Merge remote-tracking branch 'refs/remotes/raysan5/develop' into develop

This commit is contained in:
victorfisac 2016-06-09 22:09:33 +02:00
commit 5d186639c9
6 changed files with 748 additions and 718 deletions

View File

@ -11,6 +11,9 @@
#include "raylib.h"
#define PHYSAC_IMPLEMENTATION
#include "physac.h"
#define MOVE_VELOCITY 5
#define JUMP_VELOCITY 30
@ -22,35 +25,35 @@ int main()
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [physac] example - basic rigidbody");
InitPhysics((Vector2){ 0.0f, -9.81f/2 }); // Initialize physics module
SetTargetFPS(60);
InitPhysics((Vector2){ 0.0f, -9.81f/2 }); // Initialize physics module
// Debug variables
bool isDebug = false;
// Create rectangle physic object
PhysicObject rectangle = CreatePhysicObject((Vector2){ screenWidth*0.25f, screenHeight/2 }, 0.0f, (Vector2){ 75, 50 });
PhysicBody rectangle = CreatePhysicBody((Vector2){ screenWidth*0.25f, screenHeight/2 }, 0.0f, (Vector2){ 75, 50 });
rectangle->rigidbody.enabled = true; // Enable physic object rigidbody behaviour
rectangle->rigidbody.applyGravity = true;
rectangle->rigidbody.friction = 0.1f;
rectangle->rigidbody.bounciness = 6.0f;
// Create square physic object
PhysicObject square = CreatePhysicObject((Vector2){ screenWidth*0.75f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
PhysicBody square = CreatePhysicBody((Vector2){ screenWidth*0.75f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
square->rigidbody.enabled = true; // Enable physic object rigidbody behaviour
square->rigidbody.applyGravity = true;
square->rigidbody.friction = 0.1f;
// Create walls physic objects
PhysicObject floor = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.95f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
PhysicObject leftWall = CreatePhysicObject((Vector2){ 0.0f, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
PhysicObject rightWall = CreatePhysicObject((Vector2){ screenWidth, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
PhysicObject roof = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.05f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
PhysicBody floor = CreatePhysicBody((Vector2){ screenWidth/2, screenHeight*0.95f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
PhysicBody leftWall = CreatePhysicBody((Vector2){ 0.0f, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
PhysicBody rightWall = CreatePhysicBody((Vector2){ screenWidth, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
PhysicBody roof = CreatePhysicBody((Vector2){ screenWidth/2, screenHeight*0.05f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
// Create pplatform physic object
PhysicObject platform = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.7f }, 0.0f, (Vector2){ screenWidth*0.25f, 20 });
PhysicBody platform = CreatePhysicBody((Vector2){ screenWidth/2, screenHeight*0.7f }, 0.0f, (Vector2){ screenWidth*0.25f, 20 });
SetTargetFPS(60);
//--------------------------------------------------------------------------------------
// Main game loop

View File

@ -10,15 +10,15 @@
********************************************************************************************/
#include "raylib.h"
#include "math.h"
#define PHYSAC_IMPLEMENTATION
#include "physac.h"
#define FORCE_AMOUNT 5.0f
#define FORCE_RADIUS 150
#define LINE_LENGTH 75
#define TRIANGLE_LENGTH 12
void DrawRigidbodyCircle(PhysicObject obj, Color color);
int main()
{
// Initialization
@ -27,29 +27,28 @@ int main()
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [physac] example - forces");
InitPhysics((Vector2){ 0.0f, -9.81f/2 }); // Initialize physics module
SetTargetFPS(60);
InitPhysics((Vector2){ 0.0f, -9.81f/2 }); // Initialize physics module
// Global variables
Vector2 mousePosition;
bool isDebug = false;
// Create rectangle physic objects
PhysicObject rectangles[3];
PhysicBody rectangles[3];
for (int i = 0; i < 3; i++)
{
rectangles[i] = CreatePhysicObject((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/3) : (screenHeight/1.5f)) }, 0.0f, (Vector2){ 50, 50 });
rectangles[i] = CreatePhysicBody((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/3) : (screenHeight/1.5f)) }, 0.0f, (Vector2){ 50, 50 });
rectangles[i]->rigidbody.enabled = true; // Enable physic object rigidbody behaviour
rectangles[i]->rigidbody.friction = 0.1f;
}
// Create circles physic objects
// NOTE: when creating circle physic objects, transform.scale must be { 0, 0 } and object radius must be defined in collider.radius and use this value to draw the circle.
PhysicObject circles[3];
PhysicBody circles[3];
for (int i = 0; i < 3; i++)
{
circles[i] = CreatePhysicObject((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/1.5f) : (screenHeight/4)) }, 0.0f, (Vector2){ 0, 0 });
circles[i] = CreatePhysicBody((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/1.5f) : (screenHeight/4)) }, 0.0f, (Vector2){ 0, 0 });
circles[i]->rigidbody.enabled = true; // Enable physic object rigidbody behaviour
circles[i]->rigidbody.friction = 0.1f;
circles[i]->collider.type = COLLIDER_CIRCLE;
@ -57,11 +56,12 @@ int main()
}
// Create walls physic objects
PhysicObject leftWall = CreatePhysicObject((Vector2){ -25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
PhysicObject rightWall = CreatePhysicObject((Vector2){ screenWidth + 25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
PhysicObject topWall = CreatePhysicObject((Vector2){ screenWidth/2, -25 }, 0.0f, (Vector2){ screenWidth, 50 });
PhysicObject bottomWall = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight + 25 }, 0.0f, (Vector2){ screenWidth, 50 });
PhysicBody leftWall = CreatePhysicBody((Vector2){ -25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
PhysicBody rightWall = CreatePhysicBody((Vector2){ screenWidth + 25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
PhysicBody topWall = CreatePhysicBody((Vector2){ screenWidth/2, -25 }, 0.0f, (Vector2){ screenWidth, 50 });
PhysicBody bottomWall = CreatePhysicBody((Vector2){ screenWidth/2, screenHeight + 25 }, 0.0f, (Vector2){ screenWidth, 50 });
SetTargetFPS(60);
//--------------------------------------------------------------------------------------
// Main game loop
@ -175,6 +175,7 @@ int main()
// De-Initialization
//--------------------------------------------------------------------------------------
ClosePhysics(); // Unitialize physics module
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------

View File

@ -1,594 +0,0 @@
/**********************************************************************************************
*
* [physac] raylib physics module - Basic functions to apply physics to 2D objects
*
* Copyright (c) 2016 Victor Fisac and Ramon Santamaria
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
//#define PHYSAC_STANDALONE // NOTE: To use the physics module as standalone lib, just uncomment this line
#if defined(PHYSAC_STANDALONE)
#include "physac.h"
#else
#include "raylib.h"
#endif
#include <stdlib.h> // Required for: malloc(), free()
#include <math.h> // Required for: cos(), sin(), abs(), fminf()
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_PHYSIC_OBJECTS 256 // Maximum available physic object slots in objects pool
#define PHYSICS_STEPS 450 // Physics update steps number (divided calculations in steps per frame) to get more accurately collisions detections
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
//----------------------------------------------------------------------------------
// Types and Structures Definition
// NOTE: Below types are required for PHYSAC_STANDALONE usage
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static PhysicObject physicObjects[MAX_PHYSIC_OBJECTS]; // Physic objects pool
static int physicObjectsCount; // Counts current enabled physic objects
static Vector2 gravityForce; // Gravity force
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
static float Vector2Length(Vector2 v); // Returns the length of a Vector2
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Initializes pointers array (just pointers, fixed size)
void InitPhysics(Vector2 gravity)
{
// Initialize physics variables
physicObjectsCount = 0;
gravityForce = gravity;
}
// Update physic objects, calculating physic behaviours and collisions detection
void UpdatePhysics()
{
// Reset all physic objects is grounded state
for (int i = 0; i < physicObjectsCount; i++) physicObjects[i]->rigidbody.isGrounded = false;
for (int steps = 0; steps < PHYSICS_STEPS; steps++)
{
for (int i = 0; i < physicObjectsCount; i++)
{
if (physicObjects[i]->enabled)
{
// Update physic behaviour
if (physicObjects[i]->rigidbody.enabled)
{
// Apply friction to acceleration in X axis
if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.acceleration.x = 0.0f;
// Apply friction to acceleration in Y axis
if (physicObjects[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.acceleration.y = 0.0f;
// Apply friction to velocity in X axis
if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.velocity.x = 0.0f;
// Apply friction to velocity in Y axis
if (physicObjects[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.velocity.y = 0.0f;
// Apply gravity to velocity
if (physicObjects[i]->rigidbody.applyGravity)
{
physicObjects[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
physicObjects[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
}
// Apply acceleration to velocity
physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
// Apply velocity to position
physicObjects[i]->transform.position.x += physicObjects[i]->rigidbody.velocity.x/PHYSICS_STEPS;
physicObjects[i]->transform.position.y -= physicObjects[i]->rigidbody.velocity.y/PHYSICS_STEPS;
}
// Update collision detection
if (physicObjects[i]->collider.enabled)
{
// Update collider bounds
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
// Check collision with other colliders
for (int k = 0; k < physicObjectsCount; k++)
{
if (physicObjects[k]->collider.enabled && i != k)
{
// Resolve physic collision
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
// 1. Calculate collision normal
// -------------------------------------------------------------------------------------------------------------------------------------
// Define collision contact normal, direction and penetration depth
Vector2 contactNormal = { 0.0f, 0.0f };
Vector2 direction = { 0.0f, 0.0f };
float penetrationDepth = 0.0f;
switch (physicObjects[i]->collider.type)
{
case COLLIDER_RECTANGLE:
{
switch (physicObjects[k]->collider.type)
{
case COLLIDER_RECTANGLE:
{
// Check if colliders are overlapped
if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
{
// Calculate direction vector from i to k
direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
// Define overlapping and penetration attributes
Vector2 overlap;
// Calculate overlap on X axis
overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
// SAT test on X axis
if (overlap.x > 0.0f)
{
// Calculate overlap on Y axis
overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
// SAT test on Y axis
if (overlap.y > 0.0f)
{
// Find out which axis is axis of least penetration
if (overlap.y > overlap.x)
{
// Point towards k knowing that direction points from i to k
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
else contactNormal = (Vector2){ 1.0f, 0.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.x;
}
else
{
// Point towards k knowing that direction points from i to k
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
else contactNormal = (Vector2){ 0.0f, -1.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.y;
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
if (CheckCollisionCircleRec(physicObjects[k]->transform.position, physicObjects[k]->collider.radius, physicObjects[i]->collider.bounds))
{
// Calculate direction vector between circles
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2;
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width;
else closestPoint.x = physicObjects[i]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicObjects[i]->collider.bounds.y + physicObjects[i]->collider.bounds.height;
else closestPoint.y = physicObjects[i]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicObjects[k]->transform.position.x - closestPoint.x;
direction.y = physicObjects[k]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicObjects[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y - physicObjects[k]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y + physicObjects[k]->collider.radius);
}
}
else
{
// Calculate final contact normal
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[k]->transform.position.x + physicObjects[k]->collider.radius - physicObjects[i]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width - physicObjects[k]->transform.position.x - physicObjects[k]->collider.radius);
}
}
}
}
} break;
}
} break;
case COLLIDER_CIRCLE:
{
switch (physicObjects[k]->collider.type)
{
case COLLIDER_RECTANGLE:
{
if (CheckCollisionCircleRec(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->collider.bounds))
{
// Calculate direction vector between circles
direction.x = physicObjects[k]->transform.position.x + physicObjects[i]->transform.scale.x/2 - physicObjects[i]->transform.position.x;
direction.y = physicObjects[k]->transform.position.y + physicObjects[i]->transform.scale.y/2 - physicObjects[i]->transform.position.y;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width;
else closestPoint.x = physicObjects[k]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicObjects[k]->collider.bounds.y + physicObjects[k]->collider.bounds.height;
else closestPoint.y = physicObjects[k]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicObjects[i]->transform.position, physicObjects[i]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicObjects[i]->transform.position.x - closestPoint.x;
direction.y = physicObjects[i]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicObjects[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y - physicObjects[i]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y + physicObjects[i]->collider.radius);
}
}
else
{
// Calculate final contact normal and penetration depth
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[i]->transform.position.x + physicObjects[i]->collider.radius - physicObjects[k]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width - physicObjects[i]->transform.position.x - physicObjects[i]->collider.radius);
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
// Check if colliders are overlapped
if (CheckCollisionCircles(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
{
// Calculate direction vector between circles
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x;
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y;
// Calculate distance between circles
float distance = Vector2Length(direction);
// Check if circles are not completely overlapped
if (distance != 0.0f)
{
// Calculate contact normal direction (Y axis needs to be flipped)
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
}
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
}
} break;
default: break;
}
} break;
default: break;
}
// Update rigidbody grounded state
if (physicObjects[i]->rigidbody.enabled)
{
if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
}
// 2. Calculate collision impulse
// -------------------------------------------------------------------------------------------------------------------------------------
// Calculate relative velocity
Vector2 relVelocity = { 0.0f, 0.0f };
relVelocity.x = physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x;
relVelocity.y = physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y;
// Calculate relative velocity in terms of the normal direction
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
// Dot not resolve if velocities are separating
if (velAlongNormal <= 0.0f)
{
// Calculate minimum bounciness value from both objects
float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
// Calculate impulse scalar value
float j = -(1.0f + e)*velAlongNormal;
j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
// Calculate final impulse vector
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
// Calculate collision mass ration
float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
float ratio = 0.0f;
// Apply impulse to current rigidbodies velocities if they are enabled
if (physicObjects[i]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicObjects[i]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
}
if (physicObjects[k]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicObjects[k]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
}
// 3. Correct colliders overlaping (transform position)
// ---------------------------------------------------------------------------------------------------------------------------------
// Calculate transform position penetration correction
Vector2 posCorrection;
posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
// Fix transform positions
if (physicObjects[i]->rigidbody.enabled)
{
// Fix physic objects transform position
physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
if (physicObjects[k]->rigidbody.enabled)
{
// Fix physic objects transform position
physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
}
}
}
}
}
}
}
}
}
}
// Unitialize all physic objects and empty the objects pool
void ClosePhysics()
{
// Free all dynamic memory allocations
for (int i = 0; i < physicObjectsCount; i++) free(physicObjects[i]);
// Reset enabled physic objects count
physicObjectsCount = 0;
}
// Create a new physic object dinamically, initialize it and add to pool
PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale)
{
// Allocate dynamic memory
PhysicObject obj = (PhysicObject)malloc(sizeof(PhysicObjectData));
// Initialize physic object values with generic values
obj->id = physicObjectsCount;
obj->enabled = true;
obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
obj->rigidbody.enabled = false;
obj->rigidbody.mass = 1.0f;
obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.applyGravity = false;
obj->rigidbody.isGrounded = false;
obj->rigidbody.friction = 0.0f;
obj->rigidbody.bounciness = 0.0f;
obj->collider.enabled = true;
obj->collider.type = COLLIDER_RECTANGLE;
obj->collider.bounds = TransformToRectangle(obj->transform);
obj->collider.radius = 0.0f;
// Add new physic object to the pointers array
physicObjects[physicObjectsCount] = obj;
// Increase enabled physic objects count
physicObjectsCount++;
return obj;
}
// Destroy a specific physic object and take it out of the list
void DestroyPhysicObject(PhysicObject pObj)
{
// Free dynamic memory allocation
free(physicObjects[pObj->id]);
// Remove *obj from the pointers array
for (int i = pObj->id; i < physicObjectsCount; i++)
{
// Resort all the following pointers of the array
if ((i + 1) < physicObjectsCount)
{
physicObjects[i] = physicObjects[i + 1];
physicObjects[i]->id = physicObjects[i + 1]->id;
}
else free(physicObjects[i]);
}
// Decrease enabled physic objects count
physicObjectsCount--;
}
// Apply directional force to a physic object
void ApplyForce(PhysicObject pObj, Vector2 force)
{
if (pObj->rigidbody.enabled)
{
pObj->rigidbody.velocity.x += force.x/pObj->rigidbody.mass;
pObj->rigidbody.velocity.y += force.y/pObj->rigidbody.mass;
}
}
// Apply radial force to all physic objects in range
void ApplyForceAtPosition(Vector2 position, float force, float radius)
{
for (int i = 0; i < physicObjectsCount; i++)
{
if (physicObjects[i]->rigidbody.enabled)
{
// Calculate direction and distance between force and physic object pposition
Vector2 distance = (Vector2){ physicObjects[i]->transform.position.x - position.x, physicObjects[i]->transform.position.y - position.y };
if (physicObjects[i]->collider.type == COLLIDER_RECTANGLE)
{
distance.x += physicObjects[i]->transform.scale.x/2;
distance.y += physicObjects[i]->transform.scale.y/2;
}
float distanceLength = Vector2Length(distance);
// Check if physic object is in force range
if (distanceLength <= radius)
{
// Normalize force direction
distance.x /= distanceLength;
distance.y /= -distanceLength;
// Calculate final force
Vector2 finalForce = { distance.x*force, distance.y*force };
// Apply force to the physic object
ApplyForce(physicObjects[i], finalForce);
}
}
}
}
// Convert Transform data type to Rectangle (position and scale)
Rectangle TransformToRectangle(Transform transform)
{
return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
// Returns the dot product of two Vector2
static float Vector2DotProduct(Vector2 v1, Vector2 v2)
{
float result;
result = v1.x*v2.x + v1.y*v2.y;
return result;
}
static float Vector2Length(Vector2 v)
{
float result;
result = sqrt(v.x*v.x + v.y*v.y);
return result;
}

View File

@ -1,8 +1,45 @@
/**********************************************************************************************
*
* [physac] raylib physics module - Basic functions to apply physics to 2D objects
* physac 1.0 - 2D Physics library for raylib (https://github.com/raysan5/raylib)
*
* Copyright (c) 2016 Victor Fisac and Ramon Santamaria
* // TODO: Description...
*
* CONFIGURATION:
*
* #define PHYSAC_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* #define PHYSAC_STATIC (defined by default)
* The generated implementation will stay private inside implementation file and all
* internal symbols and functions will only be visible inside that file.
*
* #define PHYSAC_STANDALONE
* Avoid raylib.h header inclusion in this file. Data types defined on raylib are defined
* internally in the library and input management and drawing functions must be provided by
* the user (check library implementation for further details).
*
* #define PHYSAC_MALLOC()
* #define PHYSAC_FREE()
* You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
* Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
*
* LIMITATIONS:
*
* // TODO.
*
* VERSIONS:
*
* 1.0 (09-Jun-2016) Module names review and converted to header-only.
* 0.9 (23-Mar-2016) Complete module redesign, steps-based for better physics resolution.
* 0.3 (13-Feb-2016) Reviewed to add PhysicObjects pool.
* 0.2 (03-Jan-2016) Improved physics calculations.
* 0.1 (30-Dec-2015) Initial release.
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2016 Victor Fisac (main developer) and Ramon Santamaria
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
@ -24,6 +61,21 @@
#ifndef PHYSAC_H
#define PHYSAC_H
#if !defined(RAYGUI_STANDALONE)
#include "raylib.h"
#endif
#define PHYSAC_STATIC
#ifdef PHYSAC_STATIC
#define PHYSACDEF static // Functions just visible to module including this file
#else
#ifdef __cplusplus
#define PHYSACDEF extern "C" // Functions visible from other files (no name mangling of functions in C++)
#else
#define PHYSACDEF extern // Functions visible from other files
#endif
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
@ -33,12 +85,28 @@
// Types and Structures Definition
// NOTE: Below types are required for PHYSAC_STANDALONE usage
//----------------------------------------------------------------------------------
#if defined(PHYSAC_STANDALONE)
#ifndef __cplusplus
// Boolean type
#ifndef true
typedef enum { false, true } bool;
#endif
#endif
// Vector2 type
typedef struct Vector2 {
float x;
float y;
} Vector2;
// Vector2 type
typedef struct Vector2 {
float x;
float y;
} Vector2;
// Rectangle type
typedef struct Rectangle {
int x;
int y;
int width;
int height;
} Rectangle;
#endif
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
@ -66,13 +134,13 @@ typedef struct Collider {
int radius; // Used for COLLIDER_CIRCLE
} Collider;
typedef struct PhysicObjectData {
typedef struct PhysicBodyData {
unsigned int id;
Transform transform;
Rigidbody rigidbody;
Collider collider;
bool enabled;
} PhysicObjectData, *PhysicObject;
} PhysicBodyData, *PhysicBody;
#ifdef __cplusplus
extern "C" { // Prevents name mangling of functions
@ -81,20 +149,602 @@ extern "C" { // Prevents name mangling of functions
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
PHYSACDEF void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
PHYSACDEF void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
PHYSACDEF void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
void DestroyPhysicObject(PhysicObject pObj); // Destroy a specific physic object and take it out of the list
PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale); // Create a new physic body dinamically, initialize it and add to pool
PHYSACDEF void DestroyPhysicBody(PhysicBody pbody); // Destroy a specific physic body and take it out of the list
void ApplyForce(PhysicObject pObj, Vector2 force); // Apply directional force to a physic object
void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force); // Apply directional force to a physic body
PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
PHYSACDEF Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
#ifdef __cplusplus
}
#endif
#endif // PHYSAC_H
/***********************************************************************************
*
* PHYSAC IMPLEMENTATION
*
************************************************************************************/
#if defined(PHYSAC_IMPLEMENTATION)
// Check if custom malloc/free functions defined, if not, using standard ones
#if !defined(PHYSAC_MALLOC)
#include <stdlib.h> // Required for: malloc(), free()
#define PHYSAC_MALLOC(size) malloc(size)
#define PHYSAC_FREE(ptr) free(ptr)
#endif
#include <math.h> // Required for: cos(), sin(), abs(), fminf()
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_PHYSIC_BODIES 256 // Maximum available physic bodies slots in bodies pool
#define PHYSICS_STEPS 64 // Physics update steps per frame for improved collision-detection
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
//----------------------------------------------------------------------------------
// Types and Structures Definition
// NOTE: Below types are required for PHYSAC_STANDALONE usage
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static PhysicBody physicBodies[MAX_PHYSIC_BODIES]; // Physic bodies pool
static int physicBodiesCount; // Counts current enabled physic bodies
static Vector2 gravityForce; // Gravity force
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
static float Vector2Length(Vector2 v); // Returns the length of a Vector2
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Initializes pointers array (just pointers, fixed size)
PHYSACDEF void InitPhysics(Vector2 gravity)
{
// Initialize physics variables
physicBodiesCount = 0;
gravityForce = gravity;
}
// Update physic objects, calculating physic behaviours and collisions detection
PHYSACDEF void UpdatePhysics()
{
// Reset all physic objects is grounded state
for (int i = 0; i < physicBodiesCount; i++) physicBodies[i]->rigidbody.isGrounded = false;
for (int steps = 0; steps < PHYSICS_STEPS; steps++)
{
for (int i = 0; i < physicBodiesCount; i++)
{
if (physicBodies[i]->enabled)
{
// Update physic behaviour
if (physicBodies[i]->rigidbody.enabled)
{
// Apply friction to acceleration in X axis
if (physicBodies[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicBodies[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else physicBodies[i]->rigidbody.acceleration.x = 0.0f;
// Apply friction to acceleration in Y axis
if (physicBodies[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicBodies[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else physicBodies[i]->rigidbody.acceleration.y = 0.0f;
// Apply friction to velocity in X axis
if (physicBodies[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicBodies[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else physicBodies[i]->rigidbody.velocity.x = 0.0f;
// Apply friction to velocity in Y axis
if (physicBodies[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicBodies[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
else physicBodies[i]->rigidbody.velocity.y = 0.0f;
// Apply gravity to velocity
if (physicBodies[i]->rigidbody.applyGravity)
{
physicBodies[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
physicBodies[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
}
// Apply acceleration to velocity
physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
// Apply velocity to position
physicBodies[i]->transform.position.x += physicBodies[i]->rigidbody.velocity.x/PHYSICS_STEPS;
physicBodies[i]->transform.position.y -= physicBodies[i]->rigidbody.velocity.y/PHYSICS_STEPS;
}
// Update collision detection
if (physicBodies[i]->collider.enabled)
{
// Update collider bounds
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
// Check collision with other colliders
for (int k = 0; k < physicBodiesCount; k++)
{
if (physicBodies[k]->collider.enabled && i != k)
{
// Resolve physic collision
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
// 1. Calculate collision normal
// -------------------------------------------------------------------------------------------------------------------------------------
// Define collision contact normal, direction and penetration depth
Vector2 contactNormal = { 0.0f, 0.0f };
Vector2 direction = { 0.0f, 0.0f };
float penetrationDepth = 0.0f;
switch (physicBodies[i]->collider.type)
{
case COLLIDER_RECTANGLE:
{
switch (physicBodies[k]->collider.type)
{
case COLLIDER_RECTANGLE:
{
// Check if colliders are overlapped
if (CheckCollisionRecs(physicBodies[i]->collider.bounds, physicBodies[k]->collider.bounds))
{
// Calculate direction vector from i to k
direction.x = (physicBodies[k]->transform.position.x + physicBodies[k]->transform.scale.x/2) - (physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2);
direction.y = (physicBodies[k]->transform.position.y + physicBodies[k]->transform.scale.y/2) - (physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2);
// Define overlapping and penetration attributes
Vector2 overlap;
// Calculate overlap on X axis
overlap.x = (physicBodies[i]->transform.scale.x + physicBodies[k]->transform.scale.x)/2 - abs(direction.x);
// SAT test on X axis
if (overlap.x > 0.0f)
{
// Calculate overlap on Y axis
overlap.y = (physicBodies[i]->transform.scale.y + physicBodies[k]->transform.scale.y)/2 - abs(direction.y);
// SAT test on Y axis
if (overlap.y > 0.0f)
{
// Find out which axis is axis of least penetration
if (overlap.y > overlap.x)
{
// Point towards k knowing that direction points from i to k
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
else contactNormal = (Vector2){ 1.0f, 0.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.x;
}
else
{
// Point towards k knowing that direction points from i to k
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
else contactNormal = (Vector2){ 0.0f, -1.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.y;
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
if (CheckCollisionCircleRec(physicBodies[k]->transform.position, physicBodies[k]->collider.radius, physicBodies[i]->collider.bounds))
{
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2;
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width;
else closestPoint.x = physicBodies[i]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicBodies[i]->collider.bounds.y + physicBodies[i]->collider.bounds.height;
else closestPoint.y = physicBodies[i]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicBodies[k]->transform.position.x - closestPoint.x;
direction.y = physicBodies[k]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicBodies[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y - physicBodies[k]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y + physicBodies[k]->collider.radius);
}
}
else
{
// Calculate final contact normal
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[k]->transform.position.x + physicBodies[k]->collider.radius - physicBodies[i]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width - physicBodies[k]->transform.position.x - physicBodies[k]->collider.radius);
}
}
}
}
} break;
}
} break;
case COLLIDER_CIRCLE:
{
switch (physicBodies[k]->collider.type)
{
case COLLIDER_RECTANGLE:
{
if (CheckCollisionCircleRec(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->collider.bounds))
{
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x + physicBodies[i]->transform.scale.x/2 - physicBodies[i]->transform.position.x;
direction.y = physicBodies[k]->transform.position.y + physicBodies[i]->transform.scale.y/2 - physicBodies[i]->transform.position.y;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width;
else closestPoint.x = physicBodies[k]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicBodies[k]->collider.bounds.y + physicBodies[k]->collider.bounds.height;
else closestPoint.y = physicBodies[k]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicBodies[i]->transform.position, physicBodies[i]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicBodies[i]->transform.position.x - closestPoint.x;
direction.y = physicBodies[i]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicBodies[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y - physicBodies[i]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y + physicBodies[i]->collider.radius);
}
}
else
{
// Calculate final contact normal and penetration depth
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[i]->transform.position.x + physicBodies[i]->collider.radius - physicBodies[k]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width - physicBodies[i]->transform.position.x - physicBodies[i]->collider.radius);
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
// Check if colliders are overlapped
if (CheckCollisionCircles(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
{
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x;
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y;
// Calculate distance between circles
float distance = Vector2Length(direction);
// Check if circles are not completely overlapped
if (distance != 0.0f)
{
// Calculate contact normal direction (Y axis needs to be flipped)
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
}
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
}
} break;
default: break;
}
} break;
default: break;
}
// Update rigidbody grounded state
if (physicBodies[i]->rigidbody.enabled)
{
if (contactNormal.y < 0.0f) physicBodies[i]->rigidbody.isGrounded = true;
}
// 2. Calculate collision impulse
// -------------------------------------------------------------------------------------------------------------------------------------
// Calculate relative velocity
Vector2 relVelocity = { 0.0f, 0.0f };
relVelocity.x = physicBodies[k]->rigidbody.velocity.x - physicBodies[i]->rigidbody.velocity.x;
relVelocity.y = physicBodies[k]->rigidbody.velocity.y - physicBodies[i]->rigidbody.velocity.y;
// Calculate relative velocity in terms of the normal direction
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
// Dot not resolve if velocities are separating
if (velAlongNormal <= 0.0f)
{
// Calculate minimum bounciness value from both objects
float e = fminf(physicBodies[i]->rigidbody.bounciness, physicBodies[k]->rigidbody.bounciness);
// Calculate impulse scalar value
float j = -(1.0f + e)*velAlongNormal;
j /= 1.0f/physicBodies[i]->rigidbody.mass + 1.0f/physicBodies[k]->rigidbody.mass;
// Calculate final impulse vector
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
// Calculate collision mass ration
float massSum = physicBodies[i]->rigidbody.mass + physicBodies[k]->rigidbody.mass;
float ratio = 0.0f;
// Apply impulse to current rigidbodies velocities if they are enabled
if (physicBodies[i]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicBodies[i]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicBodies[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
physicBodies[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
}
if (physicBodies[k]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicBodies[k]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicBodies[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
physicBodies[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
}
// 3. Correct colliders overlaping (transform position)
// ---------------------------------------------------------------------------------------------------------------------------------
// Calculate transform position penetration correction
Vector2 posCorrection;
posCorrection.x = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
posCorrection.y = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
// Fix transform positions
if (physicBodies[i]->rigidbody.enabled)
{
// Fix physic objects transform position
physicBodies[i]->transform.position.x -= 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.x;
physicBodies[i]->transform.position.y += 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
if (physicBodies[k]->rigidbody.enabled)
{
// Fix physic objects transform position
physicBodies[k]->transform.position.x += 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.x;
physicBodies[k]->transform.position.y -= 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicBodies[k]->collider.bounds = TransformToRectangle(physicBodies[k]->transform);
}
}
}
}
}
}
}
}
}
}
// Unitialize all physic objects and empty the objects pool
PHYSACDEF void ClosePhysics()
{
// Free all dynamic memory allocations
for (int i = 0; i < physicBodiesCount; i++) PHYSAC_FREE(physicBodies[i]);
// Reset enabled physic objects count
physicBodiesCount = 0;
}
// Create a new physic body dinamically, initialize it and add to pool
PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale)
{
// Allocate dynamic memory
PhysicBody obj = (PhysicBody)PHYSAC_MALLOC(sizeof(PhysicBodyData));
// Initialize physic body values with generic values
obj->id = physicBodiesCount;
obj->enabled = true;
obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
obj->rigidbody.enabled = false;
obj->rigidbody.mass = 1.0f;
obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.applyGravity = false;
obj->rigidbody.isGrounded = false;
obj->rigidbody.friction = 0.0f;
obj->rigidbody.bounciness = 0.0f;
obj->collider.enabled = true;
obj->collider.type = COLLIDER_RECTANGLE;
obj->collider.bounds = TransformToRectangle(obj->transform);
obj->collider.radius = 0.0f;
// Add new physic body to the pointers array
physicBodies[physicBodiesCount] = obj;
// Increase enabled physic bodies count
physicBodiesCount++;
return obj;
}
// Destroy a specific physic body and take it out of the list
PHYSACDEF void DestroyPhysicBody(PhysicBody pbody)
{
// Free dynamic memory allocation
PHYSAC_FREE(physicBodies[pbody->id]);
// Remove *obj from the pointers array
for (int i = pbody->id; i < physicBodiesCount; i++)
{
// Resort all the following pointers of the array
if ((i + 1) < physicBodiesCount)
{
physicBodies[i] = physicBodies[i + 1];
physicBodies[i]->id = physicBodies[i + 1]->id;
}
else PHYSAC_FREE(physicBodies[i]);
}
// Decrease enabled physic bodies count
physicBodiesCount--;
}
// Apply directional force to a physic body
PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force)
{
if (pbody->rigidbody.enabled)
{
pbody->rigidbody.velocity.x += force.x/pbody->rigidbody.mass;
pbody->rigidbody.velocity.y += force.y/pbody->rigidbody.mass;
}
}
// Apply radial force to all physic objects in range
PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius)
{
for (int i = 0; i < physicBodiesCount; i++)
{
if (physicBodies[i]->rigidbody.enabled)
{
// Calculate direction and distance between force and physic body position
Vector2 distance = (Vector2){ physicBodies[i]->transform.position.x - position.x, physicBodies[i]->transform.position.y - position.y };
if (physicBodies[i]->collider.type == COLLIDER_RECTANGLE)
{
distance.x += physicBodies[i]->transform.scale.x/2;
distance.y += physicBodies[i]->transform.scale.y/2;
}
float distanceLength = Vector2Length(distance);
// Check if physic body is in force range
if (distanceLength <= radius)
{
// Normalize force direction
distance.x /= distanceLength;
distance.y /= -distanceLength;
// Calculate final force
Vector2 finalForce = { distance.x*force, distance.y*force };
// Apply force to the physic body
ApplyForce(physicBodies[i], finalForce);
}
}
}
}
// Convert Transform data type to Rectangle (position and scale)
PHYSACDEF Rectangle TransformToRectangle(Transform transform)
{
return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
// Returns the dot product of two Vector2
static float Vector2DotProduct(Vector2 v1, Vector2 v2)
{
float result;
result = v1.x*v2.x + v1.y*v2.y;
return result;
}
static float Vector2Length(Vector2 v)
{
float result;
result = sqrt(v.x*v.x + v.y*v.y);
return result;
}
#endif // PHYSAC_IMPLEMENTATION

View File

@ -1,8 +1,9 @@
/*******************************************************************************************
*
* raygui v1.2 - IMGUI (Immedite Mode GUI) library for raylib (https://github.com/raysan5/raylib)
* raygui 1.0 - IMGUI (Immedite Mode GUI) library for raylib (https://github.com/raysan5/raylib)
*
* raygui is a library for creating simple IMGUI interfaces. It provides a set of basic components:
* raygui is a library for creating simple IMGUI interfaces using raylib.
* It provides a set of basic components:
*
* - Label
* - Button
@ -16,31 +17,51 @@
* - Spinner
* - TextBox
*
* It also provides a set of functions for styling the components based on a set of properties.
*
* USAGE:
*
* Include this file in any C/C++ file that requires it; in ONLY one of them, write:
* #define RAYGUI_IMPLEMENTATION
* before the #include of this file. This expands out the actual implementation into that file.
*
* It also provides a set of functions for styling the components based on its properties (size, color).
*
* CONFIGURATION:
*
* You can #define RAYGUI_STANDALONE to avoid raylib.h inclusion (not dependant on raylib functions and types).
* NOTE: Some external funtions are required for drawing and input management, check implementation code.
* #define RAYGUI_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* You can #define RAY_MALLOC() to replace malloc() and free() function by your own.
* #define RAYGUI_STATIC (defined by default)
* The generated implementation will stay private inside implementation file and all
* internal symbols and functions will only be visible inside that file.
*
* You can #define RAYGUI_STATIC to make the implementation private to the file that generates the implementation,
* #define RAYGUI_STANDALONE
* Avoid raylib.h header inclusion in this file. Data types defined on raylib are defined
* internally in the library and input management and drawing functions must be provided by
* the user (check library implementation for further details).
*
* VERSIONS AND CREDITS:
* #define RAYGUI_MALLOC()
* #define RAYGUI_FREE()
* You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
* Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
*
* LIMITATIONS:
*
* 1.2 (07-Jun-2016) Converted to header-only by Ramon Santamaria
* 1.1 (07-Mar-2016) Reviewed and expanded by Albert Martos, Ian Eito, Sergio Martinez and Ramon Santamaria.
* 1.0 (27-Aug-2015) Initial release. Implemented by Kevin Gato, Daniel Nicolás and Ramon Santamaria.
* // TODO.
*
* VERSIONS:
*
* 1.0 (07-Jun-2016) Converted to header-only by Ramon Santamaria.
* 0.9 (07-Mar-2016) Reviewed and tested by Albert Martos, Ian Eito, Sergio Martinez and Ramon Santamaria.
* 0.8 (27-Aug-2015) Initial release. Implemented by Kevin Gato, Daniel Nicolás and Ramon Santamaria.
*
* CONTRIBUTORS:
* Ramon Santamaria: Functions design and naming conventions.
* Kevin Gato: Initial implementation of basic components.
* Daniel Nicolas: Initial implementation of basic components.
* Albert Martos: Review and testing of library.
* Ian Eito: Review and testing of the library.
* Sergio Martinez: Review and testing of the library.
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2015-2016 emegeme (@emegemegames)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
@ -355,29 +376,27 @@ RAYGUIDEF int GetStyleProperty(int guiProperty); // Get
#endif // RAYGUI_H
/*********************************************************************************************************
/***********************************************************************************
*
* RAYGUI IMPLEMENTATION
* RAYGUI IMPLEMENTATION
*
**********************************************************************************************************/
************************************************************************************/
#if defined(RAYGUI_IMPLEMENTATION)
#include <stdio.h> // Required for: FILE, fopen(), fclose(), fprintf(), feof(), fscanf()
// NOTE: Those functions are only used in SaveGuiStyle() and LoadGuiStyle()
#include <stdio.h> // Required for: FILE, fopen(), fclose(), fprintf(), feof(), fscanf()
// NOTE: Those functions are only used in SaveGuiStyle() and LoadGuiStyle()
#include <stdlib.h> // Required for: malloc(), free() [Used only on LoadGuiStyle()]
#include <string.h> // Required for: strcmp() [Used only on LoadGuiStyle()]
#include <stdarg.h> // Required for: va_list, va_start(), vfprintf(), va_end()
/*
// NOTE: Example on how to define custom functions
#if !defined(RAY_MALLOC)
#include <stdlib.h>
#define RAY_MALLOC(size,c) malloc(size)
#define RAY_FREE(ptr,c) free(ptr)
// Check if custom malloc/free functions defined, if not, using standard ones
#if !defined(RAYGUI_MALLOC)
#include <stdlib.h> // Required for: malloc(), free() [Used only on LoadGuiStyle()]
#define RAYGUI_MALLOC(size) malloc(size)
#define RAYGUI_FREE(ptr) free(ptr)
#endif
*/
#include <string.h> // Required for: strcmp() [Used only on LoadGuiStyle()]
#include <stdarg.h> // Required for: va_list, va_start(), vfprintf(), va_end()
//----------------------------------------------------------------------------------
// Defines and Macros
@ -1272,7 +1291,7 @@ RAYGUIDEF void LoadGuiStyle(const char *fileName)
int value;
} StyleProperty;
StyleProperty *styleProp = (StyleProperty *)malloc(MAX_STYLE_PROPERTIES*sizeof(StyleProperty));;
StyleProperty *styleProp = (StyleProperty *)RAYGUI_MALLOC(MAX_STYLE_PROPERTIES*sizeof(StyleProperty));;
int counter = 0;
FILE *styleFile = fopen(fileName, "rt");
@ -1297,7 +1316,7 @@ RAYGUIDEF void LoadGuiStyle(const char *fileName)
}
}
free(styleProp);
RAYGUI_FREE(styleProp);
}
// Set one style property value

View File

@ -527,40 +527,6 @@ typedef struct GestureEvent {
// Camera system modes
typedef enum { CAMERA_CUSTOM = 0, CAMERA_FREE, CAMERA_ORBITAL, CAMERA_FIRST_PERSON, CAMERA_THIRD_PERSON } CameraMode;
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
typedef struct Transform {
Vector2 position;
float rotation; // Radians (not used)
Vector2 scale; // Just for rectangle physic objects, for circle physic objects use collider radius and keep scale as { 0, 0 }
} Transform;
typedef struct Rigidbody {
bool enabled; // Acts as kinematic state (collisions are calculated anyway)
float mass;
Vector2 acceleration;
Vector2 velocity;
bool applyGravity;
bool isGrounded;
float friction; // Normalized value
float bounciness;
} Rigidbody;
typedef struct Collider {
bool enabled;
ColliderType type;
Rectangle bounds; // Used for COLLIDER_RECTANGLE
int radius; // Used for COLLIDER_CIRCLE
} Collider;
typedef struct PhysicObjectData {
unsigned int id;
Transform transform;
Rigidbody rigidbody;
Collider collider;
bool enabled;
} PhysicObjectData, *PhysicObject;
#ifdef __cplusplus
extern "C" { // Prevents name mangling of functions
#endif
@ -886,21 +852,6 @@ void EndBlendMode(void); // End blend
Light CreateLight(int type, Vector3 position, Color diffuse); // Create a new light, initialize it and add to pool
void DestroyLight(Light light); // Destroy a light and take it out of the list
//----------------------------------------------------------------------------------
// Physics System Functions (Module: physac)
//----------------------------------------------------------------------------------
void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
void DestroyPhysicObject(PhysicObject pObj); // Destroy a specific physic object and take it out of the list
void ApplyForce(PhysicObject pObj, Vector2 force); // Apply directional force to a physic object
void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
//------------------------------------------------------------------------------------
// Audio Loading and Playing Functions (Module: audio)
//------------------------------------------------------------------------------------