[wip] rlDrawMeshInstanced (#1318)

* rlDrawMeshInstanced first attempt

* rlDrawMeshInstanced OpenGL 3.3 and VAO checks

* rlDrawMeshInstanced GetShaderAttribLocation; comments

* example instanced shader

* RLGL_STANDALONE RAYMATH_STANDALONE Vector4

* apply suggested naming changes; add instanced mesh example

* remove orphan variables
This commit is contained in:
seanpringle 2020-09-27 18:29:05 +10:00 committed by GitHub
parent e90b4d8915
commit 4bcddc3b15
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 307 additions and 4 deletions

View File

@ -488,7 +488,8 @@ SHADERS = \
shaders/shaders_basic_lighting \
shaders/shaders_fog \
shaders/shaders_simple_mask \
shaders/shaders_spotlight
shaders/shaders_spotlight \
shaders/shaders_rlgl_mesh_instanced
AUDIO = \
audio/audio_module_playing \

View File

@ -0,0 +1,36 @@
#version 330
// Input vertex attributes
in vec3 vertexPosition;
in vec2 vertexTexCoord;
in vec3 vertexNormal;
in vec4 vertexColor;
layout (location = 12) in mat4 instance;
// Input uniform values
uniform mat4 mvp;
// Output vertex attributes (to fragment shader)
out vec3 fragPosition;
out vec2 fragTexCoord;
out vec4 fragColor;
out vec3 fragNormal;
// NOTE: Add here your custom variables
void main()
{
// Send vertex attributes to fragment shader
fragPosition = vec3(instance * vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
mat3 normalMatrix = transpose(inverse(mat3(instance)));
fragNormal = normalize(normalMatrix * vertexNormal);
mat4 mvpi = mvp * instance;
// Calculate final vertex position
gl_Position = mvpi * vec4(vertexPosition, 1.0);
}

View File

@ -0,0 +1,140 @@
/*******************************************************************************************
*
* raylib [shaders] example - rlgl module usage for instanced meshes
*
* This example uses [rlgl] module funtionality (pseudo-OpenGL 1.1 style coding)
*
* This example has been created using raylib 3.0 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2018 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#define GRAPHICS_API_OPENGL_33
#define GLSL_VERSION 330
#include <stdlib.h>
#include "raylib.h"
#include "raymath.h"
#include "rlgl.h"
#define RLIGHTS_IMPLEMENTATION
#include "rlights.h"
//------------------------------------------------------------------------------------
// Program main entry point
//------------------------------------------------------------------------------------
int main(void)
{
// Initialization
//--------------------------------------------------------------------------------------
const int screenWidth = 1024;
const int screenHeight = 768;
SetConfigFlags(FLAG_MSAA_4X_HINT); // Enable Multi Sampling Anti Aliasing 4x (if available)
InitWindow(screenWidth, screenHeight, "raylib [shaders] example - rlgl module usage for instanced meshes");
// Define the camera to look into our 3d world
Camera camera = { 0 };
camera.position = (Vector3){ 125.0f, 125.0f, 125.0f };
camera.target = (Vector3){ 0.0f, 0.0f, 0.0f };
camera.up = (Vector3){ 0.0f, 1.0f, 0.0f };
camera.fovy = 45.0f;
camera.type = CAMERA_PERSPECTIVE;
SetCameraMode(camera, CAMERA_FREE);
const int count = 10000; // Number of instances to display
Mesh cube = GenMeshCube(1.0f, 1.0f, 1.0f);
Matrix* rotations = RL_MALLOC(count * sizeof(Matrix)); // Rotation state of instances
Matrix* rotationsInc = RL_MALLOC(count * sizeof(Matrix)); // Per-frame rotation animation of instances
Matrix* translations = RL_MALLOC(count * sizeof(Matrix)); // Locations of instances
// Scatter random cubes around
for (int i = 0; i < count; i++)
{
float x = GetRandomValue(-50, 50);
float y = GetRandomValue(-50, 50);
float z = GetRandomValue(-50, 50);
translations[i] = MatrixTranslate(x, y, z);
x = GetRandomValue(0, 360);
y = GetRandomValue(0, 360);
z = GetRandomValue(0, 360);
Vector3 axis = Vector3Normalize((Vector3){x, y, z});
float angle = (float)GetRandomValue(0, 10) * DEG2RAD;
rotationsInc[i] = MatrixRotate(axis, angle);
rotations[i] = MatrixIdentity();
}
Matrix* transforms = RL_MALLOC(count * sizeof(Matrix)); // Pre-multiplied transformations passed to rlgl
Shader shader = LoadShader(FormatText("resources/shaders/glsl%i/base_lighting_instanced.vs", GLSL_VERSION),
FormatText("resources/shaders/glsl%i/lighting.fs", GLSL_VERSION));
// Get some shader loactions
shader.locs[LOC_MATRIX_MVP] = GetShaderLocation(shader, "mvp");
shader.locs[LOC_VECTOR_VIEW] = GetShaderLocation(shader, "viewPos");
shader.locs[LOC_MATRIX_MODEL] = GetShaderLocationAttrib(shader, "instance");
// ambient light level
int ambientLoc = GetShaderLocation(shader, "ambient");
SetShaderValue(shader, ambientLoc, (float[4]){ 0.2f, 0.2f, 0.2f, 1.0f }, UNIFORM_VEC4);
CreateLight(LIGHT_DIRECTIONAL, (Vector3){ 50, 50, 0 }, Vector3Zero(), WHITE, shader);
Material material = LoadMaterialDefault();
material.shader = shader;
material.maps[MAP_DIFFUSE].color = RED;
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
UpdateCamera(&camera);
// Update the light shader with the camera view position
float cameraPos[3] = { camera.position.x, camera.position.y, camera.position.z };
SetShaderValue(shader, shader.locs[LOC_VECTOR_VIEW], cameraPos, UNIFORM_VEC3);
// Apply per-instance rotations
for (int i = 0; i < count; i++)
{
rotations[i] = MatrixMultiply(rotations[i], rotationsInc[i]);
transforms[i] = MatrixMultiply(rotations[i], translations[i]);
}
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
BeginMode3D(camera);
rlDrawMeshInstanced(cube, material, transforms, count);
EndMode3D();
DrawText("A CUBE OF DANCING CUBES!", 400, 10, 20, MAROON);
DrawFPS(10, 10);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}

View File

@ -1372,6 +1372,7 @@ RLAPI void SetShapesTexture(Texture2D texture, Rectangle source); // Def
// Shader configuration functions
RLAPI int GetShaderLocation(Shader shader, const char *uniformName); // Get shader uniform location
RLAPI int GetShaderLocationAttrib(Shader shader, const char *attribName); // Get shader attribute location
RLAPI void SetShaderValue(Shader shader, int uniformLoc, const void *value, int uniformType); // Set shader uniform value
RLAPI void SetShaderValueV(Shader shader, int uniformLoc, const void *value, int uniformType, int count); // Set shader uniform value vector
RLAPI void SetShaderValueMatrix(Shader shader, int uniformLoc, Matrix mat); // Set shader uniform value (matrix 4x4)

View File

@ -114,13 +114,16 @@
float z;
} Vector3;
// Quaternion type
typedef struct Quaternion {
// Vector4 type
typedef struct Vector4 {
float x;
float y;
float z;
float w;
} Quaternion;
} Vector4;
// Quaternion type
typedef Vector4 Quaternion;
// Matrix type (OpenGL style 4x4 - right handed, column major)
typedef struct Matrix {

View File

@ -560,6 +560,7 @@ RLAPI void rlLoadMesh(Mesh *mesh, bool dynamic); // Upl
RLAPI void rlUpdateMesh(Mesh mesh, int buffer, int count); // Update vertex or index data on GPU (upload new data to one buffer)
RLAPI void rlUpdateMeshAt(Mesh mesh, int buffer, int count, int index); // Update vertex or index data on GPU, at index
RLAPI void rlDrawMesh(Mesh mesh, Material material, Matrix transform); // Draw a 3d mesh with material and transform
RLAPI void rlDrawMeshInstanced(Mesh mesh, Material material, Matrix *transforms, int count); // Draw a 3d mesh with material and transform
RLAPI void rlUnloadMesh(Mesh mesh); // Unload mesh data from CPU and GPU
// NOTE: There is a set of shader related functions that are available to end user,
@ -582,6 +583,7 @@ RLAPI Rectangle GetShapesTextureRec(void); // Get
// Shader configuration functions
RLAPI int GetShaderLocation(Shader shader, const char *uniformName); // Get shader uniform location
RLAPI int GetShaderLocationAttrib(Shader shader, const char *attribName); // Get shader attribute location
RLAPI void SetShaderValue(Shader shader, int uniformLoc, const void *value, int uniformType); // Set shader uniform value
RLAPI void SetShaderValueV(Shader shader, int uniformLoc, const void *value, int uniformType, int count); // Set shader uniform value vector
RLAPI void SetShaderValueMatrix(Shader shader, int uniformLoc, Matrix mat); // Set shader uniform value (matrix 4x4)
@ -2860,6 +2862,113 @@ void rlDrawMesh(Mesh mesh, Material material, Matrix transform)
#endif
}
// Draw a 3d mesh with material and transform
void rlDrawMeshInstanced(Mesh mesh, Material material, Matrix *transforms, int count)
{
#if defined(GRAPHICS_API_OPENGL_33)
if (!RLGL.ExtSupported.vao) {
TRACELOG(LOG_ERROR, "VAO: Instanced rendering requires VAO support");
return;
}
// Bind shader program
glUseProgram(material.shader.id);
// Upload to shader material.colDiffuse
if (material.shader.locs[LOC_COLOR_DIFFUSE] != -1)
glUniform4f(material.shader.locs[LOC_COLOR_DIFFUSE], (float)material.maps[MAP_DIFFUSE].color.r/255.0f,
(float)material.maps[MAP_DIFFUSE].color.g/255.0f,
(float)material.maps[MAP_DIFFUSE].color.b/255.0f,
(float)material.maps[MAP_DIFFUSE].color.a/255.0f);
// Upload to shader material.colSpecular (if available)
if (material.shader.locs[LOC_COLOR_SPECULAR] != -1)
glUniform4f(material.shader.locs[LOC_COLOR_SPECULAR], (float)material.maps[MAP_SPECULAR].color.r/255.0f,
(float)material.maps[MAP_SPECULAR].color.g/255.0f,
(float)material.maps[MAP_SPECULAR].color.b/255.0f,
(float)material.maps[MAP_SPECULAR].color.a/255.0f);
// Bind active texture maps (if available)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id > 0)
{
glActiveTexture(GL_TEXTURE0 + i);
if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP))
glBindTexture(GL_TEXTURE_CUBE_MAP, material.maps[i].texture.id);
else glBindTexture(GL_TEXTURE_2D, material.maps[i].texture.id);
glUniform1i(material.shader.locs[LOC_MAP_DIFFUSE + i], i);
}
}
// Bind vertex array objects (or VBOs)
glBindVertexArray(mesh.vaoId);
// At this point the modelview matrix just contains the view matrix (camera)
// For instanced shaders "mvp" is not premultiplied by any instance transform, only RLGL.State.transform
glUniformMatrix4fv(material.shader.locs[LOC_MATRIX_MVP], 1, false, MatrixToFloat(
MatrixMultiply(MatrixMultiply(RLGL.State.transform, RLGL.State.modelview), RLGL.State.projection)
));
float16* instances = RL_MALLOC(count * sizeof(float16));
for (int i = 0; i < count; i++)
instances[i] = MatrixToFloatV(transforms[i]);
// This could alternatively use a static VBO and either glMapBuffer or glBufferSubData.
// It isn't clear which would be reliably faster in all cases and on all platforms, and
// anecdotally glMapBuffer seems very slow (syncs) while glBufferSubData seems no faster
// since we're transferring all the transform matrices anyway.
unsigned int instancesB;
glGenBuffers(1, &instancesB);
glBindBuffer(GL_ARRAY_BUFFER, instancesB);
glBufferData(GL_ARRAY_BUFFER, count * sizeof(float16), instances, GL_STATIC_DRAW);
// Instances are put in LOC_MATRIX_MODEL attribute location with space for 4x Vector4, eg:
// layout (location = 12) in mat4 instance;
unsigned int instanceA = material.shader.locs[LOC_MATRIX_MODEL];
for (unsigned int i = 0; i < 4; i++)
{
glEnableVertexAttribArray(instanceA+i);
glVertexAttribPointer(instanceA+i, 4, GL_FLOAT, GL_FALSE, sizeof(Matrix), (void*)(i * sizeof(Vector4)));
glVertexAttribDivisor(instanceA+i, 1);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
// Draw call!
if (mesh.indices != NULL) {
// Indexed vertices draw
glDrawElementsInstanced(GL_TRIANGLES, mesh.triangleCount*3, GL_UNSIGNED_SHORT, 0, count);
} else {
glDrawArraysInstanced(GL_TRIANGLES, 0, mesh.vertexCount, count);
}
glDeleteBuffers(1, &instancesB);
RL_FREE(instances);
// Unbind all binded texture maps
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
glActiveTexture(GL_TEXTURE0 + i); // Set shader active texture
if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP)) glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
else glBindTexture(GL_TEXTURE_2D, 0); // Unbind current active texture
}
// Unind vertex array objects (or VBOs)
glBindVertexArray(0);
// Unbind shader program
glUseProgram(0);
#else
TRACELOG(LOG_ERROR, "VAO: Instanced rendering requires GRAPHICS_API_OPENGL_33");
#endif
}
// Unload mesh data from CPU and GPU
void rlUnloadMesh(Mesh mesh)
{
@ -3183,6 +3292,19 @@ int GetShaderLocation(Shader shader, const char *uniformName)
return location;
}
// Get shader attribute location
int GetShaderLocationAttrib(Shader shader, const char *attribName)
{
int location = -1;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
location = glGetAttribLocation(shader.id, attribName);
if (location == -1) TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to find shader attribute: %s", shader.id, attribName);
else TRACELOG(LOG_INFO, "SHADER: [ID %i] Shader attribute (%s) set at location: %i", shader.id, attribName, location);
#endif
return location;
}
// Set shader uniform value
void SetShaderValue(Shader shader, int uniformLoc, const void *value, int uniformType)
{