL 1.1 (or driver default) profile initialized");
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Get supported extensions list
GLint numExt = 0;
#if defined(GRAPHICS_API_OPENGL_33)
// NOTE: On OpenGL 3.3 VAO and NPOT are supported by default
vaoSupported = true;
npotSupported = true;
// We get a list of available extensions and we check for some of them (compressed textures)
// NOTE: We don't need to check again supported extensions but we do (GLAD already dealt with that)
glGetIntegerv(GL_NUM_EXTENSIONS, &numExt);
const char *extList[numExt];
for (int i = 0; i < numExt; i++) extList[i] = (char *)glGetStringi(GL_EXTENSIONS, i);
#elif defined(GRAPHICS_API_OPENGL_ES2)
char *extensions = (char *)glGetString(GL_EXTENSIONS); // One big const string
// NOTE: We have to duplicate string because glGetString() returns a const value
// If not duplicated, it fails in some systems (Raspberry Pi)
// Equivalent to function: char *strdup(const char *str)
char *extensionsDup;
size_t len = strlen(extensions) + 1;
void *newstr = malloc(len);
if (newstr == NULL) extensionsDup = NULL;
extensionsDup = (char *)memcpy(newstr, extensions, len);
// NOTE: String could be splitted using strtok() function (string.h)
// NOTE: strtok() modifies the received string, it can not be const
char *extList[512]; // Allocate 512 strings pointers (2 KB)
extList[numExt] = strtok(extensionsDup, " ");
while (extList[numExt] != NULL)
{
numExt++;
extList[numExt] = strtok(NULL, " ");
}
free(extensionsDup); // Duplicated string must be deallocated
numExt -= 1;
#endif
TraceLog(INFO, "Number of supported extensions: %i", numExt);
// Show supported extensions
//for (int i = 0; i < numExt; i++) TraceLog(INFO, "Supported extension: %s", extList[i]);
// Check required extensions
for (int i = 0; i < numExt; i++)
{
#if defined(GRAPHICS_API_OPENGL_ES2)
// Check VAO support
// NOTE: Only check on OpenGL ES, OpenGL 3.3 has VAO support as core feature
if (strcmp(extList[i], (const char *)"GL_OES_vertex_array_object") == 0)
{
vaoSupported = true;
// The extension is supported by our hardware and driver, try to get related functions pointers
// NOTE: emscripten does not support VAOs natively, it uses emulation and it reduces overall performance...
glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)eglGetProcAddress("glGenVertexArraysOES");
glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)eglGetProcAddress("glBindVertexArrayOES");
glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)eglGetProcAddress("glDeleteVertexArraysOES");
//glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)eglGetProcAddress("glIsVertexArrayOES"); // NOTE: Fails in WebGL, omitted
}
// Check NPOT textures support
// NOTE: Only check on OpenGL ES, OpenGL 3.3 has NPOT textures full support as core feature
if (strcmp(extList[i], (const char *)"GL_OES_texture_npot") == 0) npotSupported = true;
#endif
// DDS texture compression support
if ((strcmp(extList[i], (const char *)"GL_EXT_texture_compression_s3tc") == 0) ||
(strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_s3tc") == 0) ||
(strcmp(extList[i], (const char *)"GL_WEBKIT_WEBGL_compressed_texture_s3tc") == 0)) texCompDXTSupported = true;
// ETC1 texture compression support
if ((strcmp(extList[i], (const char *)"GL_OES_compressed_ETC1_RGB8_texture") == 0) ||
(strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_etc1") == 0)) texCompETC1Supported = true;
// ETC2/EAC texture compression support
if (strcmp(extList[i], (const char *)"GL_ARB_ES3_compatibility") == 0) texCompETC2Supported = true;
// PVR texture compression support
if (strcmp(extList[i], (const char *)"GL_IMG_texture_compression_pvrtc") == 0) texCompPVRTSupported = true;
// ASTC texture compression support
if (strcmp(extList[i], (const char *)"GL_KHR_texture_compression_astc_hdr") == 0) texCompASTCSupported = true;
}
#if defined(GRAPHICS_API_OPENGL_ES2)
if (vaoSupported) TraceLog(INFO, "[EXTENSION] VAO extension detected, VAO functions initialized successfully");
else TraceLog(WARNING, "[EXTENSION] VAO extension not found, VAO usage not supported");
if (npotSupported) TraceLog(INFO, "[EXTENSION] NPOT textures extension detected, full NPOT textures supported");
else TraceLog(WARNING, "[EXTENSION] NPOT textures extension not found, limited NPOT support (no-mipmaps, no-repeat)");
#endif
if (texCompDXTSupported) TraceLog(INFO, "[EXTENSION] DXT compressed textures supported");
if (texCompETC1Supported) TraceLog(INFO, "[EXTENSION] ETC1 compressed textures supported");
if (texCompETC2Supported) TraceLog(INFO, "[EXTENSION] ETC2/EAC compressed textures supported");
if (texCompPVRTSupported) TraceLog(INFO, "[EXTENSION] PVRT compressed textures supported");
if (texCompASTCSupported) TraceLog(INFO, "[EXTENSION] ASTC compressed textures supported");
// Initialize buffers, default shaders and default textures
//----------------------------------------------------------
// Set default draw mode
currentDrawMode = RL_TRIANGLES;
// Reset projection and modelview matrices
projection = MatrixIdentity();
modelview = MatrixIdentity();
currentMatrix = &modelview;
// Initialize matrix stack
for (int i = 0; i < MATRIX_STACK_SIZE; i++) stack[i] = MatrixIdentity();
// Create default white texture for plain colors (required by shader)
unsigned char pixels[4] = { 255, 255, 255, 255 }; // 1 pixel RGBA (4 bytes)
whiteTexture = rlglLoadTexture(pixels, 1, 1, UNCOMPRESSED_R8G8B8A8, 1);
if (whiteTexture != 0) TraceLog(INFO, "[TEX ID %i] Base white texture loaded successfully", whiteTexture);
else TraceLog(WARNING, "Base white texture could not be loaded");
// Init default Shader (customized for GL 3.3 and ES2)
defaultShader = LoadDefaultShader();
currentShader = defaultShader;
LoadDefaultBuffers(); // Initialize default vertex arrays buffers (lines, triangles, quads)
// Init temp vertex buffer, used when transformation required (translate, rotate, scale)
tempBuffer = (Vector3 *)malloc(sizeof(Vector3)*TEMP_VERTEX_BUFFER_SIZE);
for (int i = 0; i < TEMP_VERTEX_BUFFER_SIZE; i++) tempBuffer[i] = VectorZero();
// Init draw calls tracking system
draws = (DrawCall *)malloc(sizeof(DrawCall)*MAX_DRAWS_BY_TEXTURE);
for (int i = 0; i < MAX_DRAWS_BY_TEXTURE; i++)
{
draws[i].textureId = 0;
draws[i].vertexCount = 0;
}
drawsCounter = 1;
draws[drawsCounter - 1].textureId = whiteTexture;
#endif
}
// Vertex Buffer Object deinitialization (memory free)
void rlglClose(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
UnloadDefaultShader();
UnloadStandardShader();
UnloadDefaultBuffers();
// Delete default white texture
glDeleteTextures(1, &whiteTexture);
TraceLog(INFO, "[TEX ID %i] Unloaded texture data (base white texture) from VRAM", whiteTexture);
// Unload lights
if (lightsCount > 0)
{
for (int i = 0; i < lightsCount; i++) free(lights[i]);
lightsCount = 0;
}
free(draws);
#endif
}
// Drawing batches: triangles, quads, lines
void rlglDraw(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
/*
for (int i = 0; i < modelsCount; i++)
{
rlglDrawMesh(models[i]->mesh, models[i]->material, models[i]->transform);
}
*/
// NOTE: Default buffers always drawn at the end
UpdateDefaultBuffers();
DrawDefaultBuffers();
#endif
}
// Initialize Graphics Device (OpenGL stuff)
// NOTE: Stores global variables screenWidth and screenHeight
void rlglInitGraphics(int offsetX, int offsetY, int width, int height)
{
// NOTE: Required! viewport must be recalculated if screen resized!
glViewport(offsetX/2, offsetY/2, width - offsetX, height - offsetY); // Set viewport width and height
// NOTE: Don't confuse glViewport with the transformation matrix
// NOTE: glViewport just defines the area of the context that you will actually draw to.
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set clear color (black)
//glClearDepth(1.0f); // Clear depth buffer (default)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers, depth buffer is used for 3D
glDisable(GL_DEPTH_TEST); // Disable depth testing for 2D (only used for 3D)
glDepthFunc(GL_LEQUAL); // Type of depth testing to apply
glEnable(GL_BLEND); // Enable color blending (required to work with transparencies)
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Color blending function (how colors are mixed)
#if defined(GRAPHICS_API_OPENGL_11)
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Improve quality of color and texture coordinate interpolation (Deprecated in OGL 3.0)
// Other options: GL_FASTEST, GL_DONT_CARE (default)
#endif
rlMatrixMode(RL_PROJECTION); // Switch to PROJECTION matrix
rlLoadIdentity(); // Reset current matrix (PROJECTION)
rlOrtho(0, width - offsetX, height - offsetY, 0, 0.0f, 1.0f); // Config orthographic mode: top-left corner --> (0,0)
rlMatrixMode(RL_MODELVIEW); // Switch back to MODELVIEW matrix
rlLoadIdentity(); // Reset current matrix (MODELVIEW)
// NOTE: All shapes/models triangles are drawn CCW
glEnable(GL_CULL_FACE); // Enable backface culling (Disabled by default)
//glCullFace(GL_BACK); // Cull the Back face (default)
//glFrontFace(GL_CCW); // Front face are defined counter clockwise (default)
#if defined(GRAPHICS_API_OPENGL_11)
glShadeModel(GL_SMOOTH); // Smooth shading between vertex (vertex colors interpolation) (Deprecated on OpenGL 3.3+)
// Possible options: GL_SMOOTH (Color interpolation) or GL_FLAT (no interpolation)
#endif
TraceLog(INFO, "OpenGL graphic device initialized successfully");
}
// Load OpenGL extensions
// NOTE: External loader function could be passed as a pointer
void rlglLoadExtensions(void *loader)
{
#if defined(GRAPHICS_API_OPENGL_33)
// NOTE: glad is generated and contains only required OpenGL 3.3 Core extensions
if (!gladLoadGLLoader((GLADloadproc)loader)) TraceLog(WARNING, "GLAD: Cannot load OpenGL extensions");
else TraceLog(INFO, "GLAD: OpenGL extensions loaded successfully");
if (GLAD_GL_VERSION_3_3) TraceLog(INFO, "OpenGL 3.3 Core profile supported");
else TraceLog(ERROR, "OpenGL 3.3 Core profile not supported");
// With GLAD, we can check if an extension is supported using the GLAD_GL_xxx booleans
//if (GLAD_GL_ARB_vertex_array_object) // Use GL_ARB_vertex_array_object
#endif
}
// Get world coordinates from screen coordinates
Vector3 rlglUnproject(Vector3 source, Matrix proj, Matrix view)
{
Vector3 result = { 0.0f, 0.0f, 0.0f };
// Calculate unproject matrix (multiply projection matrix and view matrix) and invert it
Matrix matProjView = MatrixMultiply(proj, view);
MatrixInvert(&matProjView);
// Create quaternion from source point
Quaternion quat = { source.x, source.y, source.z, 1.0f };
// Multiply quat point by unproject matrix
QuaternionTransform(&quat, matProjView);
// Normalized world points in vectors
result.x = quat.x/quat.w;
result.y = quat.y/quat.w;
result.z = quat.z/quat.w;
return result;
}
// Convert image data to OpenGL texture (returns OpenGL valid Id)
unsigned int rlglLoadTexture(void *data, int width, int height, int textureFormat, int mipmapCount)
{
glBindTexture(GL_TEXTURE_2D, 0); // Free any old binding
GLuint id = 0;
// Check texture format support by OpenGL 1.1 (compressed textures not supported)
#if defined(GRAPHICS_API_OPENGL_11)
if (textureFormat >= 8)
{
TraceLog(WARNING, "OpenGL 1.1 does not support GPU compressed texture formats");
return id;
}
#endif
if ((!texCompDXTSupported) && ((textureFormat == COMPRESSED_DXT1_RGB) || (textureFormat == COMPRESSED_DXT1_RGBA) ||
(textureFormat == COMPRESSED_DXT3_RGBA) || (textureFormat == COMPRESSED_DXT5_RGBA)))
{
TraceLog(WARNING, "DXT compressed texture format not supported");
return id;
}
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if ((!texCompETC1Supported) && (textureFormat == COMPRESSED_ETC1_RGB))
{
TraceLog(WARNING, "ETC1 compressed texture format not supported");
return id;
}
if ((!texCompETC2Supported) && ((textureFormat == COMPRESSED_ETC2_RGB) || (textureFormat == COMPRESSED_ETC2_EAC_RGBA)))
{
TraceLog(WARNING, "ETC2 compressed texture format not supported");
return id;
}
if ((!texCompPVRTSupported) && ((textureFormat == COMPRESSED_PVRT_RGB) || (textureFormat == COMPRESSED_PVRT_RGBA)))
{
TraceLog(WARNING, "PVRT compressed texture format not supported");
return id;
}
if ((!texCompASTCSupported) && ((textureFormat == COMPRESSED_ASTC_4x4_RGBA) || (textureFormat == COMPRESSED_ASTC_8x8_RGBA)))
{
TraceLog(WARNING, "ASTC compressed texture format not supported");
return id;
}
#endif
glGenTextures(1, &id); // Generate Pointer to the texture
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
//glActiveTexture(GL_TEXTURE0); // If not defined, using GL_TEXTURE0 by default (shader texture)
#endif
glBindTexture(GL_TEXTURE_2D, id);
#if defined(GRAPHICS_API_OPENGL_33)
// NOTE: We define internal (GPU) format as GL_RGBA8 (probably BGRA8 in practice, driver takes care)
// NOTE: On embedded systems, we let the driver choose the best internal format
// Support for multiple color modes (16bit color modes and grayscale)
// (sized)internalFormat format type
// GL_R GL_RED GL_UNSIGNED_BYTE
// GL_RGB565 GL_RGB GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_5_6_5
// GL_RGB5_A1 GL_RGBA GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_5_5_5_1
// GL_RGBA4 GL_RGBA GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_4_4_4_4
// GL_RGBA8 GL_RGBA GL_UNSIGNED_BYTE
// GL_RGB8 GL_RGB GL_UNSIGNED_BYTE
switch (textureFormat)
{
case UNCOMPRESSED_GRAYSCALE:
{
glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, width, height, 0, GL_RED, GL_UNSIGNED_BYTE, (unsigned char *)data);
// With swizzleMask we define how a one channel texture will be mapped to RGBA
// Required GL >= 3.3 or EXT_texture_swizzle/ARB_texture_swizzle
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE };
glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask);
TraceLog(INFO, "[TEX ID %i] Grayscale texture loaded and swizzled", id);
} break;
case UNCOMPRESSED_GRAY_ALPHA:
{
glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, width, height, 0, GL_RG, GL_UNSIGNED_BYTE, (unsigned char *)data);
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN };
glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask);
} break;
case UNCOMPRESSED_R5G6B5: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB565, width, height, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break;
case UNCOMPRESSED_R8G8B8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_R5G5B5A1: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB5_A1, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break;
case UNCOMPRESSED_R4G4B4A4: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA4, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break;
case UNCOMPRESSED_R8G8B8A8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case COMPRESSED_DXT1_RGB: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_S3TC_DXT1_EXT); break;
case COMPRESSED_DXT1_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT); break;
case COMPRESSED_DXT3_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT); break;
case COMPRESSED_DXT5_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT); break;
case COMPRESSED_ETC1_RGB: if (texCompETC1Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_ETC1_RGB8_OES); break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3
case COMPRESSED_ETC2_RGB: if (texCompETC2Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB8_ETC2); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3
case COMPRESSED_ETC2_EAC_RGBA: if (texCompETC2Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA8_ETC2_EAC); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3
case COMPRESSED_PVRT_RGB: if (texCompPVRTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG); break; // NOTE: Requires PowerVR GPU
case COMPRESSED_PVRT_RGBA: if (texCompPVRTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG); break; // NOTE: Requires PowerVR GPU
case COMPRESSED_ASTC_4x4_RGBA: if (texCompASTCSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_4x4_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3
case COMPRESSED_ASTC_8x8_RGBA: if (texCompASTCSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_8x8_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3
default: TraceLog(WARNING, "Texture format not recognized"); break;
}
#elif defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA
switch (textureFormat)
{
case UNCOMPRESSED_GRAYSCALE: glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, width, height, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_GRAY_ALPHA: glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, width, height, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_R5G6B5: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break;
case UNCOMPRESSED_R8G8B8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_R5G5B5A1: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break;
case UNCOMPRESSED_R4G4B4A4: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break;
case UNCOMPRESSED_R8G8B8A8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
#if defined(GRAPHICS_API_OPENGL_ES2)
case COMPRESSED_DXT1_RGB: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_S3TC_DXT1_EXT); break;
case COMPRESSED_DXT1_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT); break;
case COMPRESSED_DXT3_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT); break; // NOTE: Not supported by WebGL
case COMPRESSED_DXT5_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT); break; // NOTE: Not supported by WebGL
case COMPRESSED_ETC1_RGB: if (texCompETC1Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_ETC1_RGB8_OES); break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3
case COMPRESSED_ETC2_RGB: if (texCompETC2Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB8_ETC2); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3
case COMPRESSED_ETC2_EAC_RGBA: if (texCompETC2Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA8_ETC2_EAC); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3
case COMPRESSED_PVRT_RGB: if (texCompPVRTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG); break; // NOTE: Requires PowerVR GPU
case COMPRESSED_PVRT_RGBA: if (texCompPVRTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG); break; // NOTE: Requires PowerVR GPU
case COMPRESSED_ASTC_4x4_RGBA: if (texCompASTCSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_4x4_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3
case COMPRESSED_ASTC_8x8_RGBA: if (texCompASTCSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_8x8_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3
#endif
default: TraceLog(WARNING, "Texture format not supported"); break;
}
#endif
// Texture parameters configuration
// NOTE: glTexParameteri does NOT affect texture uploading, just the way it's used
#if defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: OpenGL ES 2.0 with no GL_OES_texture_npot support (i.e. WebGL) has limited NPOT support, so CLAMP_TO_EDGE must be used
if (npotSupported)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis
}
else
{
// NOTE: If using negative texture coordinates (LoadOBJ()), it does not work!
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // Set texture to clamp on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Set texture to clamp on y-axis
}
#else
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis
#endif
// Magnification and minification filters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Alternative: GL_LINEAR
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Alternative: GL_LINEAR
#if defined(GRAPHICS_API_OPENGL_33)
if (mipmapCount > 1)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate Trilinear filtering for mipmaps (must be available)
}
#endif
// At this point we have the texture loaded in GPU and texture parameters configured
// NOTE: If mipmaps were not in data, they are not generated automatically
// Unbind current texture
glBindTexture(GL_TEXTURE_2D, 0);
if (id > 0) TraceLog(INFO, "[TEX ID %i] Texture created successfully (%ix%i)", id, width, height);
else TraceLog(WARNING, "Texture could not be created");
return id;
}
// Load a texture to be used for rendering (fbo with color and depth attachments)
RenderTexture2D rlglLoadRenderTexture(int width, int height)
{
RenderTexture2D target;
target.id = 0;
target.texture.id = 0;
target.texture.width = width;
target.texture.height = height;
target.texture.format = UNCOMPRESSED_R8G8B8;
target.texture.mipmaps = 1;
target.depth.id = 0;
target.depth.width = width;
target.depth.height = height;
target.depth.format = 19; //DEPTH_COMPONENT_24BIT
target.depth.mipmaps = 1;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Create the texture that will serve as the color attachment for the framebuffer
glGenTextures(1, &target.texture.id);
glBindTexture(GL_TEXTURE_2D, target.texture.id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
#if defined(GRAPHICS_API_OPENGL_33)
#define USE_DEPTH_TEXTURE
#else
#define USE_DEPTH_RENDERBUFFER
#endif
#if defined(USE_DEPTH_RENDERBUFFER)
// Create the renderbuffer that will serve as the depth attachment for the framebuffer.
glGenRenderbuffers(1, &target.depth.id);
glBindRenderbuffer(GL_RENDERBUFFER, target.depth.id);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, width, height); // GL_DEPTH_COMPONENT24 not supported on Android
#elif defined(USE_DEPTH_TEXTURE)
// NOTE: We can also use a texture for depth buffer (GL_ARB_depth_texture/GL_OES_depth_texture extension required)
// A renderbuffer is simpler than a texture and could offer better performance on embedded devices
glGenTextures(1, &target.depth.id);
glBindTexture(GL_TEXTURE_2D, target.depth.id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
// Create the framebuffer object
glGenFramebuffers(1, &target.id);
glBindFramebuffer(GL_FRAMEBUFFER, target.id);
// Attach color texture and depth renderbuffer to FBO
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, target.texture.id, 0);
#if defined(USE_DEPTH_RENDERBUFFER)
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, target.depth.id);
#elif defined(USE_DEPTH_TEXTURE)
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, target.depth.id, 0);
#endif
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE)
{
TraceLog(WARNING, "Framebuffer object could not be created...");
switch (status)
{
case GL_FRAMEBUFFER_UNSUPPORTED: TraceLog(WARNING, "Framebuffer is unsupported"); break;
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: TraceLog(WARNING, "Framebuffer incomplete attachment"); break;
#if defined(GRAPHICS_API_OPENGL_ES2)
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: TraceLog(WARNING, "Framebuffer incomplete dimensions"); break;
#endif
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: TraceLog(WARNING, "Framebuffer incomplete missing attachment"); break;
default: break;
}
glDeleteTextures(1, &target.texture.id);
glDeleteTextures(1, &target.depth.id);
glDeleteFramebuffers(1, &target.id);
}
else TraceLog(INFO, "[FBO ID %i] Framebuffer object created successfully", target.id);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
#endif
return target;
}
// Update already loaded texture in GPU with new data
void rlglUpdateTexture(unsigned int id, int width, int height, int format, void *data)
{
glBindTexture(GL_TEXTURE_2D, id);
#if defined(GRAPHICS_API_OPENGL_33)
switch (format)
{
case UNCOMPRESSED_GRAYSCALE: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RED, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_GRAY_ALPHA: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RG, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_R5G6B5: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break;
case UNCOMPRESSED_R8G8B8: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_R5G5B5A1: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break;
case UNCOMPRESSED_R4G4B4A4: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break;
case UNCOMPRESSED_R8G8B8A8: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
default: TraceLog(WARNING, "Texture format updating not supported"); break;
}
#elif defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA
switch (format)
{
case UNCOMPRESSED_GRAYSCALE: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_LUMINANCE, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_GRAY_ALPHA: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_R5G6B5: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break;
case UNCOMPRESSED_R8G8B8: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
case UNCOMPRESSED_R5G5B5A1: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break;
case UNCOMPRESSED_R4G4B4A4: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break;
case UNCOMPRESSED_R8G8B8A8: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break;
default: TraceLog(WARNING, "Texture format updating not supported"); break;
}
#endif
}
// Generate mipmap data for selected texture
void rlglGenerateMipmaps(Texture2D texture)
{
glBindTexture(GL_TEXTURE_2D, texture.id);
// Check if texture is power-of-two (POT)
bool texIsPOT = false;
if (((texture.width > 0) && ((texture.width & (texture.width - 1)) == 0)) &&
((texture.height > 0) && ((texture.height & (texture.height - 1)) == 0))) texIsPOT = true;
if ((texIsPOT) || (npotSupported))
{
#if defined(GRAPHICS_API_OPENGL_11)
// Compute required mipmaps
void *data = rlglReadTexturePixels(texture);
// NOTE: data size is reallocated to fit mipmaps data
// NOTE: CPU mipmap generation only supports RGBA 32bit data
int mipmapCount = GenerateMipmaps(data, texture.width, texture.height);
int size = texture.width*texture.height*4; // RGBA 32bit only
int offset = size;
int mipWidth = texture.width/2;
int mipHeight = texture.height/2;
// Load the mipmaps
for (int level = 1; level < mipmapCount; level++)
{
glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA8, mipWidth, mipHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, data + offset);
size = mipWidth*mipHeight*4;
offset += size;
mipWidth /= 2;
mipHeight /= 2;
}
TraceLog(WARNING, "[TEX ID %i] Mipmaps generated manually on CPU side", texture.id);
// NOTE: Once mipmaps have been generated and data has been uploaded to GPU VRAM, we can discard RAM data
free(data);
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically
TraceLog(INFO, "[TEX ID %i] Mipmaps generated automatically", texture.id);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate Trilinear filtering for mipmaps (must be available)
#endif
}
else TraceLog(WARNING, "[TEX ID %i] Mipmaps can not be generated", texture.id);
glBindTexture(GL_TEXTURE_2D, 0);
}
// Upload vertex data into a VAO (if supported) and VBO
void rlglLoadMesh(Mesh *mesh, bool dynamic)
{
mesh->vaoId = 0; // Vertex Array Object
mesh->vboId[0] = 0; // Vertex positions VBO
mesh->vboId[1] = 0; // Vertex texcoords VBO
mesh->vboId[2] = 0; // Vertex normals VBO
mesh->vboId[3] = 0; // Vertex colors VBO
mesh->vboId[4] = 0; // Vertex tangents VBO
mesh->vboId[5] = 0; // Vertex texcoords2 VBO
mesh->vboId[6] = 0; // Vertex indices VBO
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
int drawHint = GL_STATIC_DRAW;
if (dynamic) drawHint = GL_DYNAMIC_DRAW;
GLuint vaoId = 0; // Vertex Array Objects (VAO)
GLuint vboId[7]; // Vertex Buffer Objects (VBOs)
if (vaoSupported)
{
// Initialize Quads VAO (Buffer A)
glGenVertexArrays(1, &vaoId);
glBindVertexArray(vaoId);
}
// NOTE: Attributes must be uploaded considering default locations points
// Enable vertex attributes: position (shader-location = 0)
glGenBuffers(1, &vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->vertices, drawHint);
glVertexAttribPointer(0, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(0);
// Enable vertex attributes: texcoords (shader-location = 1)
glGenBuffers(1, &vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords, drawHint);
glVertexAttribPointer(1, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(1);
// Enable vertex attributes: normals (shader-location = 2)
if (mesh->normals != NULL)
{
glGenBuffers(1, &vboId[2]);
glBindBuffer(GL_ARRAY_BUFFER, vboId[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->normals, drawHint);
glVertexAttribPointer(2, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(2);
}
else
{
// Default color vertex attribute set to WHITE
glVertexAttrib3f(2, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(2);
}
// Default color vertex attribute (shader-location = 3)
if (mesh->colors != NULL)
{
glGenBuffers(1, &vboId[3]);
glBindBuffer(GL_ARRAY_BUFFER, vboId[3]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*mesh->vertexCount, mesh->colors, drawHint);
glVertexAttribPointer(3, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(3);
}
else
{
// Default color vertex attribute set to WHITE
glVertexAttrib4f(3, 1.0f, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(3);
}
// Default tangent vertex attribute (shader-location = 4)
if (mesh->tangents != NULL)
{
glGenBuffers(1, &vboId[4]);
glBindBuffer(GL_ARRAY_BUFFER, vboId[4]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->tangents, drawHint);
glVertexAttribPointer(4, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(4);
}
else
{
// Default tangents vertex attribute
glVertexAttrib3f(4, 0.0f, 0.0f, 0.0f);
glDisableVertexAttribArray(4);
}
// Default texcoord2 vertex attribute (shader-location = 5)
if (mesh->texcoords2 != NULL)
{
glGenBuffers(1, &vboId[5]);
glBindBuffer(GL_ARRAY_BUFFER, vboId[5]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords2, drawHint);
glVertexAttribPointer(5, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(5);
}
else
{
// Default tangents vertex attribute
glVertexAttrib2f(5, 0.0f, 0.0f);
glDisableVertexAttribArray(5);
}
if (mesh->indices != NULL)
{
glGenBuffers(1, &vboId[6]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboId[6]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(unsigned short)*mesh->triangleCount*3, mesh->indices, GL_STATIC_DRAW);
}
mesh->vboId[0] = vboId[0]; // Vertex position VBO
mesh->vboId[1] = vboId[1]; // Texcoords VBO
mesh->vboId[2] = vboId[2]; // Normals VBO
mesh->vboId[3] = vboId[3]; // Colors VBO
mesh->vboId[4] = vboId[4]; // Tangents VBO
mesh->vboId[5] = vboId[5]; // Texcoords2 VBO
mesh->vboId[6] = vboId[6]; // Indices VBO
if (vaoSupported)
{
if (vaoId > 0)
{
mesh->vaoId = vaoId;
TraceLog(INFO, "[VAO ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId);
}
else TraceLog(WARNING, "Mesh could not be uploaded to VRAM (GPU)");
}
else
{
TraceLog(INFO, "[VBOs] Mesh uploaded successfully to VRAM (GPU)");
}
#endif
}
// Update vertex data on GPU (upload new data to one buffer)
void rlglUpdateMesh(Mesh mesh, int buffer, int numVertex)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Activate mesh VAO
if (vaoSupported) glBindVertexArray(mesh.vaoId);
switch (buffer)
{
case 0: // Update vertices (vertex position)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*numVertex, mesh.vertices, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*numVertex, mesh.vertices);
} break;
case 1: // Update texcoords (vertex texture coordinates)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*numVertex, mesh.texcoords, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*numVertex, mesh.texcoords);
} break;
case 2: // Update normals (vertex normals)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*numVertex, mesh.normals, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*numVertex, mesh.normals);
} break;
case 3: // Update colors (vertex colors)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[2]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*numVertex, mesh.colors, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*numVertex, mesh.colors);
} break;
case 4: // Update tangents (vertex tangents)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*numVertex, mesh.tangents, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*numVertex, mesh.tangents);
} break;
case 5: // Update texcoords2 (vertex second texture coordinates)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]);
if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*numVertex, mesh.texcoords2, GL_DYNAMIC_DRAW);
else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*numVertex, mesh.texcoords2);
} break;
default: break;
}
// Unbind the current VAO
if (vaoSupported) glBindVertexArray(0);
// Another option would be using buffer mapping...
//mesh.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);
// Now we can modify vertices
//glUnmapBuffer(GL_ARRAY_BUFFER);
#endif
}
// Draw a 3d mesh with material and transform
void rlglDrawMesh(Mesh mesh, Material material, Matrix transform)
{
#if defined(GRAPHICS_API_OPENGL_11)
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, material.texDiffuse.id);
// NOTE: On OpenGL 1.1 we use Vertex Arrays to draw model
glEnableClientState(GL_VERTEX_ARRAY); // Enable vertex array
glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Enable texture coords array
if (mesh.normals != NULL) glEnableClientState(GL_NORMAL_ARRAY); // Enable normals array
if (mesh.colors != NULL) glEnableClientState(GL_COLOR_ARRAY); // Enable colors array
glVertexPointer(3, GL_FLOAT, 0, mesh.vertices); // Pointer to vertex coords array
glTexCoordPointer(2, GL_FLOAT, 0, mesh.texcoords); // Pointer to texture coords array
if (mesh.normals != NULL) glNormalPointer(GL_FLOAT, 0, mesh.normals); // Pointer to normals array
if (mesh.colors != NULL) glColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh.colors); // Pointer to colors array
rlPushMatrix();
rlMultMatrixf(MatrixToFloat(transform));
rlColor4ub(material.colDiffuse.r, material.colDiffuse.g, material.colDiffuse.b, material.colDiffuse.a);
if (mesh.indices != NULL) glDrawElements(GL_TRIANGLES, mesh.triangleCount*3, GL_UNSIGNED_SHORT, mesh.indices);
else glDrawArrays(GL_TRIANGLES, 0, mesh.vertexCount);
rlPopMatrix();
glDisableClientState(GL_VERTEX_ARRAY); // Disable vertex array
glDisableClientState(GL_TEXTURE_COORD_ARRAY); // Disable texture coords array
if (mesh.normals != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable normals array
if (mesh.colors != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable colors array
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glUseProgram(material.shader.id);
// At this point the modelview matrix just contains the view matrix (camera)
// That's because Begin3dMode() sets it an no model-drawing function modifies it, all use rlPushMatrix() and rlPopMatrix()
Matrix matView = modelview; // View matrix (camera)
Matrix matProjection = projection; // Projection matrix (perspective)
// Calculate model-view matrix combining matModel and matView
Matrix matModelView = MatrixMultiply(transform, matView); // Transform to camera-space coordinates
// Calculate model-view-projection matrix (MVP)
Matrix matMVP = MatrixMultiply(matModelView, matProjection); // Transform to screen-space coordinates
// Send combined model-view-projection matrix to shader
glUniformMatrix4fv(material.shader.mvpLoc, 1, false, MatrixToFloat(matMVP));
// Upload to shader material.colDiffuse
float vColorDiffuse[4] = { (float)material.colDiffuse.r/255, (float)material.colDiffuse.g/255, (float)material.colDiffuse.b/255, (float)material.colDiffuse.a/255 };
glUniform4fv(material.shader.tintColorLoc, 1, vColorDiffuse);
// Check if using standard shader to get location points
// NOTE: standard shader specific locations are got at render time to keep Shader struct as simple as possible (with just default shader locations)
if (material.shader.id == standardShader.id)
{
// Transpose and inverse model transformations matrix for fragment normal calculations
Matrix transInvTransform = transform;
MatrixTranspose(&transInvTransform);
MatrixInvert(&transInvTransform);
// Send model transformations matrix to shader
glUniformMatrix4fv(glGetUniformLocation(material.shader.id, "modelMatrix"), 1, false, MatrixToFloat(transInvTransform));
// Send view transformation matrix to shader. View matrix 8, 9 and 10 are view direction vector axis values (target - position)
glUniform3f(glGetUniformLocation(material.shader.id, "viewDir"), matView.m8, matView.m9, matView.m10);
// Setup shader uniforms for lights
SetShaderLights(material.shader);
// Upload to shader material.colAmbient
glUniform4f(glGetUniformLocation(material.shader.id, "colAmbient"), (float)material.colAmbient.r/255, (float)material.colAmbient.g/255, (float)material.colAmbient.b/255, (float)material.colAmbient.a/255);
// Upload to shader material.colSpecular
glUniform4f(glGetUniformLocation(material.shader.id, "colSpecular"), (float)material.colSpecular.r/255, (float)material.colSpecular.g/255, (float)material.colSpecular.b/255, (float)material.colSpecular.a/255);
// Upload to shader glossiness
glUniform1f(glGetUniformLocation(material.shader.id, "glossiness"), material.glossiness);
}
// Set shader textures (diffuse, normal, specular)
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, material.texDiffuse.id);
glUniform1i(material.shader.mapTexture0Loc, 0); // Diffuse texture fits in active texture unit 0
if ((material.texNormal.id != 0) && (material.shader.mapTexture1Loc != -1))
{
// Upload to shader specular map flag
glUniform1i(glGetUniformLocation(material.shader.id, "useNormal"), 1);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, material.texNormal.id);
glUniform1i(material.shader.mapTexture1Loc, 1); // Normal texture fits in active texture unit 1
}
if ((material.texSpecular.id != 0) && (material.shader.mapTexture2Loc != -1))
{
// Upload to shader specular map flag
glUniform1i(glGetUniformLocation(material.shader.id, "useSpecular"), 1);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, material.texSpecular.id);
glUniform1i(material.shader.mapTexture2Loc, 2); // Specular texture fits in active texture unit 2
}
if (vaoSupported)
{
glBindVertexArray(mesh.vaoId);
}
else
{
// Bind mesh VBO data: vertex position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]);
glVertexAttribPointer(material.shader.vertexLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.vertexLoc);
// Bind mesh VBO data: vertex texcoords (shader-location = 1)
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]);
glVertexAttribPointer(material.shader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.texcoordLoc);
// Bind mesh VBO data: vertex normals (shader-location = 2, if available)
if (material.shader.normalLoc != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[2]);
glVertexAttribPointer(material.shader.normalLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.normalLoc);
}
// Bind mesh VBO data: vertex colors (shader-location = 3, if available) , tangents, texcoords2 (if available)
if (material.shader.colorLoc != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[3]);
glVertexAttribPointer(material.shader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(material.shader.colorLoc);
}
// Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
if (material.shader.tangentLoc != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[4]);
glVertexAttribPointer(material.shader.tangentLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.tangentLoc);
}
// Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
if (material.shader.texcoord2Loc != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[5]);
glVertexAttribPointer(material.shader.texcoord2Loc, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.texcoord2Loc);
}
if (mesh.indices != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quads.vboId[3]);
}
// Draw call!
if (mesh.indices != NULL) glDrawElements(GL_TRIANGLES, mesh.triangleCount*3, GL_UNSIGNED_SHORT, 0); // Indexed vertices draw
else glDrawArrays(GL_TRIANGLES, 0, mesh.vertexCount);
if (material.texNormal.id != 0)
{
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
}
if (material.texSpecular.id != 0)
{
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, 0);
}
glActiveTexture(GL_TEXTURE0); // Set shader active texture to default 0
glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures
if (vaoSupported) glBindVertexArray(0); // Unbind VAO
else
{
glBindBuffer(GL_ARRAY_BUFFER, 0); // Unbind VBOs
if (mesh.indices != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
glUseProgram(0); // Unbind shader program
#endif
}
// Unload mesh data from CPU and GPU
void rlglUnloadMesh(Mesh *mesh)
{
if (mesh->vertices != NULL) free(mesh->vertices);
if (mesh->texcoords != NULL) free(mesh->texcoords);
if (mesh->normals != NULL) free(mesh->normals);
if (mesh->colors != NULL) free(mesh->colors);
if (mesh->tangents != NULL) free(mesh->tangents);
if (mesh->texcoords2 != NULL) free(mesh->texcoords2);
if (mesh->indices != NULL) free(mesh->indices);
rlDeleteBuffers(mesh->vboId[0]); // vertex
rlDeleteBuffers(mesh->vboId[1]); // texcoords
rlDeleteBuffers(mesh->vboId[2]); // normals
rlDeleteBuffers(mesh->vboId[3]); // colors
rlDeleteBuffers(mesh->vboId[4]); // tangents
rlDeleteBuffers(mesh->vboId[5]); // texcoords2
rlDeleteBuffers(mesh->vboId[6]); // indices
rlDeleteVertexArrays(mesh->vaoId);
}
// Read screen pixel data (color buffer)
unsigned char *rlglReadScreenPixels(int width, int height)
{
unsigned char *screenData = (unsigned char *)malloc(width*height*sizeof(unsigned char)*4);
// NOTE: glReadPixels returns image flipped vertically -> (0,0) is the bottom left corner of the framebuffer
glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, screenData);
// Flip image vertically!
unsigned char *imgData = (unsigned char *)malloc(width*height*sizeof(unsigned char)*4);
for (int y = height - 1; y >= 0; y--)
{
for (int x = 0; x < (width*4); x++)
{
// Flip line
imgData[((height - 1) - y)*width*4 + x] = screenData[(y*width*4) + x];
// Set alpha component value to 255 (no trasparent image retrieval)
// NOTE: Alpha value has already been applied to RGB in framebuffer, we don't need it!
if (((x + 1)%4) == 0) imgData[((height - 1) - y)*width*4 + x] = 255;
}
}
free(screenData);
return imgData; // NOTE: image data should be freed
}
// Read texture pixel data
// NOTE: glGetTexImage() is not available on OpenGL ES 2.0
// Texture2D width and height are required on OpenGL ES 2.0. There is no way to get it from texture id.
void *rlglReadTexturePixels(Texture2D texture)
{
void *pixels = NULL;
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
glBindTexture(GL_TEXTURE_2D, texture.id);
// NOTE: Using texture.id, we can retrieve some texture info (but not on OpenGL ES 2.0)
/*
int width, height, format;
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, &format);
// Other texture info: GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE
*/
int glFormat = 0, glType = 0;
unsigned int size = texture.width*texture.height;
// NOTE: GL_LUMINANCE and GL_LUMINANCE_ALPHA are removed since OpenGL 3.1
// Must be replaced by GL_RED and GL_RG on Core OpenGL 3.3
switch (texture.format)
{
#if defined(GRAPHICS_API_OPENGL_11)
case UNCOMPRESSED_GRAYSCALE: pixels = (unsigned char *)malloc(size); glFormat = GL_LUMINANCE; glType = GL_UNSIGNED_BYTE; break; // 8 bit per pixel (no alpha)
case UNCOMPRESSED_GRAY_ALPHA: pixels = (unsigned char *)malloc(size*2); glFormat = GL_LUMINANCE_ALPHA; glType = GL_UNSIGNED_BYTE; break; // 16 bpp (2 channels)
#elif defined(GRAPHICS_API_OPENGL_33)
case UNCOMPRESSED_GRAYSCALE: pixels = (unsigned char *)malloc(size); glFormat = GL_RED; glType = GL_UNSIGNED_BYTE; break;
case UNCOMPRESSED_GRAY_ALPHA: pixels = (unsigned char *)malloc(size*2); glFormat = GL_RG; glType = GL_UNSIGNED_BYTE; break;
#endif
case UNCOMPRESSED_R5G6B5: pixels = (unsigned short *)malloc(size); glFormat = GL_RGB; glType = GL_UNSIGNED_SHORT_5_6_5; break; // 16 bpp
case UNCOMPRESSED_R8G8B8: pixels = (unsigned char *)malloc(size*3); glFormat = GL_RGB; glType = GL_UNSIGNED_BYTE; break; // 24 bpp
case UNCOMPRESSED_R5G5B5A1: pixels = (unsigned short *)malloc(size); glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_5_5_5_1; break; // 16 bpp (1 bit alpha)
case UNCOMPRESSED_R4G4B4A4: pixels = (unsigned short *)malloc(size); glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_4_4_4_4; break; // 16 bpp (4 bit alpha)
case UNCOMPRESSED_R8G8B8A8: pixels = (unsigned char *)malloc(size*4); glFormat = GL_RGBA; glType = GL_UNSIGNED_BYTE; break; // 32 bpp
default: TraceLog(WARNING, "Texture data retrieval, format not suported"); break;
}
// NOTE: Each row written to or read from by OpenGL pixel operations like glGetTexImage are aligned to a 4 byte boundary by default, which may add some padding.
// Use glPixelStorei to modify padding with the GL_[UN]PACK_ALIGNMENT setting.
// GL_PACK_ALIGNMENT affects operations that read from OpenGL memory (glReadPixels, glGetTexImage, etc.)
// GL_UNPACK_ALIGNMENT affects operations that write to OpenGL memory (glTexImage, etc.)
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glGetTexImage(GL_TEXTURE_2D, 0, glFormat, glType, pixels);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
RenderTexture2D fbo = rlglLoadRenderTexture(texture.width, texture.height);
// NOTE: Two possible Options:
// 1 - Bind texture to color fbo attachment and glReadPixels()
// 2 - Create an fbo, activate it, render quad with texture, glReadPixels()
#define GET_TEXTURE_FBO_OPTION_1 // It works
#if defined(GET_TEXTURE_FBO_OPTION_1)
glBindFramebuffer(GL_FRAMEBUFFER, fbo.id);
glBindTexture(GL_TEXTURE_2D, 0);
// Attach our texture to FBO -> Texture must be RGB
// NOTE: Previoust attached texture is automatically detached
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture.id, 0);
pixels = (unsigned char *)malloc(texture.width*texture.height*4*sizeof(unsigned char));
// NOTE: Despite FBO color texture is RGB, we read data as RGBA... reading as RGB doesn't work... o__O
glReadPixels(0, 0, texture.width, texture.height, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
// Re-attach internal FBO color texture before deleting it
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fbo.texture.id, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
#elif defined(GET_TEXTURE_FBO_OPTION_2)
// Render texture to fbo
glBindFramebuffer(GL_FRAMEBUFFER, fbo.id);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClearDepthf(1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glViewport(0, 0, width, height);
//glMatrixMode(GL_PROJECTION);
//glLoadIdentity();
rlOrtho(0.0, width, height, 0.0, 0.0, 1.0);
//glMatrixMode(GL_MODELVIEW);
//glLoadIdentity();
//glDisable(GL_TEXTURE_2D);
//glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
Model quad;
//quad.mesh = GenMeshQuad(width, height);
quad.transform = MatrixIdentity();
quad.shader = defaultShader;
DrawModel(quad, (Vector3){ 0.0f, 0.0f, 0.0f }, 1.0f, WHITE);
pixels = (unsigned char *)malloc(texture.width*texture.height*3*sizeof(unsigned char));
glReadPixels(0, 0, texture.width, texture.height, GL_RGB, GL_UNSIGNED_BYTE, pixels);
// Bind framebuffer 0, which means render to back buffer
glBindFramebuffer(GL_FRAMEBUFFER, 0);
UnloadModel(quad);
#endif // GET_TEXTURE_FBO_OPTION
// Clean up temporal fbo
rlDeleteRenderTextures(fbo);
#endif
return pixels;
}
/*
// TODO: Record draw calls to be processed in batch
// NOTE: Global state must be kept
void rlglRecordDraw(void)
{
// TODO: Before adding a new draw, check if anything changed from last stored draw
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
draws[drawsCounter].vaoId = currentState.vaoId; // lines.id, trangles.id, quads.id?
draws[drawsCounter].textureId = currentState.textureId; // whiteTexture?
draws[drawsCounter].shaderId = currentState.shaderId; // defaultShader.id
draws[drawsCounter].projection = projection;
draws[drawsCounter].modelview = modelview;
draws[drawsCounter].vertexCount = currentState.vertexCount;
drawsCounter++;
#endif
}
*/
//----------------------------------------------------------------------------------
// Module Functions Definition - Shaders Functions
// NOTE: Those functions are exposed directly to the user in raylib.h
//----------------------------------------------------------------------------------
// Get default internal texture (white texture)
Texture2D GetDefaultTexture(void)
{
Texture2D texture;
texture.id = whiteTexture;
texture.width = 1;
texture.height = 1;
texture.mipmaps = 1;
texture.format = UNCOMPRESSED_R8G8B8A8;
return texture;
}
// Load a custom shader and bind default locations
Shader LoadShader(char *vsFileName, char *fsFileName)
{
Shader shader = { 0 };
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Shaders loading from external text file
char *vShaderStr = ReadTextFile(vsFileName);
char *fShaderStr = ReadTextFile(fsFileName);
if ((vShaderStr != NULL) && (fShaderStr != NULL))
{
shader.id = LoadShaderProgram(vShaderStr, fShaderStr);
// After shader loading, we try to load default location names
if (shader.id != 0) LoadDefaultShaderLocations(&shader);
// Shader strings must be freed
free(vShaderStr);
free(fShaderStr);
}
if (shader.id == 0)
{
TraceLog(WARNING, "Custom shader could not be loaded");
shader = defaultShader;
}
#endif
return shader;
}
// Unload a custom shader from memory
void UnloadShader(Shader shader)
{
if (shader.id != 0)
{
rlDeleteShader(shader.id);
TraceLog(INFO, "[SHDR ID %i] Unloaded shader program data", shader.id);
}
}
// Begin custom shader mode
void BeginShaderMode(Shader shader)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (currentShader.id != shader.id)
{
rlglDraw();
currentShader = shader;
}
#endif
}
// End custom shader mode (returns to default shader)
void EndShaderMode(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
BeginShaderMode(defaultShader);
#endif
}
// Get default shader
Shader GetDefaultShader(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
return defaultShader;
#else
Shader shader = { 0 };
return shader;
#endif
}
// Get default shader
// NOTE: Inits global variable standardShader
Shader GetStandardShader(void)
{
Shader shader = { 0 };
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (standardShaderLoaded) shader = standardShader;
else
{
// Lazy initialization of standard shader
standardShader = LoadStandardShader();
shader = standardShader;
}
#endif
return shader;
}
// Get shader uniform location
int GetShaderLocation(Shader shader, const char *uniformName)
{
int location = -1;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
location = glGetUniformLocation(shader.id, uniformName);
if (location == -1) TraceLog(WARNING, "[SHDR ID %i] Shader location for %s could not be found", shader.id, uniformName);
#endif
return location;
}
// Set shader uniform value (float)
void SetShaderValue(Shader shader, int uniformLoc, float *value, int size)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glUseProgram(shader.id);
if (size == 1) glUniform1fv(uniformLoc, 1, value); // Shader uniform type: float
else if (size == 2) glUniform2fv(uniformLoc, 1, value); // Shader uniform type: vec2
else if (size == 3) glUniform3fv(uniformLoc, 1, value); // Shader uniform type: vec3
else if (size == 4) glUniform4fv(uniformLoc, 1, value); // Shader uniform type: vec4
else TraceLog(WARNING, "Shader value float array size not supported");
glUseProgram(0);
#endif
}
// Set shader uniform value (int)
void SetShaderValuei(Shader shader, int uniformLoc, int *value, int size)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glUseProgram(shader.id);
if (size == 1) glUniform1iv(uniformLoc, 1, value); // Shader uniform type: int
else if (size == 2) glUniform2iv(uniformLoc, 1, value); // Shader uniform type: ivec2
else if (size == 3) glUniform3iv(uniformLoc, 1, value); // Shader uniform type: ivec3
else if (size == 4) glUniform4iv(uniformLoc, 1, value); // Shader uniform type: ivec4
else TraceLog(WARNING, "Shader value int array size not supported");
glUseProgram(0);
#endif
}
// Set shader uniform value (matrix 4x4)
void SetShaderValueMatrix(Shader shader, int uniformLoc, Matrix mat)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glUseProgram(shader.id);
glUniformMatrix4fv(uniformLoc, 1, false, MatrixToFloat(mat));
glUseProgram(0);
#endif
}
// Set a custom projection matrix (replaces internal projection matrix)
void SetMatrixProjection(Matrix proj)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
projection = proj;
#endif
}
// Set a custom modelview matrix (replaces internal modelview matrix)
void SetMatrixModelview(Matrix view)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
modelview = view;
#endif
}
// Begin blending mode (alpha, additive, multiplied)
// NOTE: Only 3 blending modes supported, default blend mode is alpha
void BeginBlendMode(int mode)
{
if ((blendMode != mode) && (mode < 3))
{
rlglDraw();
switch (mode)
{
case BLEND_ALPHA: glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); break;
case BLEND_ADDITIVE: glBlendFunc(GL_SRC_ALPHA, GL_ONE); break; // Alternative: glBlendFunc(GL_ONE, GL_ONE);
case BLEND_MULTIPLIED: glBlendFunc(GL_DST_COLOR, GL_ONE_MINUS_SRC_ALPHA); break;
default: break;
}
blendMode = mode;
}
}
// End blending mode (reset to default: alpha blending)
void EndBlendMode(void)
{
BeginBlendMode(BLEND_ALPHA);
}
// Create a new light, initialize it and add to pool
Light CreateLight(int type, Vector3 position, Color diffuse)
{
Light light = NULL;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Allocate dynamic memory
light = (Light)malloc(sizeof(LightData));
// Initialize light values with generic values
light->id = lightsCount;
light->type = type;
light->enabled = true;
light->position = position;
light->target = (Vector3){ 0.0f, 0.0f, 0.0f };
light->intensity = 1.0f;
light->diffuse = diffuse;
// Add new light to the array
lights[lightsCount] = light;
// Increase enabled lights count
lightsCount++;
#else
// TODO: Support OpenGL 1.1 lighting system
TraceLog(WARNING, "Lighting currently not supported on OpenGL 1.1");
#endif
return light;
}
// Destroy a light and take it out of the list
void DestroyLight(Light light)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Free dynamic memory allocation
free(lights[light->id]);
// Remove *obj from the pointers array
for (int i = light->id; i < lightsCount; i++)
{
// Resort all the following pointers of the array
if ((i + 1) < lightsCount)
{
lights[i] = lights[i + 1];
lights[i]->id = lights[i + 1]->id;
}
else free(lights[i]);
}
// Decrease enabled physic objects count
lightsCount--;
#endif
}
#if defined(RLGL_OCULUS_SUPPORT)
// Init Oculus Rift device
// NOTE: Device initialization should be done before window creation?
void InitOculusDevice(void)
{
// Initialize Oculus device
ovrResult result = ovr_Initialize(NULL);
if (OVR_FAILURE(result)) TraceLog(WARNING, "OVR: Could not initialize Oculus device");
result = ovr_Create(&session, &luid);
if (OVR_FAILURE(result))
{
TraceLog(WARNING, "OVR: Could not create Oculus session");
ovr_Shutdown();
}
hmdDesc = ovr_GetHmdDesc(session);
TraceLog(INFO, "OVR: Product Name: %s", hmdDesc.ProductName);
TraceLog(INFO, "OVR: Manufacturer: %s", hmdDesc.Manufacturer);
TraceLog(INFO, "OVR: Product ID: %i", hmdDesc.ProductId);
TraceLog(INFO, "OVR: Product Type: %i", hmdDesc.Type);
//TraceLog(INFO, "OVR: Serial Number: %s", hmdDesc.SerialNumber);
TraceLog(INFO, "OVR: Resolution: %ix%i", hmdDesc.Resolution.w, hmdDesc.Resolution.h);
// NOTE: Oculus mirror is set to defined screenWidth and screenHeight...
// ...ideally, it should be (hmdDesc.Resolution.w/2, hmdDesc.Resolution.h/2)
// Initialize Oculus Buffers
layer = InitOculusLayer(session);
buffer = LoadOculusBuffer(session, layer.width, layer.height);
mirror = LoadOculusMirror(session, hmdDesc.Resolution.w/2, hmdDesc.Resolution.h/2); // NOTE: hardcoded...
layer.eyeLayer.ColorTexture[0] = buffer.textureChain; //SetOculusLayerTexture(eyeLayer, buffer.textureChain);
// Recenter OVR tracking origin
ovr_RecenterTrackingOrigin(session);
}
// Close Oculus Rift device
void CloseOculusDevice(void)
{
UnloadOculusMirror(session, mirror); // Unload Oculus mirror buffer
UnloadOculusBuffer(session, buffer); // Unload Oculus texture buffers
ovr_Destroy(session); // Free Oculus session data
ovr_Shutdown(); // Close Oculus device connection
}
// Update Oculus Rift tracking (position and orientation)
void UpdateOculusTracking(void)
{
frameIndex++;
ovrPosef eyePoses[2];
ovr_GetEyePoses(session, frameIndex, ovrTrue, layer.viewScaleDesc.HmdToEyeOffset, eyePoses, &layer.eyeLayer.SensorSampleTime);
layer.eyeLayer.RenderPose[0] = eyePoses[0];
layer.eyeLayer.RenderPose[1] = eyePoses[1];
}
void SetOculusMatrix(int eye)
{
rlViewport(layer.eyeLayer.Viewport[eye].Pos.x, layer.eyeLayer.Viewport[eye].Pos.y, layer.eyeLayer.Viewport[eye].Size.w, layer.eyeLayer.Viewport[eye].Size.h);
Quaternion eyeRPose = (Quaternion){ layer.eyeLayer.RenderPose[eye].Orientation.x,
layer.eyeLayer.RenderPose[eye].Orientation.y,
layer.eyeLayer.RenderPose[eye].Orientation.z,
layer.eyeLayer.RenderPose[eye].Orientation.w };
QuaternionInvert(&eyeRPose);
Matrix eyeOrientation = QuaternionToMatrix(eyeRPose);
Matrix eyeTranslation = MatrixTranslate(-layer.eyeLayer.RenderPose[eye].Position.x,
-layer.eyeLayer.RenderPose[eye].Position.y,
-layer.eyeLayer.RenderPose[eye].Position.z);
Matrix eyeView = MatrixMultiply(eyeTranslation, eyeOrientation);
Matrix modelEyeView = MatrixMultiply(modelview, eyeView); // Using internal camera modelview matrix
SetMatrixModelview(modelEyeView);
SetMatrixProjection(layer.eyeProjections[eye]);
}
void BeginOculusDrawing(void)
{
GLuint currentTexId;
int currentIndex;
ovr_GetTextureSwapChainCurrentIndex(session, buffer.textureChain, &currentIndex);
ovr_GetTextureSwapChainBufferGL(session, buffer.textureChain, currentIndex, &currentTexId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, buffer.fboId);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, currentTexId, 0);
//glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, buffer.depthId, 0); // Already binded
//glViewport(0, 0, buffer.width, buffer.height); // Useful if rendering to separate framebuffers (every eye)
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Same as rlClearScreenBuffers()
// NOTE: If your application is configured to treat the texture as a linear format (e.g. GL_RGBA)
// and performs linear-to-gamma conversion in GLSL or does not care about gamma-correction, then:
// - Require OculusBuffer format to be OVR_FORMAT_R8G8B8A8_UNORM_SRGB
// - Do NOT enable GL_FRAMEBUFFER_SRGB
//glEnable(GL_FRAMEBUFFER_SRGB);
}
void EndOculusDrawing(void)
{
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
ovr_CommitTextureSwapChain(session, buffer.textureChain);
ovrLayerHeader *layers = &layer.eyeLayer.Header;
ovr_SubmitFrame(session, frameIndex, &layer.viewScaleDesc, &layers, 1);
// Blit mirror texture to back buffer
BlitOculusMirror(session, mirror);
// Get session status information
ovrSessionStatus sessionStatus;
ovr_GetSessionStatus(session, &sessionStatus);
if (sessionStatus.ShouldQuit) TraceLog(WARNING, "OVR: Session should quit...");
if (sessionStatus.ShouldRecenter) ovr_RecenterTrackingOrigin(session);
}
#endif
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Convert image data to OpenGL texture (returns OpenGL valid Id)
// NOTE: Expected compressed image data and POT image
static void LoadCompressedTexture(unsigned char *data, int width, int height, int mipmapCount, int compressedFormat)
{
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
int blockSize = 0; // Bytes every block
int offset = 0;
if ((compressedFormat == GL_COMPRESSED_RGB_S3TC_DXT1_EXT) ||
(compressedFormat == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) ||
#if defined(GRAPHICS_API_OPENGL_ES2)
(compressedFormat == GL_ETC1_RGB8_OES) ||
#endif
(compressedFormat == GL_COMPRESSED_RGB8_ETC2)) blockSize = 8;
else blockSize = 16;
// Load the mipmap levels
for (int level = 0; level < mipmapCount && (width || height); level++)
{
unsigned int size = 0;
size = ((width + 3)/4)*((height + 3)/4)*blockSize;
glCompressedTexImage2D(GL_TEXTURE_2D, level, compressedFormat, width, height, 0, size, data + offset);
offset += size;
width /= 2;
height /= 2;
// Security check for NPOT textures
if (width < 1) width = 1;
if (height < 1) height = 1;
}
}
// Load custom shader strings and return program id
static unsigned int LoadShaderProgram(const char *vShaderStr, const char *fShaderStr)
{
unsigned int program = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
GLuint vertexShader;
GLuint fragmentShader;
vertexShader = glCreateShader(GL_VERTEX_SHADER);
fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
const char *pvs = vShaderStr;
const char *pfs = fShaderStr;
glShaderSource(vertexShader, 1, &pvs, NULL);
glShaderSource(fragmentShader, 1, &pfs, NULL);
GLint success = 0;
glCompileShader(vertexShader);
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
if (success != GL_TRUE)
{
TraceLog(WARNING, "[VSHDR ID %i] Failed to compile vertex shader...", vertexShader);
int maxLength = 0;
int length;
glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &maxLength);
char log[maxLength];
glGetShaderInfoLog(vertexShader, maxLength, &length, log);
TraceLog(INFO, "%s", log);
}
else TraceLog(INFO, "[VSHDR ID %i] Vertex shader compiled successfully", vertexShader);
glCompileShader(fragmentShader);
glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
if (success != GL_TRUE)
{
TraceLog(WARNING, "[FSHDR ID %i] Failed to compile fragment shader...", fragmentShader);
int maxLength = 0;
int length;
glGetShaderiv(fragmentShader, GL_INFO_LOG_LENGTH, &maxLength);
char log[maxLength];
glGetShaderInfoLog(fragmentShader, maxLength, &length, log);
TraceLog(INFO, "%s", log);
}
else TraceLog(INFO, "[FSHDR ID %i] Fragment shader compiled successfully", fragmentShader);
program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
// NOTE: Default attribute shader locations must be binded before linking
glBindAttribLocation(program, 0, DEFAULT_ATTRIB_POSITION_NAME);
glBindAttribLocation(program, 1, DEFAULT_ATTRIB_TEXCOORD_NAME);
glBindAttribLocation(program, 2, DEFAULT_ATTRIB_NORMAL_NAME);
glBindAttribLocation(program, 3, DEFAULT_ATTRIB_COLOR_NAME);
glBindAttribLocation(program, 4, DEFAULT_ATTRIB_TANGENT_NAME);
glBindAttribLocation(program, 5, DEFAULT_ATTRIB_TEXCOORD2_NAME);
// NOTE: If some attrib name is no found on the shader, it locations becomes -1
glLinkProgram(program);
// NOTE: All uniform variables are intitialised to 0 when a program links
glGetProgramiv(program, GL_LINK_STATUS, &success);
if (success == GL_FALSE)
{
TraceLog(WARNING, "[SHDR ID %i] Failed to link shader program...", program);
int maxLength = 0;
int length;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength);
char log[maxLength];
glGetProgramInfoLog(program, maxLength, &length, log);
TraceLog(INFO, "%s", log);
glDeleteProgram(program);
program = 0;
}
else TraceLog(INFO, "[SHDR ID %i] Shader program loaded successfully", program);
glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);
#endif
return program;
}
// Load default shader (just vertex positioning and texture coloring)
// NOTE: This shader program is used for batch buffers (lines, triangles, quads)
static Shader LoadDefaultShader(void)
{
Shader shader;
// Vertex shader directly defined, no external file required
#if defined(GRAPHICS_API_OPENGL_33)
char vShaderStr[] = "#version 330 \n"
"in vec3 vertexPosition; \n"
"in vec2 vertexTexCoord; \n"
"in vec4 vertexColor; \n"
"out vec2 fragTexCoord; \n"
"out vec4 fragColor; \n"
#elif defined(GRAPHICS_API_OPENGL_ES2)
char vShaderStr[] = "#version 100 \n"
"attribute vec3 vertexPosition; \n"
"attribute vec2 vertexTexCoord; \n"
"attribute vec4 vertexColor; \n"
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
#endif
"uniform mat4 mvpMatrix; \n"
"void main() \n"
"{ \n"
" fragTexCoord = vertexTexCoord; \n"
" fragColor = vertexColor; \n"
" gl_Position = mvpMatrix*vec4(vertexPosition, 1.0); \n"
"} \n";
// Fragment shader directly defined, no external file required
#if defined(GRAPHICS_API_OPENGL_33)
char fShaderStr[] = "#version 330 \n"
"in vec2 fragTexCoord; \n"
"in vec4 fragColor; \n"
"out vec4 finalColor; \n"
#elif defined(GRAPHICS_API_OPENGL_ES2)
char fShaderStr[] = "#version 100 \n"
"precision mediump float; \n" // precision required for OpenGL ES2 (WebGL)
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
#endif
"uniform sampler2D texture0; \n"
"uniform vec4 colDiffuse; \n"
"void main() \n"
"{ \n"
#if defined(GRAPHICS_API_OPENGL_33)
" vec4 texelColor = texture(texture0, fragTexCoord); \n"
" finalColor = texelColor*colDiffuse*fragColor; \n"
#elif defined(GRAPHICS_API_OPENGL_ES2)
" vec4 texelColor = texture2D(texture0, fragTexCoord); \n" // NOTE: texture2D() is deprecated on OpenGL 3.3 and ES 3.0
" gl_FragColor = texelColor*colDiffuse*fragColor; \n"
#endif
"} \n";
shader.id = LoadShaderProgram(vShaderStr, fShaderStr);
if (shader.id != 0) TraceLog(INFO, "[SHDR ID %i] Default shader loaded successfully", shader.id);
else TraceLog(WARNING, "[SHDR ID %i] Default shader could not be loaded", shader.id);
if (shader.id != 0) LoadDefaultShaderLocations(&shader);
return shader;
}
// Load standard shader
// NOTE: This shader supports:
// - Up to 3 different maps: diffuse, normal, specular
// - Material properties: colAmbient, colDiffuse, colSpecular, glossiness
// - Up to 8 lights: Point, Directional or Spot
static Shader LoadStandardShader(void)
{
Shader shader;
// Load standard shader (embeded in standard_shader.h)
shader.id = LoadShaderProgram(vStandardShaderStr, fStandardShaderStr);
if (shader.id != 0)
{
LoadDefaultShaderLocations(&shader);
TraceLog(INFO, "[SHDR ID %i] Standard shader loaded successfully", shader.id);
standardShaderLoaded = true;
}
else
{
TraceLog(WARNING, "[SHDR ID %i] Standard shader could not be loaded, using default shader", shader.id);
shader = GetDefaultShader();
}
return shader;
}
// Get location handlers to for shader attributes and uniforms
// NOTE: If any location is not found, loc point becomes -1
static void LoadDefaultShaderLocations(Shader *shader)
{
// NOTE: Default shader attrib locations have been fixed before linking:
// vertex position location = 0
// vertex texcoord location = 1
// vertex normal location = 2
// vertex color location = 3
// vertex tangent location = 4
// vertex texcoord2 location = 5
// Get handles to GLSL input attibute locations
shader->vertexLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_POSITION_NAME);
shader->texcoordLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TEXCOORD_NAME);
shader->texcoord2Loc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TEXCOORD2_NAME);
shader->normalLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_NORMAL_NAME);
shader->tangentLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TANGENT_NAME);
shader->colorLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_COLOR_NAME);
// Get handles to GLSL uniform locations (vertex shader)
shader->mvpLoc = glGetUniformLocation(shader->id, "mvpMatrix");
// Get handles to GLSL uniform locations (fragment shader)
shader->tintColorLoc = glGetUniformLocation(shader->id, "colDiffuse");
shader->mapTexture0Loc = glGetUniformLocation(shader->id, "texture0");
shader->mapTexture1Loc = glGetUniformLocation(shader->id, "texture1");
shader->mapTexture2Loc = glGetUniformLocation(shader->id, "texture2");
}
// Unload default shader
static void UnloadDefaultShader(void)
{
glUseProgram(0);
//glDetachShader(defaultShader, vertexShader);
//glDetachShader(defaultShader, fragmentShader);
//glDeleteShader(vertexShader); // Already deleted on shader compilation
//glDeleteShader(fragmentShader); // Already deleted on shader compilation
glDeleteProgram(defaultShader.id);
}
// Unload standard shader
static void UnloadStandardShader(void)
{
glUseProgram(0);
//glDetachShader(defaultShader, vertexShader);
//glDetachShader(defaultShader, fragmentShader);
//glDeleteShader(vertexShader); // Already deleted on shader compilation
//glDeleteShader(fragmentShader); // Already deleted on shader compilation
glDeleteProgram(standardShader.id);
}
// Load default internal buffers (lines, triangles, quads)
static void LoadDefaultBuffers(void)
{
// [CPU] Allocate and initialize float array buffers to store vertex data (lines, triangles, quads)
//--------------------------------------------------------------------------------------------
// Lines - Initialize arrays (vertex position and color data)
lines.vertices = (float *)malloc(sizeof(float)*3*2*MAX_LINES_BATCH); // 3 float by vertex, 2 vertex by line
lines.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*2*MAX_LINES_BATCH); // 4 float by color, 2 colors by line
lines.texcoords = NULL;
lines.indices = NULL;
for (int i = 0; i < (3*2*MAX_LINES_BATCH); i++) lines.vertices[i] = 0.0f;
for (int i = 0; i < (4*2*MAX_LINES_BATCH); i++) lines.colors[i] = 0;
lines.vCounter = 0;
lines.cCounter = 0;
lines.tcCounter = 0;
// Triangles - Initialize arrays (vertex position and color data)
triangles.vertices = (float *)malloc(sizeof(float)*3*3*MAX_TRIANGLES_BATCH); // 3 float by vertex, 3 vertex by triangle
triangles.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH); // 4 float by color, 3 colors by triangle
triangles.texcoords = NULL;
triangles.indices = NULL;
for (int i = 0; i < (3*3*MAX_TRIANGLES_BATCH); i++) triangles.vertices[i] = 0.0f;
for (int i = 0; i < (4*3*MAX_TRIANGLES_BATCH); i++) triangles.colors[i] = 0;
triangles.vCounter = 0;
triangles.cCounter = 0;
triangles.tcCounter = 0;
// Quads - Initialize arrays (vertex position, texcoord, color data and indexes)
quads.vertices = (float *)malloc(sizeof(float)*3*4*MAX_QUADS_BATCH); // 3 float by vertex, 4 vertex by quad
quads.texcoords = (float *)malloc(sizeof(float)*2*4*MAX_QUADS_BATCH); // 2 float by texcoord, 4 texcoord by quad
quads.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*4*MAX_QUADS_BATCH); // 4 float by color, 4 colors by quad
#if defined(GRAPHICS_API_OPENGL_33)
quads.indices = (unsigned int *)malloc(sizeof(int)*6*MAX_QUADS_BATCH); // 6 int by quad (indices)
#elif defined(GRAPHICS_API_OPENGL_ES2)
quads.indices = (unsigned short *)malloc(sizeof(short)*6*MAX_QUADS_BATCH); // 6 int by quad (indices)
#endif
for (int i = 0; i < (3*4*MAX_QUADS_BATCH); i++) quads.vertices[i] = 0.0f;
for (int i = 0; i < (2*4*MAX_QUADS_BATCH); i++) quads.texcoords[i] = 0.0f;
for (int i = 0; i < (4*4*MAX_QUADS_BATCH); i++) quads.colors[i] = 0;
int k = 0;
// Indices can be initialized right now
for (int i = 0; i < (6*MAX_QUADS_BATCH); i+=6)
{
quads.indices[i] = 4*k;
quads.indices[i+1] = 4*k+1;
quads.indices[i+2] = 4*k+2;
quads.indices[i+3] = 4*k;
quads.indices[i+4] = 4*k+2;
quads.indices[i+5] = 4*k+3;
k++;
}
quads.vCounter = 0;
quads.tcCounter = 0;
quads.cCounter = 0;
TraceLog(INFO, "[CPU] Default buffers initialized successfully (lines, triangles, quads)");
//--------------------------------------------------------------------------------------------
// [GPU] Upload vertex data and initialize VAOs/VBOs (lines, triangles, quads)
// NOTE: Default buffers are linked to use currentShader (defaultShader)
//--------------------------------------------------------------------------------------------
// Upload and link lines vertex buffers
if (vaoSupported)
{
// Initialize Lines VAO
glGenVertexArrays(1, &lines.vaoId);
glBindVertexArray(lines.vaoId);
}
// Lines - Vertex buffers binding and attributes enable
// Vertex position buffer (shader-location = 0)
glGenBuffers(2, &lines.vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.vertexLoc);
glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0);
// Vertex color buffer (shader-location = 3)
glGenBuffers(2, &lines.vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.colorLoc);
glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Default buffers VAO initialized successfully (lines)", lines.vaoId);
else TraceLog(INFO, "[VBO ID %i][VBO ID %i] Default buffers VBOs initialized successfully (lines)", lines.vboId[0], lines.vboId[1]);
// Upload and link triangles vertex buffers
if (vaoSupported)
{
// Initialize Triangles VAO
glGenVertexArrays(1, &triangles.vaoId);
glBindVertexArray(triangles.vaoId);
}
// Triangles - Vertex buffers binding and attributes enable
// Vertex position buffer (shader-location = 0)
glGenBuffers(1, &triangles.vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.vertexLoc);
glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0);
// Vertex color buffer (shader-location = 3)
glGenBuffers(1, &triangles.vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.colorLoc);
glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Default buffers VAO initialized successfully (triangles)", triangles.vaoId);
else TraceLog(INFO, "[VBO ID %i][VBO ID %i] Default buffers VBOs initialized successfully(triangles)", triangles.vboId[0], triangles.vboId[1]);
// Upload and link quads vertex buffers
if (vaoSupported)
{
// Initialize Quads VAO
glGenVertexArrays(1, &quads.vaoId);
glBindVertexArray(quads.vaoId);
}
// Quads - Vertex buffers binding and attributes enable
// Vertex position buffer (shader-location = 0)
glGenBuffers(1, &quads.vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.vertexLoc);
glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0);
// Vertex texcoord buffer (shader-location = 1)
glGenBuffers(1, &quads.vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.texcoordLoc);
glVertexAttribPointer(currentShader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0);
// Vertex color buffer (shader-location = 3)
glGenBuffers(1, &quads.vboId[2]);
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(currentShader.colorLoc);
glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
// Fill index buffer
glGenBuffers(1, &quads.vboId[3]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quads.vboId[3]);
#if defined(GRAPHICS_API_OPENGL_33)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW);
#elif defined(GRAPHICS_API_OPENGL_ES2)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW);
#endif
if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Default buffers VAO initialized successfully (quads)", quads.vaoId);
else TraceLog(INFO, "[VBO ID %i][VBO ID %i][VBO ID %i][VBO ID %i] Default buffers VBOs initialized successfully (quads)", quads.vboId[0], quads.vboId[1], quads.vboId[2], quads.vboId[3]);
// Unbind the current VAO
if (vaoSupported) glBindVertexArray(0);
//--------------------------------------------------------------------------------------------
}
// Update default internal buffers (VAOs/VBOs) with vertex array data
// NOTE: If there is not vertex data, buffers doesn't need to be updated (vertexCount > 0)
// TODO: If no data changed on the CPU arrays --> No need to re-update GPU arrays (change flag required)
static void UpdateDefaultBuffers(void)
{
// Update lines vertex buffers
if (lines.vCounter > 0)
{
// Activate Lines VAO
if (vaoSupported) glBindVertexArray(lines.vaoId);
// Lines - vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[0]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*lines.vCounter, lines.vertices); // target - offset (in bytes) - size (in bytes) - data pointer
// Lines - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[1]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*lines.cCounter, lines.colors);
}
// Update triangles vertex buffers
if (triangles.vCounter > 0)
{
// Activate Triangles VAO
if (vaoSupported) glBindVertexArray(triangles.vaoId);
// Triangles - vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[0]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*triangles.vCounter, triangles.vertices);
// Triangles - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[1]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*triangles.cCounter, triangles.colors);
}
// Update quads vertex buffers
if (quads.vCounter > 0)
{
// Activate Quads VAO
if (vaoSupported) glBindVertexArray(quads.vaoId);
// Quads - vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[0]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*quads.vCounter, quads.vertices);
// Quads - texture coordinates buffer
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[1]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*quads.vCounter, quads.texcoords);
// Quads - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[2]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*quads.vCounter, quads.colors);
// Another option would be using buffer mapping...
//quads.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);
// Now we can modify vertices
//glUnmapBuffer(GL_ARRAY_BUFFER);
}
//--------------------------------------------------------------
// Unbind the current VAO
if (vaoSupported) glBindVertexArray(0);
}
// Draw default internal buffers vertex data
// NOTE: We draw in this order: lines, triangles, quads
static void DrawDefaultBuffers(void)
{
// Set current shader and upload current MVP matrix
if ((lines.vCounter > 0) || (triangles.vCounter > 0) || (quads.vCounter > 0))
{
glUseProgram(currentShader.id);
// Create modelview-projection matrix
Matrix matMVP = MatrixMultiply(modelview, projection);
glUniformMatrix4fv(currentShader.mvpLoc, 1, false, MatrixToFloat(matMVP));
glUniform4f(currentShader.tintColorLoc, 1.0f, 1.0f, 1.0f, 1.0f);
glUniform1i(currentShader.mapTexture0Loc, 0);
// NOTE: Additional map textures not considered for default buffers drawing
}
// Draw lines buffers
if (lines.vCounter > 0)
{
glBindTexture(GL_TEXTURE_2D, whiteTexture);
if (vaoSupported)
{
glBindVertexArray(lines.vaoId);
}
else
{
// Bind vertex attrib: position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[0]);
glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(currentShader.vertexLoc);
// Bind vertex attrib: color (shader-location = 3)
glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[1]);
glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(currentShader.colorLoc);
}
glDrawArrays(GL_LINES, 0, lines.vCounter);
if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
}
// Draw triangles buffers
if (triangles.vCounter > 0)
{
glBindTexture(GL_TEXTURE_2D, whiteTexture);
if (vaoSupported)
{
glBindVertexArray(triangles.vaoId);
}
else
{
// Bind vertex attrib: position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[0]);
glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(currentShader.vertexLoc);
// Bind vertex attrib: color (shader-location = 3)
glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[1]);
glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(currentShader.colorLoc);
}
glDrawArrays(GL_TRIANGLES, 0, triangles.vCounter);
if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
}
// Draw quads buffers
if (quads.vCounter > 0)
{
int quadsCount = 0;
int numIndicesToProcess = 0;
int indicesOffset = 0;
if (vaoSupported)
{
glBindVertexArray(quads.vaoId);
}
else
{
// Bind vertex attrib: position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[0]);
glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(currentShader.vertexLoc);
// Bind vertex attrib: texcoord (shader-location = 1)
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[1]);
glVertexAttribPointer(currentShader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(currentShader.texcoordLoc);
// Bind vertex attrib: color (shader-location = 3)
glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[2]);
glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(currentShader.colorLoc);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quads.vboId[3]);
}
//TraceLog(DEBUG, "Draws required per frame: %i", drawsCounter);
for (int i = 0; i < drawsCounter; i++)
{
quadsCount = draws[i].vertexCount/4;
numIndicesToProcess = quadsCount*6; // Get number of Quads * 6 index by Quad
//TraceLog(DEBUG, "Quads to render: %i - Vertex Count: %i", quadsCount, draws[i].vertexCount);
glBindTexture(GL_TEXTURE_2D, draws[i].textureId);
// NOTE: The final parameter tells the GPU the offset in bytes from the start of the index buffer to the location of the first index to process
#if defined(GRAPHICS_API_OPENGL_33)
glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_INT, (GLvoid *)(sizeof(GLuint)*indicesOffset));
#elif defined(GRAPHICS_API_OPENGL_ES2)
glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_SHORT, (GLvoid *)(sizeof(GLushort)*indicesOffset));
#endif
//GLenum err;
//if ((err = glGetError()) != GL_NO_ERROR) TraceLog(INFO, "OpenGL error: %i", (int)err); //GL_INVALID_ENUM!
indicesOffset += draws[i].vertexCount/4*6;
}
if (!vaoSupported)
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures
}
if (vaoSupported) glBindVertexArray(0); // Unbind VAO
glUseProgram(0); // Unbind shader program
// Reset draws counter
drawsCounter = 1;
draws[0].textureId = whiteTexture;
draws[0].vertexCount = 0;
// Reset vertex counters for next frame
lines.vCounter = 0;
lines.cCounter = 0;
triangles.vCounter = 0;
triangles.cCounter = 0;
quads.vCounter = 0;
quads.tcCounter = 0;
quads.cCounter = 0;
// Reset depth for next draw
currentDepth = -1.0f;
}
// Unload default internal buffers vertex data from CPU and GPU
static void UnloadDefaultBuffers(void)
{
// Unbind everything
if (vaoSupported) glBindVertexArray(0);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
glDisableVertexAttribArray(3);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// Delete VBOs from GPU (VRAM)
glDeleteBuffers(1, &lines.vboId[0]);
glDeleteBuffers(1, &lines.vboId[1]);
glDeleteBuffers(1, &triangles.vboId[0]);
glDeleteBuffers(1, &triangles.vboId[1]);
glDeleteBuffers(1, &quads.vboId[0]);
glDeleteBuffers(1, &quads.vboId[1]);
glDeleteBuffers(1, &quads.vboId[2]);
glDeleteBuffers(1, &quads.vboId[3]);
if (vaoSupported)
{
// Delete VAOs from GPU (VRAM)
glDeleteVertexArrays(1, &lines.vaoId);
glDeleteVertexArrays(1, &triangles.vaoId);
glDeleteVertexArrays(1, &quads.vaoId);
}
// Free vertex arrays memory from CPU (RAM)
free(lines.vertices);
free(lines.colors);
free(triangles.vertices);
free(triangles.colors);
free(quads.vertices);
free(quads.texcoords);
free(quads.colors);
free(quads.indices);
}
// Setup shader uniform values for lights array
// NOTE: It would be far easier with shader UBOs but are not supported on OpenGL ES 2.0f
static void SetShaderLights(Shader shader)
{
int locPoint = glGetUniformLocation(shader.id, "lightsCount");
glUniform1i(locPoint, lightsCount);
char locName[32] = "lights[x].position\0";
for (int i = 0; i < lightsCount; i++)
{
locName[7] = '0' + i;
memcpy(&locName[10], "enabled\0", strlen("enabled\0") + 1);
locPoint = GetShaderLocation(shader, locName);
glUniform1i(locPoint, lights[i]->enabled);
memcpy(&locName[10], "type\0", strlen("type\0") + 1);
locPoint = GetShaderLocation(shader, locName);
glUniform1i(locPoint, lights[i]->type);
memcpy(&locName[10], "diffuse\0", strlen("diffuse\0") + 2);
locPoint = glGetUniformLocation(shader.id, locName);
glUniform4f(locPoint, (float)lights[i]->diffuse.r/255, (float)lights[i]->diffuse.g/255, (float)lights[i]->diffuse.b/255, (float)lights[i]->diffuse.a/255);
memcpy(&locName[10], "intensity\0", strlen("intensity\0"));
locPoint = glGetUniformLocation(shader.id, locName);
glUniform1f(locPoint, lights[i]->intensity);
switch (lights[i]->type)
{
case LIGHT_POINT:
{
memcpy(&locName[10], "position\0", strlen("position\0") + 1);
locPoint = GetShaderLocation(shader, locName);
glUniform3f(locPoint, lights[i]->position.x, lights[i]->position.y, lights[i]->position.z);
memcpy(&locName[10], "radius\0", strlen("radius\0") + 2);
locPoint = GetShaderLocation(shader, locName);
glUniform1f(locPoint, lights[i]->radius);
} break;
case LIGHT_DIRECTIONAL:
{
memcpy(&locName[10], "direction\0", strlen("direction\0") + 2);
locPoint = GetShaderLocation(shader, locName);
Vector3 direction = { lights[i]->target.x - lights[i]->position.x, lights[i]->target.y - lights[i]->position.y, lights[i]->target.z - lights[i]->position.z };
VectorNormalize(&direction);
glUniform3f(locPoint, direction.x, direction.y, direction.z);
} break;
case LIGHT_SPOT:
{
memcpy(&locName[10], "position\0", strlen("position\0") + 1);
locPoint = GetShaderLocation(shader, locName);
glUniform3f(locPoint, lights[i]->position.x, lights[i]->position.y, lights[i]->position.z);
memcpy(&locName[10], "direction\0", strlen("direction\0") + 2);
locPoint = GetShaderLocation(shader, locName);
Vector3 direction = { lights[i]->target.x - lights[i]->position.x, lights[i]->target.y - lights[i]->position.y, lights[i]->target.z - lights[i]->position.z };
VectorNormalize(&direction);
glUniform3f(locPoint, direction.x, direction.y, direction.z);
memcpy(&locName[10], "coneAngle\0", strlen("coneAngle\0"));
locPoint = GetShaderLocation(shader, locName);
glUniform1f(locPoint, lights[i]->coneAngle);
} break;
default: break;
}
// TODO: Pass to the shader any other required data from LightData struct
}
}
// Read text data from file
// NOTE: text chars array should be freed manually
static char *ReadTextFile(const char *fileName)
{
FILE *textFile;
char *text = NULL;
int count = 0;
if (fileName != NULL)
{
textFile = fopen(fileName,"rt");
if (textFile != NULL)
{
fseek(textFile, 0, SEEK_END);
count = ftell(textFile);
rewind(textFile);
if (count > 0)
{
text = (char *)malloc(sizeof(char)*(count + 1));
count = fread(text, sizeof(char), count, textFile);
text[count] = '\0';
}
fclose(textFile);
}
else TraceLog(WARNING, "[%s] Text file could not be opened", fileName);
}
return text;
}
#endif //defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
#if defined(GRAPHICS_API_OPENGL_11)
// Mipmaps data is generated after image data
static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight)
{
int mipmapCount = 1; // Required mipmap levels count (including base level)
int width = baseWidth;
int height = baseHeight;
int size = baseWidth*baseHeight*4; // Size in bytes (will include mipmaps...), RGBA only
// Count mipmap levels required
while ((width != 1) && (height != 1))
{
if (width != 1) width /= 2;
if (height != 1) height /= 2;
TraceLog(DEBUG, "Next mipmap size: %i x %i", width, height);
mipmapCount++;
size += (width*height*4); // Add mipmap size (in bytes)
}
TraceLog(DEBUG, "Total mipmaps required: %i", mipmapCount);
TraceLog(DEBUG, "Total size of data required: %i", size);
unsigned char *temp = realloc(data, size);
if (temp != NULL) data = temp;
else TraceLog(WARNING, "Mipmaps required memory could not be allocated");
width = baseWidth;
height = baseHeight;
size = (width*height*4);
// Generate mipmaps
// NOTE: Every mipmap data is stored after data
Color *image = (Color *)malloc(width*height*sizeof(Color));
Color *mipmap = NULL;
int offset = 0;
int j = 0;
for (int i = 0; i < size; i += 4)
{
image[j].r = data[i];
image[j].g = data[i + 1];
image[j].b = data[i + 2];
image[j].a = data[i + 3];
j++;
}
TraceLog(DEBUG, "Mipmap base (%ix%i)", width, height);
for (int mip = 1; mip < mipmapCount; mip++)
{
mipmap = GenNextMipmap(image, width, height);
offset += (width*height*4); // Size of last mipmap
j = 0;
width /= 2;
height /= 2;
size = (width*height*4); // Mipmap size to store after offset
// Add mipmap to data
for (int i = 0; i < size; i += 4)
{
data[offset + i] = mipmap[j].r;
data[offset + i + 1] = mipmap[j].g;
data[offset + i + 2] = mipmap[j].b;
data[offset + i + 3] = mipmap[j].a;
j++;
}
free(image);
image = mipmap;
mipmap = NULL;
}
free(mipmap); // free mipmap data
return mipmapCount;
}
// Manual mipmap generation (basic scaling algorithm)
static Color *GenNextMipmap(Color *srcData, int srcWidth, int srcHeight)
{
int x2, y2;
Color prow, pcol;
int width = srcWidth/2;
int height = srcHeight/2;
Color *mipmap = (Color *)malloc(width*height*sizeof(Color));
// Scaling algorithm works perfectly (box-filter)
for (int y = 0; y < height; y++)
{
y2 = 2*y;
for (int x = 0; x < width; x++)
{
x2 = 2*x;
prow.r = (srcData[y2*srcWidth + x2].r + srcData[y2*srcWidth + x2 + 1].r)/2;
prow.g = (srcData[y2*srcWidth + x2].g + srcData[y2*srcWidth + x2 + 1].g)/2;
prow.b = (srcData[y2*srcWidth + x2].b + srcData[y2*srcWidth + x2 + 1].b)/2;
prow.a = (srcData[y2*srcWidth + x2].a + srcData[y2*srcWidth + x2 + 1].a)/2;
pcol.r = (srcData[(y2+1)*srcWidth + x2].r + srcData[(y2+1)*srcWidth + x2 + 1].r)/2;
pcol.g = (srcData[(y2+1)*srcWidth + x2].g + srcData[(y2+1)*srcWidth + x2 + 1].g)/2;
pcol.b = (srcData[(y2+1)*srcWidth + x2].b + srcData[(y2+1)*srcWidth + x2 + 1].b)/2;
pcol.a = (srcData[(y2+1)*srcWidth + x2].a + srcData[(y2+1)*srcWidth + x2 + 1].a)/2;
mipmap[y*width + x].r = (prow.r + pcol.r)/2;
mipmap[y*width + x].g = (prow.g + pcol.g)/2;
mipmap[y*width + x].b = (prow.b + pcol.b)/2;
mipmap[y*width + x].a = (prow.a + pcol.a)/2;
}
}
TraceLog(DEBUG, "Mipmap generated successfully (%ix%i)", width, height);
return mipmap;
}
#endif
#if defined(RLGL_OCULUS_SUPPORT)
// Load Oculus required buffers: texture-swap-chain, fbo, texture-depth
static OculusBuffer LoadOculusBuffer(ovrSession session, int width, int height)
{
OculusBuffer buffer;
buffer.width = width;
buffer.height = height;
// Create OVR texture chain
ovrTextureSwapChainDesc desc = {};
desc.Type = ovrTexture_2D;
desc.ArraySize = 1;
desc.Width = width;
desc.Height = height;
desc.MipLevels = 1;
desc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB; // Requires glEnable(GL_FRAMEBUFFER_SRGB);
desc.SampleCount = 1;
desc.StaticImage = ovrFalse;
ovrResult result = ovr_CreateTextureSwapChainGL(session, &desc, &buffer.textureChain);
if (!OVR_SUCCESS(result)) TraceLog(WARNING, "OVR: Failed to create swap textures buffer");
int textureCount = 0;
ovr_GetTextureSwapChainLength(session, buffer.textureChain, &textureCount);
if (!OVR_SUCCESS(result) || !textureCount) TraceLog(WARNING, "OVR: Unable to count swap chain textures");
for (int i = 0; i < textureCount; ++i)
{
GLuint chainTexId;
ovr_GetTextureSwapChainBufferGL(session, buffer.textureChain, i, &chainTexId);
glBindTexture(GL_TEXTURE_2D, chainTexId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
glBindTexture(GL_TEXTURE_2D, 0);
/*
// Setup framebuffer object (using depth texture)
glGenFramebuffers(1, &buffer.fboId);
glGenTextures(1, &buffer.depthId);
glBindTexture(GL_TEXTURE_2D, buffer.depthId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, buffer.width, buffer.height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
*/
// Setup framebuffer object (using depth renderbuffer)
glGenFramebuffers(1, &buffer.fboId);
glGenRenderbuffers(1, &buffer.depthId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, buffer.fboId);
glBindRenderbuffer(GL_RENDERBUFFER, buffer.depthId);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, buffer.width, buffer.height);
glBindRenderbuffer(GL_RENDERBUFFER, 0);
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, buffer.depthId);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
return buffer;
}
// Unload texture required buffers
static void UnloadOculusBuffer(ovrSession session, OculusBuffer buffer)
{
if (buffer.textureChain)
{
ovr_DestroyTextureSwapChain(session, buffer.textureChain);
buffer.textureChain = NULL;
}
if (buffer.depthId != 0) glDeleteTextures(1, &buffer.depthId);
if (buffer.fboId != 0) glDeleteFramebuffers(1, &buffer.fboId);
}
// Load Oculus mirror buffers
static OculusMirror LoadOculusMirror(ovrSession session, int width, int height)
{
OculusMirror mirror;
mirror.width = width;
mirror.height = height;
ovrMirrorTextureDesc mirrorDesc;
memset(&mirrorDesc, 0, sizeof(mirrorDesc));
mirrorDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
mirrorDesc.Width = mirror.width;
mirrorDesc.Height = mirror.height;
if (!OVR_SUCCESS(ovr_CreateMirrorTextureGL(session, &mirrorDesc, &mirror.texture))) TraceLog(WARNING, "Could not create mirror texture");
glGenFramebuffers(1, &mirror.fboId);
return mirror;
}
// Unload Oculus mirror buffers
static void UnloadOculusMirror(ovrSession session, OculusMirror mirror)
{
if (mirror.fboId != 0) glDeleteFramebuffers(1, &mirror.fboId);
if (mirror.texture) ovr_DestroyMirrorTexture(session, mirror.texture);
}
// Copy Oculus screen buffer to mirror texture
static void BlitOculusMirror(ovrSession session, OculusMirror mirror)
{
GLuint mirrorTextureId;
ovr_GetMirrorTextureBufferGL(session, mirror.texture, &mirrorTextureId);
glBindFramebuffer(GL_READ_FRAMEBUFFER, mirror.fboId);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, mirrorTextureId, 0);
glBlitFramebuffer(0, 0, mirror.width, mirror.height, 0, mirror.height, mirror.width, 0, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
}
// Init Oculus layer (similar to photoshop)
static OculusLayer InitOculusLayer(ovrSession session)
{
OculusLayer layer = { 0 };
layer.viewScaleDesc.HmdSpaceToWorldScaleInMeters = 1.0f;
memset(&layer.eyeLayer, 0, sizeof(ovrLayerEyeFov));
layer.eyeLayer.Header.Type = ovrLayerType_EyeFov;
layer.eyeLayer.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft;
ovrEyeRenderDesc eyeRenderDescs[2];
for (int eye = 0; eye < 2; eye++)
{
eyeRenderDescs[eye] = ovr_GetRenderDesc(session, eye, hmdDesc.DefaultEyeFov[eye]);
ovrMatrix4f ovrPerspectiveProjection = ovrMatrix4f_Projection(eyeRenderDescs[eye].Fov, 0.01f, 10000.0f, ovrProjection_None); //ovrProjection_ClipRangeOpenGL);
layer.eyeProjections[eye] = FromOvrMatrix(ovrPerspectiveProjection); // NOTE: struct ovrMatrix4f { float M[4][4] } --> struct Matrix
layer.viewScaleDesc.HmdToEyeOffset[eye] = eyeRenderDescs[eye].HmdToEyeOffset;
layer.eyeLayer.Fov[eye] = eyeRenderDescs[eye].Fov;
ovrSizei eyeSize = ovr_GetFovTextureSize(session, eye, layer.eyeLayer.Fov[eye], 1.0f);
layer.eyeLayer.Viewport[eye].Size = eyeSize;
layer.eyeLayer.Viewport[eye].Pos.x = layer.width;
layer.eyeLayer.Viewport[eye].Pos.y = 0;
layer.height = eyeSize.h; //std::max(renderTargetSize.y, (uint32_t)eyeSize.h);
layer.width += eyeSize.w;
}
return layer;
}
// Convert from Oculus ovrMatrix4f struct to raymath Matrix struct
static Matrix FromOvrMatrix(ovrMatrix4f ovrmat)
{
Matrix rmat;
rmat.m0 = ovrmat.M[0][0];
rmat.m1 = ovrmat.M[1][0];
rmat.m2 = ovrmat.M[2][0];
rmat.m3 = ovrmat.M[3][0];
rmat.m4 = ovrmat.M[0][1];
rmat.m5 = ovrmat.M[1][1];
rmat.m6 = ovrmat.M[2][1];
rmat.m7 = ovrmat.M[3][1];
rmat.m8 = ovrmat.M[0][2];
rmat.m9 = ovrmat.M[1][2];
rmat.m10 = ovrmat.M[2][2];
rmat.m11 = ovrmat.M[3][2];
rmat.m12 = ovrmat.M[0][3];
rmat.m13 = ovrmat.M[1][3];
rmat.m14 = ovrmat.M[2][3];
rmat.m15 = ovrmat.M[3][3];
MatrixTranspose(&rmat);
return rmat;
}
#endif
#if defined(RLGL_STANDALONE)
// Output a trace log message
// NOTE: Expected msgType: (0)Info, (1)Error, (2)Warning
void TraceLog(int msgType, const char *text, ...)
{
va_list args;
va_start(args, text);
switch (msgType)
{
case INFO: fprintf(stdout, "INFO: "); break;
case ERROR: fprintf(stdout, "ERROR: "); break;
case WARNING: fprintf(stdout, "WARNING: "); break;
case DEBUG: fprintf(stdout, "DEBUG: "); break;
default: break;
}
vfprintf(stdout, text, args);
fprintf(stdout, "\n");
va_end(args);
if (msgType == ERROR) exit(1);
}
// Converts Matrix to float array
// NOTE: Returned vector is a transposed version of the Matrix struct,
// it should be this way because, despite raymath use OpenGL column-major convention,
// Matrix struct memory alignment and variables naming are not coherent
float *MatrixToFloat(Matrix mat)
{
static float buffer[16];
buffer[0] = mat.m0;
buffer[1] = mat.m4;
buffer[2] = mat.m8;
buffer[3] = mat.m12;
buffer[4] = mat.m1;
buffer[5] = mat.m5;
buffer[6] = mat.m9;
buffer[7] = mat.m13;
buffer[8] = mat.m2;
buffer[9] = mat.m6;
buffer[10] = mat.m10;
buffer[11] = mat.m14;
buffer[12] = mat.m3;
buffer[13] = mat.m7;
buffer[14] = mat.m11;
buffer[15] = mat.m15;
return buffer;
}
#endif