Ian Campbell e0cb42ae4b xen: Switch uses of xc_map_foreign_{pages,bulk} to use libxenforeignmemory API.
In Xen 4.7 we are refactoring parts libxenctrl into a number of
separate libraries which will provide backward and forward API and ABI
compatiblity.

One such library will be libxenforeignmemory which provides access to
privileged foreign mappings and which will provide an interface
equivalent to xc_map_foreign_{pages,bulk}.

The new xenforeignmemory_map() function behaves like
xc_map_foreign_pages() when the err argument is NULL and like
xc_map_foreign_bulk() when err is non-NULL, which maps into the shim
here onto checking err == NULL and calling the appropriate old
function.

Note that xenforeignmemory_map() takes the number of pages before the
arrays themselves, in order to support potentially future use of
variable-length-arrays in the prototype (in the future, when Xen's
baseline toolchain requirements are new enough to ensure VLAs are
supported).

In preparation for adding support for libxenforeignmemory add support
to the <=4.0 and <=4.6 compat code in xen_common.h to allow us to
switch to using the new API. These shims will disappear for versions
of Xen which include libxenforeignmemory.

Since libxenforeignmemory will have its own handle type but for <= 4.6
the functionality is provided by using a libxenctrl handle we
introduce a new global xen_fmem alongside the existing xen_xc. In fact
we make xen_fmem a pointer to the existing xen_xc, which then works
correctly with both <=4.0 (xc handle is an int) and <=4.6 (xc handle
is a pointer). In the latter case xen_fmem is actually a double
indirect pointer, but it all falls out in the wash.

Unlike libxenctrl libxenforeignmemory has an explicit unmap function,
rather than just specifying that munmap should be used, so the unmap
paths are updated to use xenforeignmemory_unmap, which is a shim for
munmap on these versions of xen. The mappings in xen-hvm.c do not
appear to be unmapped (which makes sense for a qemu-dm process)

In fb_disconnect this results in a change from simply mmap over the
existing mapping (with an implicit munmap) to expliclty unmapping with
xenforeignmemory_unmap and then mapping the required anonymous memory
in the same hole. I don't think this is a problem since any other
thread which was racily touching this region would already be running
the risk of hitting the mapping halfway through the call. If this is
thought to be a problem then we could consider adding an extra API to
the libxenforeignmemory interface to replace a foreign mapping with
anonymous shared memory, but I'd prefer not to.

Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
2016-01-26 17:19:35 +00:00
2016-01-23 14:30:04 +00:00
2016-01-11 14:22:04 +00:00
2015-12-10 13:50:45 +00:00
2016-01-25 14:35:23 -05:00
2016-01-22 11:36:29 +00:00
2015-12-17 17:33:47 +01:00
2016-01-21 15:53:25 +00:00
2016-01-23 14:30:04 +00:00
2016-01-21 13:09:47 +00:00
2016-01-11 11:39:28 +03:00
2016-01-21 14:15:06 +00:00
2016-01-21 17:21:08 +00:00
2015-12-03 11:08:01 +08:00
2016-01-21 17:21:08 +00:00
2016-01-15 18:58:02 +01:00
2015-12-22 18:39:19 +02:00
2016-01-20 13:36:23 +01:00
2016-01-20 13:36:23 +01:00
2016-01-20 13:36:23 +01:00
2015-12-17 17:33:48 +01:00
2016-01-19 11:33:42 -07:00
2015-12-17 10:17:08 +00:00

         QEMU README
         ===========

QEMU is a generic and open source machine & userspace emulator and
virtualizer.

QEMU is capable of emulating a complete machine in software without any
need for hardware virtualization support. By using dynamic translation,
it achieves very good performance. QEMU can also integrate with the Xen
and KVM hypervisors to provide emulated hardware while allowing the
hypervisor to manage the CPU. With hypervisor support, QEMU can achieve
near native performance for CPUs. When QEMU emulates CPUs directly it is
capable of running operating systems made for one machine (e.g. an ARMv7
board) on a different machine (e.g. an x86_64 PC board).

QEMU is also capable of providing userspace API virtualization for Linux
and BSD kernel interfaces. This allows binaries compiled against one
architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a
different architecture ABI (e.g. the Linux x86_64 ABI). This does not
involve any hardware emulation, simply CPU and syscall emulation.

QEMU aims to fit into a variety of use cases. It can be invoked directly
by users wishing to have full control over its behaviour and settings.
It also aims to facilitate integration into higher level management
layers, by providing a stable command line interface and monitor API.
It is commonly invoked indirectly via the libvirt library when using
open source applications such as oVirt, OpenStack and virt-manager.

QEMU as a whole is released under the GNU General Public License,
version 2. For full licensing details, consult the LICENSE file.


Building
========

QEMU is multi-platform software intended to be buildable on all modern
Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety
of other UNIX targets. The simple steps to build QEMU are:

  mkdir build
  cd build
  ../configure
  make

Complete details of the process for building and configuring QEMU for
all supported host platforms can be found in the qemu-tech.html file.
Additional information can also be found online via the QEMU website:

  http://qemu-project.org/Hosts/Linux
  http://qemu-project.org/Hosts/W32


Submitting patches
==================

The QEMU source code is maintained under the GIT version control system.

   git clone git://git.qemu-project.org/qemu.git

When submitting patches, the preferred approach is to use 'git
format-patch' and/or 'git send-email' to format & send the mail to the
qemu-devel@nongnu.org mailing list. All patches submitted must contain
a 'Signed-off-by' line from the author. Patches should follow the
guidelines set out in the HACKING and CODING_STYLE files.

Additional information on submitting patches can be found online via
the QEMU website

  http://qemu-project.org/Contribute/SubmitAPatch
  http://qemu-project.org/Contribute/TrivialPatches


Bug reporting
=============

The QEMU project uses Launchpad as its primary upstream bug tracker. Bugs
found when running code built from QEMU git or upstream released sources
should be reported via:

  https://bugs.launchpad.net/qemu/

If using QEMU via an operating system vendor pre-built binary package, it
is preferable to report bugs to the vendor's own bug tracker first. If
the bug is also known to affect latest upstream code, it can also be
reported via launchpad.

For additional information on bug reporting consult:

  http://qemu-project.org/Contribute/ReportABug


Contact
=======

The QEMU community can be contacted in a number of ways, with the two
main methods being email and IRC

 - qemu-devel@nongnu.org
   http://lists.nongnu.org/mailman/listinfo/qemu-devel
 - #qemu on irc.oftc.net

Information on additional methods of contacting the community can be
found online via the QEMU website:

  http://qemu-project.org/Contribute/StartHere

-- End
Description
No description provided
Readme 404 MiB
Languages
C 82.6%
C++ 6.5%
Python 3.4%
Dylan 2.9%
Shell 1.6%
Other 2.8%