Review code formatting

This commit is contained in:
Ray 2021-06-03 20:25:28 +02:00
parent edeaff4bd4
commit 121c689b78
3 changed files with 47 additions and 43 deletions

View File

@ -105,7 +105,8 @@ int main(void)
// Check ray collision against test sphere
RayCollision sphereHitInfo = GetRayCollisionSphere(ray, sp, sr);
if ((sphereHitInfo.hit) && (sphereHitInfo.distance < collision.distance)) {
if ((sphereHitInfo.hit) && (sphereHitInfo.distance < collision.distance))
{
collision = sphereHitInfo;
cursorColor = ORANGE;
hitObjectName = "Sphere";

View File

@ -2987,12 +2987,13 @@ RayCollision GetRayCollisionSphere(Ray ray, Vector3 center, float radius)
Vector3 raySpherePos = Vector3Subtract(center, ray.position);
float vector = Vector3DotProduct(raySpherePos, ray.direction);
float distance = Vector3Length(raySpherePos);
float d = radius*radius - (distance * distance - vector*vector);
float d = radius*radius - (distance*distance - vector*vector);
collision.hit = d >= 0.0f;
// Check if ray origin is inside the sphere to calculate the correct collision point
if (distance < radius) { // inside
if (distance < radius)
{
collision.distance = vector + sqrtf(d);
// Calculate collision point
@ -3000,7 +3001,9 @@ RayCollision GetRayCollisionSphere(Ray ray, Vector3 center, float radius)
// Calculate collision normal (pointing outwards)
collision.normal = Vector3Negate(Vector3Normalize(Vector3Subtract(collision.point, center)));
} else { // outside
}
else
{
collision.distance = vector - sqrtf(d);
// Calculate collision point
@ -3020,31 +3023,28 @@ RayCollision GetRayCollisionBox(Ray ray, BoundingBox box)
// Note: If ray.position is inside the box, the distance is negative (as if the ray was reversed)
// Reversing ray.direction will give use the correct result.
bool insideBox =
ray.position.x > box.min.x && ray.position.x < box.max.x &&
ray.position.y > box.min.y && ray.position.y < box.max.y &&
ray.position.z > box.min.z && ray.position.z < box.max.z;
bool insideBox = (ray.position.x > box.min.x) && (ray.position.x < box.max.x) &&
(ray.position.y > box.min.y) && (ray.position.y < box.max.y) &&
(ray.position.z > box.min.z) && (ray.position.z < box.max.z);
if (insideBox) {
ray.direction = Vector3Negate(ray.direction);
}
if (insideBox) ray.direction = Vector3Negate(ray.direction);
float t[11] = { 0 };
t[8] = 1.0f / ray.direction.x;
t[9] = 1.0f / ray.direction.y;
t[10] = 1.0f / ray.direction.z;
t[8] = 1.0f/ray.direction.x;
t[9] = 1.0f/ray.direction.y;
t[10] = 1.0f/ray.direction.z;
t[0] = (box.min.x - ray.position.x) * t[8];
t[1] = (box.max.x - ray.position.x) * t[8];
t[2] = (box.min.y - ray.position.y) * t[9];
t[3] = (box.max.y - ray.position.y) * t[9];
t[4] = (box.min.z - ray.position.z) * t[10];
t[5] = (box.max.z - ray.position.z) * t[10];
t[0] = (box.min.x - ray.position.x)*t[8];
t[1] = (box.max.x - ray.position.x)*t[8];
t[2] = (box.min.y - ray.position.y)*t[9];
t[3] = (box.max.y - ray.position.y)*t[9];
t[4] = (box.min.z - ray.position.z)*t[10];
t[5] = (box.max.z - ray.position.z)*t[10];
t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5]));
t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5]));
collision.hit = !(t[7] < 0 || t[6] > t[7]);
collision.hit = !((t[7] < 0) || (t[6] > t[7]));
collision.distance = t[6];
collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
@ -3053,19 +3053,20 @@ RayCollision GetRayCollisionBox(Ray ray, BoundingBox box)
// Get vector center point->hit point
collision.normal = Vector3Subtract(collision.point, collision.normal);
// Scale vector to unit cube
// we use an additional .01 to fix numerical errors
// NOTE: We use an additional .01 to fix numerical errors
collision.normal = Vector3Scale(collision.normal, 2.01f);
collision.normal = Vector3Divide(collision.normal, Vector3Subtract(box.max, box.min));
// the relevant elemets of the vector are now slightly larger than 1.0f (or smaller than -1.0f)
// and the others are somewhere between -1.0 and 1.0
// casting to int is exactly our wanted normal!
// The relevant elemets of the vector are now slightly larger than 1.0f (or smaller than -1.0f)
// and the others are somewhere between -1.0 and 1.0
// casting to int is exactly our wanted normal!
collision.normal.x = (int)collision.normal.x;
collision.normal.y = (int)collision.normal.y;
collision.normal.z = (int)collision.normal.z;
collision.normal = Vector3Normalize(collision.normal);
if (insideBox) {
if (insideBox)
{
// Reset ray.direction
ray.direction = Vector3Negate(ray.direction);
// Fix result
@ -3203,7 +3204,8 @@ RayCollision GetRayCollisionTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3
// Get collision info between ray and quad
// NOTE: The points are expected to be in counter-clockwise winding
RayCollision GetRayCollisionQuad(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4) {
RayCollision GetRayCollisionQuad(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4)
{
RayCollision collision = { 0 };
collision = GetRayCollisionTriangle(ray, p1, p2, p4);
@ -3247,7 +3249,7 @@ static Model LoadOBJ(const char *fileName)
int ret = tinyobj_parse_obj(&attrib, &meshes, &meshCount, &materials, &materialCount, fileText, dataSize, flags);
if (ret != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load OBJ data", fileName);
else TRACELOG(LOG_INFO, "MODEL: [%s] OBJ data loaded successfully: %i meshes / %i materials", fileName, meshCount, materialCount);
else TRACELOG(LOG_INFO, "MODEL: [%s] OBJ data loaded successfully: %i meshes/%i materials", fileName, meshCount, materialCount);
model.meshCount = materialCount;
@ -3283,7 +3285,7 @@ static Model LoadOBJ(const char *fileName)
//--------------------------------------
// create the material meshes
// running counts / indexes for each material mesh as we are
// running counts/indexes for each material mesh as we are
// building them at the same time
int *vCount = RL_CALLOC(model.meshCount, sizeof(int));
int *vtCount = RL_CALLOC(model.meshCount, sizeof(int));
@ -4368,10 +4370,10 @@ static Model LoadGLTF(const char *fileName)
{
GLTFReadValue(acc, a, readValue, 4, sizeof(unsigned short));
// 257 = 65535/255
model.meshes[primitiveIndex].colors[(a*4) + 0] = (unsigned char)(readValue[0] / 257);
model.meshes[primitiveIndex].colors[(a*4) + 1] = (unsigned char)(readValue[1] / 257);
model.meshes[primitiveIndex].colors[(a*4) + 2] = (unsigned char)(readValue[2] / 257);
model.meshes[primitiveIndex].colors[(a*4) + 3] = (unsigned char)(readValue[3] / 257);
model.meshes[primitiveIndex].colors[(a*4) + 0] = (unsigned char)(readValue[0]/257);
model.meshes[primitiveIndex].colors[(a*4) + 1] = (unsigned char)(readValue[1]/257);
model.meshes[primitiveIndex].colors[(a*4) + 2] = (unsigned char)(readValue[2]/257);
model.meshes[primitiveIndex].colors[(a*4) + 3] = (unsigned char)(readValue[3]/257);
}
}
}
@ -4437,12 +4439,14 @@ static void InitGLTFBones(Model* model, const cgltf_data* data)
bool* completedBones = RL_CALLOC(model->boneCount, sizeof(bool));
int numberCompletedBones = 0;
while (numberCompletedBones < model->boneCount) {
while (numberCompletedBones < model->boneCount)
{
for (int i = 0; i < model->boneCount; i++)
{
if (completedBones[i]) continue;
if (model->bones[i].parent < 0) {
if (model->bones[i].parent < 0)
{
completedBones[i] = true;
numberCompletedBones++;
continue;
@ -4453,8 +4457,7 @@ static void InitGLTFBones(Model* model, const cgltf_data* data)
Transform* currentTransform = &model->bindPose[i];
BoneInfo* currentBone = &model->bones[i];
int root = currentBone->parent;
if (root >= model->boneCount)
root = 0;
if (root >= model->boneCount) root = 0;
Transform* parentTransform = &model->bindPose[root];
currentTransform->rotation = QuaternionMultiply(parentTransform->rotation, currentTransform->rotation);
@ -4470,7 +4473,7 @@ static void InitGLTFBones(Model* model, const cgltf_data* data)
}
}
static void LoadGLTFMaterial(Model* model, const char* fileName, const cgltf_data* data)
static void LoadGLTFMaterial(Model *model, const char *fileName, const cgltf_data *data)
{
for (int i = 0; i < model->materialCount - 1; i++)
{
@ -4541,7 +4544,7 @@ static void LoadGLTFMaterial(Model* model, const char* fileName, const cgltf_dat
model->materials[model->materialCount - 1] = LoadMaterialDefault();
}
static void LoadGLTFBoneAttribute(Model* model, cgltf_accessor* jointsAccessor, const cgltf_data* data, int primitiveIndex)
static void LoadGLTFBoneAttribute(Model *model, cgltf_accessor *jointsAccessor, const cgltf_data *data, int primitiveIndex)
{
if (jointsAccessor->component_type == cgltf_component_type_r_16u)
{
@ -4790,7 +4793,7 @@ static ModelAnimation *LoadGLTFModelAnimations(const char *fileName, int *animCo
}
}
output->frameCount = (int)(animationDuration / timeStep);
output->frameCount = (int)(animationDuration/timeStep);
output->boneCount = (int)data->nodes_count;
output->bones = RL_MALLOC(output->boneCount*sizeof(BoneInfo));
output->framePoses = RL_MALLOC(output->frameCount*sizeof(Transform *));

View File

@ -1661,17 +1661,17 @@ void UpdateMusicStream(Music music)
{
case ma_format_f32:
// NOTE: Internally this function considers 2 channels generation, so samplesCount/2
jar_xm_generate_samples((jar_xm_context_t*)music.ctxData, (float*)pcm, samplesCount / 2);
jar_xm_generate_samples((jar_xm_context_t*)music.ctxData, (float*)pcm, samplesCount/2);
break;
case ma_format_s16:
// NOTE: Internally this function considers 2 channels generation, so samplesCount/2
jar_xm_generate_samples_16bit((jar_xm_context_t*)music.ctxData, (short*)pcm, samplesCount / 2);
jar_xm_generate_samples_16bit((jar_xm_context_t*)music.ctxData, (short*)pcm, samplesCount/2);
break;
case ma_format_u8:
// NOTE: Internally this function considers 2 channels generation, so samplesCount/2
jar_xm_generate_samples_8bit((jar_xm_context_t*)music.ctxData, (char*)pcm, samplesCount / 2);
jar_xm_generate_samples_8bit((jar_xm_context_t*)music.ctxData, (char*)pcm, samplesCount/2);
break;
}