qemu/hw/arm/armsse.c
Peter Maydell 8fd34dc0c4 hw/arm/armsse: Wire up clocks
Create two input clocks on the ARMSSE devices, one for the normal
MAINCLK, and one for the 32KHz S32KCLK, and wire these up to the
appropriate devices.  The old property-based clock frequency setting
will remain in place until conversion is complete.

This is a migration compatibility break for machines mps2-an505,
mps2-an521, musca-a, musca-b1.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20210128114145.20536-12-peter.maydell@linaro.org
Message-id: 20210121190622.22000-12-peter.maydell@linaro.org
2021-01-29 15:54:42 +00:00

1204 lines
46 KiB
C

/*
* Arm SSE (Subsystems for Embedded): IoTKit
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/bitops.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/registerfields.h"
#include "hw/arm/armsse.h"
#include "hw/arm/boot.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
/* Format of the System Information block SYS_CONFIG register */
typedef enum SysConfigFormat {
IoTKitFormat,
SSE200Format,
} SysConfigFormat;
struct ARMSSEInfo {
const char *name;
int sram_banks;
int num_cpus;
uint32_t sys_version;
uint32_t cpuwait_rst;
SysConfigFormat sys_config_format;
bool has_mhus;
bool has_ppus;
bool has_cachectrl;
bool has_cpusecctrl;
bool has_cpuid;
Property *props;
};
static Property iotkit_properties[] = {
DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
DEFINE_PROP_UINT32("MAINCLK_FRQ", ARMSSE, mainclk_frq, 0),
DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
DEFINE_PROP_END_OF_LIST()
};
static Property armsse_properties[] = {
DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
DEFINE_PROP_UINT32("MAINCLK_FRQ", ARMSSE, mainclk_frq, 0),
DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
DEFINE_PROP_END_OF_LIST()
};
static const ARMSSEInfo armsse_variants[] = {
{
.name = TYPE_IOTKIT,
.sram_banks = 1,
.num_cpus = 1,
.sys_version = 0x41743,
.cpuwait_rst = 0,
.sys_config_format = IoTKitFormat,
.has_mhus = false,
.has_ppus = false,
.has_cachectrl = false,
.has_cpusecctrl = false,
.has_cpuid = false,
.props = iotkit_properties,
},
{
.name = TYPE_SSE200,
.sram_banks = 4,
.num_cpus = 2,
.sys_version = 0x22041743,
.cpuwait_rst = 2,
.sys_config_format = SSE200Format,
.has_mhus = true,
.has_ppus = true,
.has_cachectrl = true,
.has_cpusecctrl = true,
.has_cpuid = true,
.props = armsse_properties,
},
};
static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
{
/* Return the SYS_CONFIG value for this SSE */
uint32_t sys_config;
switch (info->sys_config_format) {
case IoTKitFormat:
sys_config = 0;
sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
break;
case SSE200Format:
sys_config = 0;
sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
sys_config = deposit32(sys_config, 24, 4, 2);
if (info->num_cpus > 1) {
sys_config = deposit32(sys_config, 10, 1, 1);
sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
sys_config = deposit32(sys_config, 28, 4, 2);
}
break;
default:
g_assert_not_reached();
}
return sys_config;
}
/* Clock frequency in HZ of the 32KHz "slow clock" */
#define S32KCLK (32 * 1000)
/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
static bool irq_is_common[32] = {
[0 ... 5] = true,
/* 6, 7: per-CPU MHU interrupts */
[8 ... 12] = true,
/* 13: per-CPU icache interrupt */
/* 14: reserved */
[15 ... 20] = true,
/* 21: reserved */
[22 ... 26] = true,
/* 27: reserved */
/* 28, 29: per-CPU CTI interrupts */
/* 30, 31: reserved */
};
/*
* Create an alias region in @container of @size bytes starting at @base
* which mirrors the memory starting at @orig.
*/
static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
const char *name, hwaddr base, hwaddr size, hwaddr orig)
{
memory_region_init_alias(mr, NULL, name, container, orig, size);
/* The alias is even lower priority than unimplemented_device regions */
memory_region_add_subregion_overlap(container, base, mr, -1500);
}
static void irq_status_forwarder(void *opaque, int n, int level)
{
qemu_irq destirq = opaque;
qemu_set_irq(destirq, level);
}
static void nsccfg_handler(void *opaque, int n, int level)
{
ARMSSE *s = ARM_SSE(opaque);
s->nsccfg = level;
}
static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
{
/* Each of the 4 AHB and 4 APB PPCs that might be present in a
* system using the ARMSSE has a collection of control lines which
* are provided by the security controller and which we want to
* expose as control lines on the ARMSSE device itself, so the
* code using the ARMSSE can wire them up to the PPCs.
*/
SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
DeviceState *armssedev = DEVICE(s);
DeviceState *dev_secctl = DEVICE(&s->secctl);
DeviceState *dev_splitter = DEVICE(splitter);
char *name;
name = g_strdup_printf("%s_nonsec", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
name = g_strdup_printf("%s_ap", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
name = g_strdup_printf("%s_irq_enable", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
name = g_strdup_printf("%s_irq_clear", ppcname);
qdev_pass_gpios(dev_secctl, armssedev, name);
g_free(name);
/* irq_status is a little more tricky, because we need to
* split it so we can send it both to the security controller
* and to our OR gate for the NVIC interrupt line.
* Connect up the splitter's outputs, and create a GPIO input
* which will pass the line state to the input splitter.
*/
name = g_strdup_printf("%s_irq_status", ppcname);
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
name, 0));
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
s->irq_status_in[ppcnum], name, 1);
g_free(name);
}
static void armsse_forward_sec_resp_cfg(ARMSSE *s)
{
/* Forward the 3rd output from the splitter device as a
* named GPIO output of the armsse object.
*/
DeviceState *dev = DEVICE(s);
DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
s->sec_resp_cfg, 1);
qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
}
static void armsse_init(Object *obj)
{
ARMSSE *s = ARM_SSE(obj);
ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
const ARMSSEInfo *info = asc->info;
int i;
assert(info->sram_banks <= MAX_SRAM_BANKS);
assert(info->num_cpus <= SSE_MAX_CPUS);
s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL);
s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL);
memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
for (i = 0; i < info->num_cpus; i++) {
/*
* We put each CPU in its own cluster as they are logically
* distinct and may be configured differently.
*/
char *name;
name = g_strdup_printf("cluster%d", i);
object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
g_free(name);
name = g_strdup_printf("armv7m%d", i);
object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
TYPE_ARMV7M);
qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
ARM_CPU_TYPE_NAME("cortex-m33"));
g_free(name);
name = g_strdup_printf("arm-sse-cpu-container%d", i);
memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
g_free(name);
if (i > 0) {
name = g_strdup_printf("arm-sse-container-alias%d", i);
memory_region_init_alias(&s->container_alias[i - 1], obj,
name, &s->container, 0, UINT64_MAX);
g_free(name);
}
}
object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
for (i = 0; i < info->sram_banks; i++) {
char *name = g_strdup_printf("mpc%d", i);
object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
g_free(name);
}
object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
TYPE_OR_IRQ);
for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
g_free(name);
}
object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
TYPE_CMSDK_APB_TIMER);
object_initialize_child(obj, "dualtimer", &s->dualtimer,
TYPE_CMSDK_APB_DUALTIMER);
object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
TYPE_CMSDK_APB_WATCHDOG);
object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
TYPE_CMSDK_APB_WATCHDOG);
object_initialize_child(obj, "swatchdog", &s->swatchdog,
TYPE_CMSDK_APB_WATCHDOG);
object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
TYPE_IOTKIT_SYSCTL);
object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
TYPE_IOTKIT_SYSINFO);
if (info->has_mhus) {
object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
}
if (info->has_ppus) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("CPU%dCORE_PPU", i);
int ppuidx = CPU0CORE_PPU + i;
object_initialize_child(obj, name, &s->ppu[ppuidx],
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
TYPE_UNIMPLEMENTED_DEVICE);
for (i = 0; i < info->sram_banks; i++) {
char *name = g_strdup_printf("RAM%d_PPU", i);
int ppuidx = RAM0_PPU + i;
object_initialize_child(obj, name, &s->ppu[ppuidx],
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
}
if (info->has_cachectrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cachectrl%d", i);
object_initialize_child(obj, name, &s->cachectrl[i],
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
}
if (info->has_cpusecctrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cpusecctrl%d", i);
object_initialize_child(obj, name, &s->cpusecctrl[i],
TYPE_UNIMPLEMENTED_DEVICE);
g_free(name);
}
}
if (info->has_cpuid) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cpuid%d", i);
object_initialize_child(obj, name, &s->cpuid[i],
TYPE_ARMSSE_CPUID);
g_free(name);
}
}
object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
TYPE_OR_IRQ);
object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
TYPE_SPLIT_IRQ);
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
SplitIRQ *splitter = &s->ppc_irq_splitter[i];
object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
g_free(name);
}
if (info->num_cpus > 1) {
for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
if (irq_is_common[i]) {
char *name = g_strdup_printf("cpu-irq-splitter%d", i);
SplitIRQ *splitter = &s->cpu_irq_splitter[i];
object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
g_free(name);
}
}
}
}
static void armsse_exp_irq(void *opaque, int n, int level)
{
qemu_irq *irqarray = opaque;
qemu_set_irq(irqarray[n], level);
}
static void armsse_mpcexp_status(void *opaque, int n, int level)
{
ARMSSE *s = ARM_SSE(opaque);
qemu_set_irq(s->mpcexp_status_in[n], level);
}
static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
{
/*
* Return a qemu_irq which can be used to signal IRQ n to
* all CPUs in the SSE.
*/
ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
const ARMSSEInfo *info = asc->info;
assert(irq_is_common[irqno]);
if (info->num_cpus == 1) {
/* Only one CPU -- just connect directly to it */
return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
} else {
/* Connect to the splitter which feeds all CPUs */
return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
}
}
static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
{
/* Map a PPU unimplemented device stub */
DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
qdev_prop_set_string(dev, "name", name);
qdev_prop_set_uint64(dev, "size", 0x1000);
sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
}
static void armsse_realize(DeviceState *dev, Error **errp)
{
ARMSSE *s = ARM_SSE(dev);
ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
const ARMSSEInfo *info = asc->info;
int i;
MemoryRegion *mr;
Error *err = NULL;
SysBusDevice *sbd_apb_ppc0;
SysBusDevice *sbd_secctl;
DeviceState *dev_apb_ppc0;
DeviceState *dev_apb_ppc1;
DeviceState *dev_secctl;
DeviceState *dev_splitter;
uint32_t addr_width_max;
if (!s->board_memory) {
error_setg(errp, "memory property was not set");
return;
}
if (!s->mainclk_frq) {
error_setg(errp, "MAINCLK_FRQ property was not set");
return;
}
assert(info->num_cpus <= SSE_MAX_CPUS);
/* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
assert(is_power_of_2(info->sram_banks));
addr_width_max = 24 - ctz32(info->sram_banks);
if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
addr_width_max);
return;
}
/* Handling of which devices should be available only to secure
* code is usually done differently for M profile than for A profile.
* Instead of putting some devices only into the secure address space,
* devices exist in both address spaces but with hard-wired security
* permissions that will cause the CPU to fault for non-secure accesses.
*
* The ARMSSE has an IDAU (Implementation Defined Access Unit),
* which specifies hard-wired security permissions for different
* areas of the physical address space. For the ARMSSE IDAU, the
* top 4 bits of the physical address are the IDAU region ID, and
* if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
* region, otherwise it is an S region.
*
* The various devices and RAMs are generally all mapped twice,
* once into a region that the IDAU defines as secure and once
* into a non-secure region. They sit behind either a Memory
* Protection Controller (for RAM) or a Peripheral Protection
* Controller (for devices), which allow a more fine grained
* configuration of whether non-secure accesses are permitted.
*
* (The other place that guest software can configure security
* permissions is in the architected SAU (Security Attribution
* Unit), which is entirely inside the CPU. The IDAU can upgrade
* the security attributes for a region to more restrictive than
* the SAU specifies, but cannot downgrade them.)
*
* 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
* 0x20000000..0x2007ffff 32KB FPGA block RAM
* 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
* 0x40000000..0x4000ffff base peripheral region 1
* 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
* 0x40020000..0x4002ffff system control element peripherals
* 0x40080000..0x400fffff base peripheral region 2
* 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
*/
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
for (i = 0; i < info->num_cpus; i++) {
DeviceState *cpudev = DEVICE(&s->armv7m[i]);
Object *cpuobj = OBJECT(&s->armv7m[i]);
int j;
char *gpioname;
qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
/*
* In real hardware the initial Secure VTOR is set from the INITSVTOR*
* registers in the IoT Kit System Control Register block. In QEMU
* we set the initial value here, and also the reset value of the
* sysctl register, from this object's QOM init-svtor property.
* If the guest changes the INITSVTOR* registers at runtime then the
* code in iotkit-sysctl.c will update the CPU init-svtor property
* (which will then take effect on the next CPU warm-reset).
*
* Note that typically a board using the SSE-200 will have a system
* control processor whose boot firmware initializes the INITSVTOR*
* registers before powering up the CPUs. QEMU doesn't emulate
* the control processor, so instead we behave in the way that the
* firmware does: the initial value should be set by the board code
* (using the init-svtor property on the ARMSSE object) to match
* whatever its firmware does.
*/
qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
/*
* CPUs start powered down if the corresponding bit in the CPUWAIT
* register is 1. In real hardware the CPUWAIT register reset value is
* a configurable property of the SSE-200 (via the CPUWAIT0_RST and
* CPUWAIT1_RST parameters), but since all the boards we care about
* start CPU0 and leave CPU1 powered off, we hard-code that in
* info->cpuwait_rst for now. We can add QOM properties for this
* later if necessary.
*/
if (extract32(info->cpuwait_rst, i, 1)) {
if (!object_property_set_bool(cpuobj, "start-powered-off", true,
errp)) {
return;
}
}
if (!s->cpu_fpu[i]) {
if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
return;
}
}
if (!s->cpu_dsp[i]) {
if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
return;
}
}
if (i > 0) {
memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
&s->container_alias[i - 1], -1);
} else {
memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
&s->container, -1);
}
object_property_set_link(cpuobj, "memory",
OBJECT(&s->cpu_container[i]), &error_abort);
object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
return;
}
/*
* The cluster must be realized after the armv7m container, as
* the container's CPU object is only created on realize, and the
* CPU must exist and have been parented into the cluster before
* the cluster is realized.
*/
if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
return;
}
/* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
for (j = 0; j < s->exp_numirq; j++) {
s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
}
if (i == 0) {
gpioname = g_strdup("EXP_IRQ");
} else {
gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
}
qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
s->exp_irqs[i],
gpioname, s->exp_numirq);
g_free(gpioname);
}
/* Wire up the splitters that connect common IRQs to all CPUs */
if (info->num_cpus > 1) {
for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
if (irq_is_common[i]) {
Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
DeviceState *devs = DEVICE(splitter);
int cpunum;
if (!object_property_set_int(splitter, "num-lines",
info->num_cpus, errp)) {
return;
}
if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
return;
}
for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
qdev_connect_gpio_out(devs, cpunum,
qdev_get_gpio_in(cpudev, i));
}
}
}
}
/* Set up the big aliases first */
make_alias(s, &s->alias1, &s->container, "alias 1",
0x10000000, 0x10000000, 0x00000000);
make_alias(s, &s->alias2, &s->container,
"alias 2", 0x30000000, 0x10000000, 0x20000000);
/* The 0x50000000..0x5fffffff region is not a pure alias: it has
* a few extra devices that only appear there (generally the
* control interfaces for the protection controllers).
* We implement this by mapping those devices over the top of this
* alias MR at a higher priority. Some of the devices in this range
* are per-CPU, so we must put this alias in the per-cpu containers.
*/
for (i = 0; i < info->num_cpus; i++) {
make_alias(s, &s->alias3[i], &s->cpu_container[i],
"alias 3", 0x50000000, 0x10000000, 0x40000000);
}
/* Security controller */
if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
return;
}
sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
dev_secctl = DEVICE(&s->secctl);
sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
/* The sec_resp_cfg output from the security controller must be split into
* multiple lines, one for each of the PPCs within the ARMSSE and one
* that will be an output from the ARMSSE to the system.
*/
if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
"num-lines", 3, errp)) {
return;
}
if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
return;
}
dev_splitter = DEVICE(&s->sec_resp_splitter);
qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
qdev_get_gpio_in(dev_splitter, 0));
/* Each SRAM bank lives behind its own Memory Protection Controller */
for (i = 0; i < info->sram_banks; i++) {
char *ramname = g_strdup_printf("armsse.sram%d", i);
SysBusDevice *sbd_mpc;
uint32_t sram_bank_size = 1 << s->sram_addr_width;
memory_region_init_ram(&s->sram[i], NULL, ramname,
sram_bank_size, &err);
g_free(ramname);
if (err) {
error_propagate(errp, err);
return;
}
object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
OBJECT(&s->sram[i]), &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
return;
}
/* Map the upstream end of the MPC into the right place... */
sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
memory_region_add_subregion(&s->container,
0x20000000 + i * sram_bank_size,
sysbus_mmio_get_region(sbd_mpc, 1));
/* ...and its register interface */
memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
sysbus_mmio_get_region(sbd_mpc, 0));
}
/* We must OR together lines from the MPC splitters to go to the NVIC */
if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
IOTS_NUM_EXP_MPC + info->sram_banks,
errp)) {
return;
}
if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
return;
}
qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
armsse_get_common_irq_in(s, 9));
/* Devices behind APB PPC0:
* 0x40000000: timer0
* 0x40001000: timer1
* 0x40002000: dual timer
* 0x40003000: MHU0 (SSE-200 only)
* 0x40004000: MHU1 (SSE-200 only)
* We must configure and realize each downstream device and connect
* it to the appropriate PPC port; then we can realize the PPC and
* map its upstream ends to the right place in the container.
*/
qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
qdev_connect_clock_in(DEVICE(&s->timer0), "pclk", s->mainclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
armsse_get_common_irq_in(s, 3));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
&error_abort);
qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
qdev_connect_clock_in(DEVICE(&s->timer1), "pclk", s->mainclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
armsse_get_common_irq_in(s, 4));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
&error_abort);
qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
qdev_connect_clock_in(DEVICE(&s->dualtimer), "TIMCLK", s->mainclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
armsse_get_common_irq_in(s, 5));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
&error_abort);
if (info->has_mhus) {
/*
* An SSE-200 with only one CPU should have only one MHU created,
* with the region where the second MHU usually is being RAZ/WI.
* We don't implement that SSE-200 config; if we want to support
* it then this code needs to be enhanced to handle creating the
* RAZ/WI region instead of the second MHU.
*/
assert(info->num_cpus == ARRAY_SIZE(s->mhu));
for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
char *port;
int cpunum;
SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
return;
}
port = g_strdup_printf("port[%d]", i + 3);
mr = sysbus_mmio_get_region(mhu_sbd, 0);
object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
&error_abort);
g_free(port);
/*
* Each MHU has an irq line for each CPU:
* MHU 0 irq line 0 -> CPU 0 IRQ 6
* MHU 0 irq line 1 -> CPU 1 IRQ 6
* MHU 1 irq line 0 -> CPU 0 IRQ 7
* MHU 1 irq line 1 -> CPU 1 IRQ 7
*/
for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
sysbus_connect_irq(mhu_sbd, cpunum,
qdev_get_gpio_in(cpudev, 6 + i));
}
}
}
if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
return;
}
sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
memory_region_add_subregion(&s->container, 0x40000000, mr);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
memory_region_add_subregion(&s->container, 0x40001000, mr);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
memory_region_add_subregion(&s->container, 0x40002000, mr);
if (info->has_mhus) {
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
memory_region_add_subregion(&s->container, 0x40003000, mr);
mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
memory_region_add_subregion(&s->container, 0x40004000, mr);
}
for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_nonsec", i));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_ap", i));
}
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"irq_enable", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"irq_clear", 0));
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_apb_ppc0,
"cfg_sec_resp", 0));
/* All the PPC irq lines (from the 2 internal PPCs and the 8 external
* ones) are sent individually to the security controller, and also
* ORed together to give a single combined PPC interrupt to the NVIC.
*/
if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
"num-lines", NUM_PPCS, errp)) {
return;
}
if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
return;
}
qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
armsse_get_common_irq_in(s, 10));
/*
* 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
* private per-CPU region (all these devices are SSE-200 only):
* 0x50010000: L1 icache control registers
* 0x50011000: CPUSECCTRL (CPU local security control registers)
* 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
*/
if (info->has_cachectrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("cachectrl%d", i);
MemoryRegion *mr;
qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
g_free(name);
qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
}
}
if (info->has_cpusecctrl) {
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("CPUSECCTRL%d", i);
MemoryRegion *mr;
qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
g_free(name);
qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
}
}
if (info->has_cpuid) {
for (i = 0; i < info->num_cpus; i++) {
MemoryRegion *mr;
qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
}
}
/* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
/* Devices behind APB PPC1:
* 0x4002f000: S32K timer
*/
qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
qdev_connect_clock_in(DEVICE(&s->s32ktimer), "pclk", s->s32kclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
armsse_get_common_irq_in(s, 2));
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
&error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
return;
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
memory_region_add_subregion(&s->container, 0x4002f000, mr);
dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_nonsec", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_ap", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"irq_enable", 0));
qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
qdev_get_gpio_in_named(dev_apb_ppc1,
"irq_clear", 0));
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in_named(dev_apb_ppc1,
"cfg_sec_resp", 0));
if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
info->sys_version, errp)) {
return;
}
if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
armsse_sys_config_value(s, info), errp)) {
return;
}
if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
return;
}
/* System information registers */
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
/* System control registers */
object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
info->sys_version, &error_abort);
object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
info->cpuwait_rst, &error_abort);
object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
s->init_svtor, &error_abort);
object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
s->init_svtor, &error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
if (info->has_ppus) {
/* CPUnCORE_PPU for each CPU */
for (i = 0; i < info->num_cpus; i++) {
char *name = g_strdup_printf("CPU%dCORE_PPU", i);
map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
/*
* We don't support CPU debug so don't create the
* CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
*/
g_free(name);
}
map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
for (i = 0; i < info->sram_banks; i++) {
char *name = g_strdup_printf("RAM%d_PPU", i);
map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
g_free(name);
}
}
/* This OR gate wires together outputs from the secure watchdogs to NMI */
if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
errp)) {
return;
}
if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
return;
}
qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
qdev_connect_clock_in(DEVICE(&s->s32kwatchdog), "WDOGCLK", s->s32kclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
/* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
qdev_connect_clock_in(DEVICE(&s->nswatchdog), "WDOGCLK", s->mainclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
armsse_get_common_irq_in(s, 1));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
qdev_connect_clock_in(DEVICE(&s->swatchdog), "WDOGCLK", s->mainclk);
if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
return;
}
sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
return;
}
if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
return;
}
}
for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
armsse_forward_ppc(s, ppcname, i);
g_free(ppcname);
}
for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
g_free(ppcname);
}
for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
/* Wire up IRQ splitter for internal PPCs */
DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
i - NUM_EXTERNAL_PPCS);
TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
qdev_connect_gpio_out(devs, 0,
qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
qdev_connect_gpio_out(devs, 1,
qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
qdev_get_gpio_in(devs, 0));
g_free(gpioname);
}
/* Wire up the splitters for the MPC IRQs */
for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
SplitIRQ *splitter = &s->mpc_irq_splitter[i];
DeviceState *dev_splitter = DEVICE(splitter);
if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
errp)) {
return;
}
if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
return;
}
if (i < IOTS_NUM_EXP_MPC) {
/* Splitter input is from GPIO input line */
s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
"mpcexp_status", i));
} else {
/* Splitter input is from our own MPC */
qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
"irq", 0,
qdev_get_gpio_in(dev_splitter, 0));
qdev_connect_gpio_out(dev_splitter, 0,
qdev_get_gpio_in_named(dev_secctl,
"mpc_status",
i - IOTS_NUM_EXP_MPC));
}
qdev_connect_gpio_out(dev_splitter, 1,
qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
}
/* Create GPIO inputs which will pass the line state for our
* mpcexp_irq inputs to the correct splitter devices.
*/
qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
IOTS_NUM_EXP_MPC);
armsse_forward_sec_resp_cfg(s);
/* Forward the MSC related signals */
qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
armsse_get_common_irq_in(s, 11));
/*
* Expose our container region to the board model; this corresponds
* to the AHB Slave Expansion ports which allow bus master devices
* (eg DMA controllers) in the board model to make transactions into
* devices in the ARMSSE.
*/
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
}
static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
int *iregion, bool *exempt, bool *ns, bool *nsc)
{
/*
* For ARMSSE systems the IDAU responses are simple logical functions
* of the address bits. The NSC attribute is guest-adjustable via the
* NSCCFG register in the security controller.
*/
ARMSSE *s = ARM_SSE(ii);
int region = extract32(address, 28, 4);
*ns = !(region & 1);
*nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
/* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
*exempt = (address & 0xeff00000) == 0xe0000000;
*iregion = region;
}
static const VMStateDescription armsse_vmstate = {
.name = "iotkit",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(mainclk, ARMSSE),
VMSTATE_CLOCK(s32kclk, ARMSSE),
VMSTATE_UINT32(nsccfg, ARMSSE),
VMSTATE_END_OF_LIST()
}
};
static void armsse_reset(DeviceState *dev)
{
ARMSSE *s = ARM_SSE(dev);
s->nsccfg = 0;
}
static void armsse_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
ARMSSEClass *asc = ARM_SSE_CLASS(klass);
const ARMSSEInfo *info = data;
dc->realize = armsse_realize;
dc->vmsd = &armsse_vmstate;
device_class_set_props(dc, info->props);
dc->reset = armsse_reset;
iic->check = armsse_idau_check;
asc->info = info;
}
static const TypeInfo armsse_info = {
.name = TYPE_ARM_SSE,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ARMSSE),
.class_size = sizeof(ARMSSEClass),
.instance_init = armsse_init,
.abstract = true,
.interfaces = (InterfaceInfo[]) {
{ TYPE_IDAU_INTERFACE },
{ }
}
};
static void armsse_register_types(void)
{
int i;
type_register_static(&armsse_info);
for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
TypeInfo ti = {
.name = armsse_variants[i].name,
.parent = TYPE_ARM_SSE,
.class_init = armsse_class_init,
.class_data = (void *)&armsse_variants[i],
};
type_register(&ti);
}
}
type_init(armsse_register_types);