qemu/hw/riscv/riscv-iommu.c
Daniel Henrique Barboza cd5d265f42 hw/riscv/riscv-iommu: change 'depth' to int
Coverity reports an unsigned overflow when doing:

    for (; depth-- > 0; ) {

When depth = 0 inside riscv_iommu_ctx_fetch().

Building it with a recent GCC the code doesn't actually break with depth
= 0, i.e. the comparison "0-- > 0" will exit the loop instead of
proceeding,  but 'depth' will retain the overflow value afterwards.

This behavior can be compiler dependent, so change 'depth' to int to
remove this potential ambiguity.

Resolves: Coverity CID 1564783
Fixes: 0c54acb824 ("hw/riscv: add RISC-V IOMMU base emulation")
Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-ID: <20241104123839.533442-2-dbarboza@ventanamicro.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-11-07 08:18:17 +10:00

2417 lines
80 KiB
C

/*
* QEMU emulation of an RISC-V IOMMU
*
* Copyright (C) 2021-2023, Rivos Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qom/object.h"
#include "hw/pci/pci_bus.h"
#include "hw/pci/pci_device.h"
#include "hw/qdev-properties.h"
#include "hw/riscv/riscv_hart.h"
#include "migration/vmstate.h"
#include "qapi/error.h"
#include "qemu/timer.h"
#include "cpu_bits.h"
#include "riscv-iommu.h"
#include "riscv-iommu-bits.h"
#include "trace.h"
#define LIMIT_CACHE_CTX (1U << 7)
#define LIMIT_CACHE_IOT (1U << 20)
/* Physical page number coversions */
#define PPN_PHYS(ppn) ((ppn) << TARGET_PAGE_BITS)
#define PPN_DOWN(phy) ((phy) >> TARGET_PAGE_BITS)
typedef struct RISCVIOMMUContext RISCVIOMMUContext;
typedef struct RISCVIOMMUEntry RISCVIOMMUEntry;
/* Device assigned I/O address space */
struct RISCVIOMMUSpace {
IOMMUMemoryRegion iova_mr; /* IOVA memory region for attached device */
AddressSpace iova_as; /* IOVA address space for attached device */
RISCVIOMMUState *iommu; /* Managing IOMMU device state */
uint32_t devid; /* Requester identifier, AKA device_id */
bool notifier; /* IOMMU unmap notifier enabled */
QLIST_ENTRY(RISCVIOMMUSpace) list;
};
/* Device translation context state. */
struct RISCVIOMMUContext {
uint64_t devid:24; /* Requester Id, AKA device_id */
uint64_t process_id:20; /* Process ID. PASID for PCIe */
uint64_t tc; /* Translation Control */
uint64_t ta; /* Translation Attributes */
uint64_t satp; /* S-Stage address translation and protection */
uint64_t gatp; /* G-Stage address translation and protection */
uint64_t msi_addr_mask; /* MSI filtering - address mask */
uint64_t msi_addr_pattern; /* MSI filtering - address pattern */
uint64_t msiptp; /* MSI redirection page table pointer */
};
/* Address translation cache entry */
struct RISCVIOMMUEntry {
uint64_t iova:44; /* IOVA Page Number */
uint64_t pscid:20; /* Process Soft-Context identifier */
uint64_t phys:44; /* Physical Page Number */
uint64_t gscid:16; /* Guest Soft-Context identifier */
uint64_t perm:2; /* IOMMU_RW flags */
};
/* IOMMU index for transactions without process_id specified. */
#define RISCV_IOMMU_NOPROCID 0
static uint8_t riscv_iommu_get_icvec_vector(uint32_t icvec, uint32_t vec_type)
{
switch (vec_type) {
case RISCV_IOMMU_INTR_CQ:
return icvec & RISCV_IOMMU_ICVEC_CIV;
case RISCV_IOMMU_INTR_FQ:
return (icvec & RISCV_IOMMU_ICVEC_FIV) >> 4;
case RISCV_IOMMU_INTR_PM:
return (icvec & RISCV_IOMMU_ICVEC_PMIV) >> 8;
case RISCV_IOMMU_INTR_PQ:
return (icvec & RISCV_IOMMU_ICVEC_PIV) >> 12;
default:
g_assert_not_reached();
}
}
static void riscv_iommu_notify(RISCVIOMMUState *s, int vec_type)
{
const uint32_t fctl = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_FCTL);
uint32_t ipsr, icvec, vector;
if (fctl & RISCV_IOMMU_FCTL_WSI || !s->notify) {
return;
}
icvec = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_ICVEC);
ipsr = riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_IPSR, (1 << vec_type), 0);
if (!(ipsr & (1 << vec_type))) {
vector = riscv_iommu_get_icvec_vector(icvec, vec_type);
s->notify(s, vector);
trace_riscv_iommu_notify_int_vector(vec_type, vector);
}
}
static void riscv_iommu_fault(RISCVIOMMUState *s,
struct riscv_iommu_fq_record *ev)
{
uint32_t ctrl = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_FQCSR);
uint32_t head = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_FQH) & s->fq_mask;
uint32_t tail = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_FQT) & s->fq_mask;
uint32_t next = (tail + 1) & s->fq_mask;
uint32_t devid = get_field(ev->hdr, RISCV_IOMMU_FQ_HDR_DID);
trace_riscv_iommu_flt(s->parent_obj.id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
PCI_FUNC(devid), ev->hdr, ev->iotval);
if (!(ctrl & RISCV_IOMMU_FQCSR_FQON) ||
!!(ctrl & (RISCV_IOMMU_FQCSR_FQOF | RISCV_IOMMU_FQCSR_FQMF))) {
return;
}
if (head == next) {
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_FQCSR,
RISCV_IOMMU_FQCSR_FQOF, 0);
} else {
dma_addr_t addr = s->fq_addr + tail * sizeof(*ev);
if (dma_memory_write(s->target_as, addr, ev, sizeof(*ev),
MEMTXATTRS_UNSPECIFIED) != MEMTX_OK) {
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_FQCSR,
RISCV_IOMMU_FQCSR_FQMF, 0);
} else {
riscv_iommu_reg_set32(s, RISCV_IOMMU_REG_FQT, next);
}
}
if (ctrl & RISCV_IOMMU_FQCSR_FIE) {
riscv_iommu_notify(s, RISCV_IOMMU_INTR_FQ);
}
}
static void riscv_iommu_pri(RISCVIOMMUState *s,
struct riscv_iommu_pq_record *pr)
{
uint32_t ctrl = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_PQCSR);
uint32_t head = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_PQH) & s->pq_mask;
uint32_t tail = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_PQT) & s->pq_mask;
uint32_t next = (tail + 1) & s->pq_mask;
uint32_t devid = get_field(pr->hdr, RISCV_IOMMU_PREQ_HDR_DID);
trace_riscv_iommu_pri(s->parent_obj.id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
PCI_FUNC(devid), pr->payload);
if (!(ctrl & RISCV_IOMMU_PQCSR_PQON) ||
!!(ctrl & (RISCV_IOMMU_PQCSR_PQOF | RISCV_IOMMU_PQCSR_PQMF))) {
return;
}
if (head == next) {
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_PQCSR,
RISCV_IOMMU_PQCSR_PQOF, 0);
} else {
dma_addr_t addr = s->pq_addr + tail * sizeof(*pr);
if (dma_memory_write(s->target_as, addr, pr, sizeof(*pr),
MEMTXATTRS_UNSPECIFIED) != MEMTX_OK) {
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_PQCSR,
RISCV_IOMMU_PQCSR_PQMF, 0);
} else {
riscv_iommu_reg_set32(s, RISCV_IOMMU_REG_PQT, next);
}
}
if (ctrl & RISCV_IOMMU_PQCSR_PIE) {
riscv_iommu_notify(s, RISCV_IOMMU_INTR_PQ);
}
}
/*
* Discards all bits from 'val' whose matching bits in the same
* positions in the mask 'ext' are zeros, and packs the remaining
* bits from 'val' contiguously at the least-significant end of the
* result, keeping the same bit order as 'val' and filling any
* other bits at the most-significant end of the result with zeros.
*
* For example, for the following 'val' and 'ext', the return 'ret'
* will be:
*
* val = a b c d e f g h
* ext = 1 0 1 0 0 1 1 0
* ret = 0 0 0 0 a c f g
*
* This function, taken from the riscv-iommu 1.0 spec, section 2.3.3
* "Process to translate addresses of MSIs", is similar to bit manip
* function PEXT (Parallel bits extract) from x86.
*/
static uint64_t riscv_iommu_pext_u64(uint64_t val, uint64_t ext)
{
uint64_t ret = 0;
uint64_t rot = 1;
while (ext) {
if (ext & 1) {
if (val & 1) {
ret |= rot;
}
rot <<= 1;
}
val >>= 1;
ext >>= 1;
}
return ret;
}
/* Check if GPA matches MSI/MRIF pattern. */
static bool riscv_iommu_msi_check(RISCVIOMMUState *s, RISCVIOMMUContext *ctx,
dma_addr_t gpa)
{
if (!s->enable_msi) {
return false;
}
if (get_field(ctx->msiptp, RISCV_IOMMU_DC_MSIPTP_MODE) !=
RISCV_IOMMU_DC_MSIPTP_MODE_FLAT) {
return false; /* Invalid MSI/MRIF mode */
}
if ((PPN_DOWN(gpa) ^ ctx->msi_addr_pattern) & ~ctx->msi_addr_mask) {
return false; /* GPA not in MSI range defined by AIA IMSIC rules. */
}
return true;
}
/*
* RISCV IOMMU Address Translation Lookup - Page Table Walk
*
* Note: Code is based on get_physical_address() from target/riscv/cpu_helper.c
* Both implementation can be merged into single helper function in future.
* Keeping them separate for now, as error reporting and flow specifics are
* sufficiently different for separate implementation.
*
* @s : IOMMU Device State
* @ctx : Translation context for device id and process address space id.
* @iotlb : translation data: physical address and access mode.
* @return : success or fault cause code.
*/
static int riscv_iommu_spa_fetch(RISCVIOMMUState *s, RISCVIOMMUContext *ctx,
IOMMUTLBEntry *iotlb)
{
dma_addr_t addr, base;
uint64_t satp, gatp, pte;
bool en_s, en_g;
struct {
unsigned char step;
unsigned char levels;
unsigned char ptidxbits;
unsigned char ptesize;
} sc[2];
/* Translation stage phase */
enum {
S_STAGE = 0,
G_STAGE = 1,
} pass;
MemTxResult ret;
satp = get_field(ctx->satp, RISCV_IOMMU_ATP_MODE_FIELD);
gatp = get_field(ctx->gatp, RISCV_IOMMU_ATP_MODE_FIELD);
en_s = satp != RISCV_IOMMU_DC_FSC_MODE_BARE;
en_g = gatp != RISCV_IOMMU_DC_IOHGATP_MODE_BARE;
/*
* Early check for MSI address match when IOVA == GPA.
* Note that the (!en_s) condition means that the MSI
* page table may only be used when guest pages are
* mapped using the g-stage page table, whether single-
* or two-stage paging is enabled. It's unavoidable though,
* because the spec mandates that we do a first-stage
* translation before we check the MSI page table, which
* means we can't do an early MSI check unless we have
* strictly !en_s.
*/
if (!en_s && (iotlb->perm & IOMMU_WO) &&
riscv_iommu_msi_check(s, ctx, iotlb->iova)) {
iotlb->target_as = &s->trap_as;
iotlb->translated_addr = iotlb->iova;
iotlb->addr_mask = ~TARGET_PAGE_MASK;
return 0;
}
/* Exit early for pass-through mode. */
if (!(en_s || en_g)) {
iotlb->translated_addr = iotlb->iova;
iotlb->addr_mask = ~TARGET_PAGE_MASK;
/* Allow R/W in pass-through mode */
iotlb->perm = IOMMU_RW;
return 0;
}
/* S/G translation parameters. */
for (pass = 0; pass < 2; pass++) {
uint32_t sv_mode;
sc[pass].step = 0;
if (pass ? (s->fctl & RISCV_IOMMU_FCTL_GXL) :
(ctx->tc & RISCV_IOMMU_DC_TC_SXL)) {
/* 32bit mode for GXL/SXL == 1 */
switch (pass ? gatp : satp) {
case RISCV_IOMMU_DC_IOHGATP_MODE_BARE:
sc[pass].levels = 0;
sc[pass].ptidxbits = 0;
sc[pass].ptesize = 0;
break;
case RISCV_IOMMU_DC_IOHGATP_MODE_SV32X4:
sv_mode = pass ? RISCV_IOMMU_CAP_SV32X4 : RISCV_IOMMU_CAP_SV32;
if (!(s->cap & sv_mode)) {
return RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED;
}
sc[pass].levels = 2;
sc[pass].ptidxbits = 10;
sc[pass].ptesize = 4;
break;
default:
return RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED;
}
} else {
/* 64bit mode for GXL/SXL == 0 */
switch (pass ? gatp : satp) {
case RISCV_IOMMU_DC_IOHGATP_MODE_BARE:
sc[pass].levels = 0;
sc[pass].ptidxbits = 0;
sc[pass].ptesize = 0;
break;
case RISCV_IOMMU_DC_IOHGATP_MODE_SV39X4:
sv_mode = pass ? RISCV_IOMMU_CAP_SV39X4 : RISCV_IOMMU_CAP_SV39;
if (!(s->cap & sv_mode)) {
return RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED;
}
sc[pass].levels = 3;
sc[pass].ptidxbits = 9;
sc[pass].ptesize = 8;
break;
case RISCV_IOMMU_DC_IOHGATP_MODE_SV48X4:
sv_mode = pass ? RISCV_IOMMU_CAP_SV48X4 : RISCV_IOMMU_CAP_SV48;
if (!(s->cap & sv_mode)) {
return RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED;
}
sc[pass].levels = 4;
sc[pass].ptidxbits = 9;
sc[pass].ptesize = 8;
break;
case RISCV_IOMMU_DC_IOHGATP_MODE_SV57X4:
sv_mode = pass ? RISCV_IOMMU_CAP_SV57X4 : RISCV_IOMMU_CAP_SV57;
if (!(s->cap & sv_mode)) {
return RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED;
}
sc[pass].levels = 5;
sc[pass].ptidxbits = 9;
sc[pass].ptesize = 8;
break;
default:
return RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED;
}
}
};
/* S/G stages translation tables root pointers */
gatp = PPN_PHYS(get_field(ctx->gatp, RISCV_IOMMU_ATP_PPN_FIELD));
satp = PPN_PHYS(get_field(ctx->satp, RISCV_IOMMU_ATP_PPN_FIELD));
addr = (en_s && en_g) ? satp : iotlb->iova;
base = en_g ? gatp : satp;
pass = en_g ? G_STAGE : S_STAGE;
do {
const unsigned widened = (pass && !sc[pass].step) ? 2 : 0;
const unsigned va_bits = widened + sc[pass].ptidxbits;
const unsigned va_skip = TARGET_PAGE_BITS + sc[pass].ptidxbits *
(sc[pass].levels - 1 - sc[pass].step);
const unsigned idx = (addr >> va_skip) & ((1 << va_bits) - 1);
const dma_addr_t pte_addr = base + idx * sc[pass].ptesize;
const bool ade =
ctx->tc & (pass ? RISCV_IOMMU_DC_TC_GADE : RISCV_IOMMU_DC_TC_SADE);
/* Address range check before first level lookup */
if (!sc[pass].step) {
const uint64_t va_mask = (1ULL << (va_skip + va_bits)) - 1;
if ((addr & va_mask) != addr) {
return RISCV_IOMMU_FQ_CAUSE_DMA_DISABLED;
}
}
/* Read page table entry */
if (sc[pass].ptesize == 4) {
uint32_t pte32 = 0;
ret = ldl_le_dma(s->target_as, pte_addr, &pte32,
MEMTXATTRS_UNSPECIFIED);
pte = pte32;
} else {
ret = ldq_le_dma(s->target_as, pte_addr, &pte,
MEMTXATTRS_UNSPECIFIED);
}
if (ret != MEMTX_OK) {
return (iotlb->perm & IOMMU_WO) ? RISCV_IOMMU_FQ_CAUSE_WR_FAULT
: RISCV_IOMMU_FQ_CAUSE_RD_FAULT;
}
sc[pass].step++;
hwaddr ppn = pte >> PTE_PPN_SHIFT;
if (!(pte & PTE_V)) {
break; /* Invalid PTE */
} else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
base = PPN_PHYS(ppn); /* Inner PTE, continue walking */
} else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
break; /* Reserved leaf PTE flags: PTE_W */
} else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
break; /* Reserved leaf PTE flags: PTE_W + PTE_X */
} else if (ppn & ((1ULL << (va_skip - TARGET_PAGE_BITS)) - 1)) {
break; /* Misaligned PPN */
} else if ((iotlb->perm & IOMMU_RO) && !(pte & PTE_R)) {
break; /* Read access check failed */
} else if ((iotlb->perm & IOMMU_WO) && !(pte & PTE_W)) {
break; /* Write access check failed */
} else if ((iotlb->perm & IOMMU_RO) && !ade && !(pte & PTE_A)) {
break; /* Access bit not set */
} else if ((iotlb->perm & IOMMU_WO) && !ade && !(pte & PTE_D)) {
break; /* Dirty bit not set */
} else {
/* Leaf PTE, translation completed. */
sc[pass].step = sc[pass].levels;
base = PPN_PHYS(ppn) | (addr & ((1ULL << va_skip) - 1));
/* Update address mask based on smallest translation granularity */
iotlb->addr_mask &= (1ULL << va_skip) - 1;
/* Continue with S-Stage translation? */
if (pass && sc[0].step != sc[0].levels) {
pass = S_STAGE;
addr = iotlb->iova;
continue;
}
/* Translation phase completed (GPA or SPA) */
iotlb->translated_addr = base;
iotlb->perm = (pte & PTE_W) ? ((pte & PTE_R) ? IOMMU_RW : IOMMU_WO)
: IOMMU_RO;
/* Check MSI GPA address match */
if (pass == S_STAGE && (iotlb->perm & IOMMU_WO) &&
riscv_iommu_msi_check(s, ctx, base)) {
/* Trap MSI writes and return GPA address. */
iotlb->target_as = &s->trap_as;
iotlb->addr_mask = ~TARGET_PAGE_MASK;
return 0;
}
/* Continue with G-Stage translation? */
if (!pass && en_g) {
pass = G_STAGE;
addr = base;
base = gatp;
sc[pass].step = 0;
continue;
}
return 0;
}
if (sc[pass].step == sc[pass].levels) {
break; /* Can't find leaf PTE */
}
/* Continue with G-Stage translation? */
if (!pass && en_g) {
pass = G_STAGE;
addr = base;
base = gatp;
sc[pass].step = 0;
}
} while (1);
return (iotlb->perm & IOMMU_WO) ?
(pass ? RISCV_IOMMU_FQ_CAUSE_WR_FAULT_VS :
RISCV_IOMMU_FQ_CAUSE_WR_FAULT_S) :
(pass ? RISCV_IOMMU_FQ_CAUSE_RD_FAULT_VS :
RISCV_IOMMU_FQ_CAUSE_RD_FAULT_S);
}
static void riscv_iommu_report_fault(RISCVIOMMUState *s,
RISCVIOMMUContext *ctx,
uint32_t fault_type, uint32_t cause,
bool pv,
uint64_t iotval, uint64_t iotval2)
{
struct riscv_iommu_fq_record ev = { 0 };
if (ctx->tc & RISCV_IOMMU_DC_TC_DTF) {
switch (cause) {
case RISCV_IOMMU_FQ_CAUSE_DMA_DISABLED:
case RISCV_IOMMU_FQ_CAUSE_DDT_LOAD_FAULT:
case RISCV_IOMMU_FQ_CAUSE_DDT_INVALID:
case RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED:
case RISCV_IOMMU_FQ_CAUSE_DDT_CORRUPTED:
case RISCV_IOMMU_FQ_CAUSE_INTERNAL_DP_ERROR:
case RISCV_IOMMU_FQ_CAUSE_MSI_WR_FAULT:
break;
default:
/* DTF prevents reporting a fault for this given cause */
return;
}
}
ev.hdr = set_field(ev.hdr, RISCV_IOMMU_FQ_HDR_CAUSE, cause);
ev.hdr = set_field(ev.hdr, RISCV_IOMMU_FQ_HDR_TTYPE, fault_type);
ev.hdr = set_field(ev.hdr, RISCV_IOMMU_FQ_HDR_DID, ctx->devid);
ev.hdr = set_field(ev.hdr, RISCV_IOMMU_FQ_HDR_PV, true);
if (pv) {
ev.hdr = set_field(ev.hdr, RISCV_IOMMU_FQ_HDR_PID, ctx->process_id);
}
ev.iotval = iotval;
ev.iotval2 = iotval2;
riscv_iommu_fault(s, &ev);
}
/* Redirect MSI write for given GPA. */
static MemTxResult riscv_iommu_msi_write(RISCVIOMMUState *s,
RISCVIOMMUContext *ctx, uint64_t gpa, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
MemTxResult res;
dma_addr_t addr;
uint64_t intn;
uint32_t n190;
uint64_t pte[2];
int fault_type = RISCV_IOMMU_FQ_TTYPE_UADDR_WR;
int cause;
/* Interrupt File Number */
intn = riscv_iommu_pext_u64(PPN_DOWN(gpa), ctx->msi_addr_mask);
if (intn >= 256) {
/* Interrupt file number out of range */
res = MEMTX_ACCESS_ERROR;
cause = RISCV_IOMMU_FQ_CAUSE_MSI_LOAD_FAULT;
goto err;
}
/* fetch MSI PTE */
addr = PPN_PHYS(get_field(ctx->msiptp, RISCV_IOMMU_DC_MSIPTP_PPN));
addr = addr | (intn * sizeof(pte));
res = dma_memory_read(s->target_as, addr, &pte, sizeof(pte),
MEMTXATTRS_UNSPECIFIED);
if (res != MEMTX_OK) {
if (res == MEMTX_DECODE_ERROR) {
cause = RISCV_IOMMU_FQ_CAUSE_MSI_PT_CORRUPTED;
} else {
cause = RISCV_IOMMU_FQ_CAUSE_MSI_LOAD_FAULT;
}
goto err;
}
le64_to_cpus(&pte[0]);
le64_to_cpus(&pte[1]);
if (!(pte[0] & RISCV_IOMMU_MSI_PTE_V) || (pte[0] & RISCV_IOMMU_MSI_PTE_C)) {
/*
* The spec mentions that: "If msipte.C == 1, then further
* processing to interpret the PTE is implementation
* defined.". We'll abort with cause = 262 for this
* case too.
*/
res = MEMTX_ACCESS_ERROR;
cause = RISCV_IOMMU_FQ_CAUSE_MSI_INVALID;
goto err;
}
switch (get_field(pte[0], RISCV_IOMMU_MSI_PTE_M)) {
case RISCV_IOMMU_MSI_PTE_M_BASIC:
/* MSI Pass-through mode */
addr = PPN_PHYS(get_field(pte[0], RISCV_IOMMU_MSI_PTE_PPN));
trace_riscv_iommu_msi(s->parent_obj.id, PCI_BUS_NUM(ctx->devid),
PCI_SLOT(ctx->devid), PCI_FUNC(ctx->devid),
gpa, addr);
res = dma_memory_write(s->target_as, addr, &data, size, attrs);
if (res != MEMTX_OK) {
cause = RISCV_IOMMU_FQ_CAUSE_MSI_WR_FAULT;
goto err;
}
return MEMTX_OK;
case RISCV_IOMMU_MSI_PTE_M_MRIF:
/* MRIF mode, continue. */
break;
default:
res = MEMTX_ACCESS_ERROR;
cause = RISCV_IOMMU_FQ_CAUSE_MSI_MISCONFIGURED;
goto err;
}
/*
* Report an error for interrupt identities exceeding the maximum allowed
* for an IMSIC interrupt file (2047) or destination address is not 32-bit
* aligned. See IOMMU Specification, Chapter 2.3. MSI page tables.
*/
if ((data > 2047) || (gpa & 3)) {
res = MEMTX_ACCESS_ERROR;
cause = RISCV_IOMMU_FQ_CAUSE_MSI_MISCONFIGURED;
goto err;
}
/* MSI MRIF mode, non atomic pending bit update */
/* MRIF pending bit address */
addr = get_field(pte[0], RISCV_IOMMU_MSI_PTE_MRIF_ADDR) << 9;
addr = addr | ((data & 0x7c0) >> 3);
trace_riscv_iommu_msi(s->parent_obj.id, PCI_BUS_NUM(ctx->devid),
PCI_SLOT(ctx->devid), PCI_FUNC(ctx->devid),
gpa, addr);
/* MRIF pending bit mask */
data = 1ULL << (data & 0x03f);
res = dma_memory_read(s->target_as, addr, &intn, sizeof(intn), attrs);
if (res != MEMTX_OK) {
cause = RISCV_IOMMU_FQ_CAUSE_MSI_LOAD_FAULT;
goto err;
}
intn = intn | data;
res = dma_memory_write(s->target_as, addr, &intn, sizeof(intn), attrs);
if (res != MEMTX_OK) {
cause = RISCV_IOMMU_FQ_CAUSE_MSI_WR_FAULT;
goto err;
}
/* Get MRIF enable bits */
addr = addr + sizeof(intn);
res = dma_memory_read(s->target_as, addr, &intn, sizeof(intn), attrs);
if (res != MEMTX_OK) {
cause = RISCV_IOMMU_FQ_CAUSE_MSI_LOAD_FAULT;
goto err;
}
if (!(intn & data)) {
/* notification disabled, MRIF update completed. */
return MEMTX_OK;
}
/* Send notification message */
addr = PPN_PHYS(get_field(pte[1], RISCV_IOMMU_MSI_MRIF_NPPN));
n190 = get_field(pte[1], RISCV_IOMMU_MSI_MRIF_NID) |
(get_field(pte[1], RISCV_IOMMU_MSI_MRIF_NID_MSB) << 10);
res = dma_memory_write(s->target_as, addr, &n190, sizeof(n190), attrs);
if (res != MEMTX_OK) {
cause = RISCV_IOMMU_FQ_CAUSE_MSI_WR_FAULT;
goto err;
}
trace_riscv_iommu_mrif_notification(s->parent_obj.id, n190, addr);
return MEMTX_OK;
err:
riscv_iommu_report_fault(s, ctx, fault_type, cause,
!!ctx->process_id, 0, 0);
return res;
}
/*
* Check device context configuration as described by the
* riscv-iommu spec section "Device-context configuration
* checks".
*/
static bool riscv_iommu_validate_device_ctx(RISCVIOMMUState *s,
RISCVIOMMUContext *ctx)
{
uint32_t fsc_mode, msi_mode;
uint64_t gatp;
if (!(s->cap & RISCV_IOMMU_CAP_ATS) &&
(ctx->tc & RISCV_IOMMU_DC_TC_EN_ATS ||
ctx->tc & RISCV_IOMMU_DC_TC_EN_PRI ||
ctx->tc & RISCV_IOMMU_DC_TC_PRPR)) {
return false;
}
if (!(ctx->tc & RISCV_IOMMU_DC_TC_EN_ATS) &&
(ctx->tc & RISCV_IOMMU_DC_TC_T2GPA ||
ctx->tc & RISCV_IOMMU_DC_TC_EN_PRI)) {
return false;
}
if (!(ctx->tc & RISCV_IOMMU_DC_TC_EN_PRI) &&
ctx->tc & RISCV_IOMMU_DC_TC_PRPR) {
return false;
}
if (!(s->cap & RISCV_IOMMU_CAP_T2GPA) &&
ctx->tc & RISCV_IOMMU_DC_TC_T2GPA) {
return false;
}
if (s->cap & RISCV_IOMMU_CAP_MSI_FLAT) {
msi_mode = get_field(ctx->msiptp, RISCV_IOMMU_DC_MSIPTP_MODE);
if (msi_mode != RISCV_IOMMU_DC_MSIPTP_MODE_OFF &&
msi_mode != RISCV_IOMMU_DC_MSIPTP_MODE_FLAT) {
return false;
}
}
gatp = get_field(ctx->gatp, RISCV_IOMMU_ATP_MODE_FIELD);
if (ctx->tc & RISCV_IOMMU_DC_TC_T2GPA &&
gatp == RISCV_IOMMU_DC_IOHGATP_MODE_BARE) {
return false;
}
fsc_mode = get_field(ctx->satp, RISCV_IOMMU_DC_FSC_MODE);
if (ctx->tc & RISCV_IOMMU_DC_TC_PDTV) {
switch (fsc_mode) {
case RISCV_IOMMU_DC_FSC_PDTP_MODE_PD8:
if (!(s->cap & RISCV_IOMMU_CAP_PD8)) {
return false;
}
break;
case RISCV_IOMMU_DC_FSC_PDTP_MODE_PD17:
if (!(s->cap & RISCV_IOMMU_CAP_PD17)) {
return false;
}
break;
case RISCV_IOMMU_DC_FSC_PDTP_MODE_PD20:
if (!(s->cap & RISCV_IOMMU_CAP_PD20)) {
return false;
}
break;
}
} else {
/* DC.tc.PDTV is 0 */
if (ctx->tc & RISCV_IOMMU_DC_TC_DPE) {
return false;
}
if (ctx->tc & RISCV_IOMMU_DC_TC_SXL) {
if (fsc_mode == RISCV_IOMMU_CAP_SV32 &&
!(s->cap & RISCV_IOMMU_CAP_SV32)) {
return false;
}
} else {
switch (fsc_mode) {
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39:
if (!(s->cap & RISCV_IOMMU_CAP_SV39)) {
return false;
}
break;
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV48:
if (!(s->cap & RISCV_IOMMU_CAP_SV48)) {
return false;
}
break;
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV57:
if (!(s->cap & RISCV_IOMMU_CAP_SV57)) {
return false;
}
break;
}
}
}
/*
* CAP_END is always zero (only one endianess). FCTL_BE is
* always zero (little-endian accesses). Thus TC_SBE must
* always be LE, i.e. zero.
*/
if (ctx->tc & RISCV_IOMMU_DC_TC_SBE) {
return false;
}
return true;
}
/*
* Validate process context (PC) according to section
* "Process-context configuration checks".
*/
static bool riscv_iommu_validate_process_ctx(RISCVIOMMUState *s,
RISCVIOMMUContext *ctx)
{
uint32_t mode;
if (get_field(ctx->ta, RISCV_IOMMU_PC_TA_RESERVED)) {
return false;
}
if (get_field(ctx->satp, RISCV_IOMMU_PC_FSC_RESERVED)) {
return false;
}
mode = get_field(ctx->satp, RISCV_IOMMU_DC_FSC_MODE);
switch (mode) {
case RISCV_IOMMU_DC_FSC_MODE_BARE:
/* sv39 and sv32 modes have the same value (8) */
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39:
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV48:
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV57:
break;
default:
return false;
}
if (ctx->tc & RISCV_IOMMU_DC_TC_SXL) {
if (mode == RISCV_IOMMU_CAP_SV32 &&
!(s->cap & RISCV_IOMMU_CAP_SV32)) {
return false;
}
} else {
switch (mode) {
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39:
if (!(s->cap & RISCV_IOMMU_CAP_SV39)) {
return false;
}
break;
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV48:
if (!(s->cap & RISCV_IOMMU_CAP_SV48)) {
return false;
}
break;
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV57:
if (!(s->cap & RISCV_IOMMU_CAP_SV57)) {
return false;
}
break;
}
}
return true;
}
/*
* RISC-V IOMMU Device Context Loopkup - Device Directory Tree Walk
*
* @s : IOMMU Device State
* @ctx : Device Translation Context with devid and process_id set.
* @return : success or fault code.
*/
static int riscv_iommu_ctx_fetch(RISCVIOMMUState *s, RISCVIOMMUContext *ctx)
{
const uint64_t ddtp = s->ddtp;
unsigned mode = get_field(ddtp, RISCV_IOMMU_DDTP_MODE);
dma_addr_t addr = PPN_PHYS(get_field(ddtp, RISCV_IOMMU_DDTP_PPN));
struct riscv_iommu_dc dc;
/* Device Context format: 0: extended (64 bytes) | 1: base (32 bytes) */
const int dc_fmt = !s->enable_msi;
const size_t dc_len = sizeof(dc) >> dc_fmt;
int depth;
uint64_t de;
switch (mode) {
case RISCV_IOMMU_DDTP_MODE_OFF:
return RISCV_IOMMU_FQ_CAUSE_DMA_DISABLED;
case RISCV_IOMMU_DDTP_MODE_BARE:
/* mock up pass-through translation context */
ctx->gatp = set_field(0, RISCV_IOMMU_ATP_MODE_FIELD,
RISCV_IOMMU_DC_IOHGATP_MODE_BARE);
ctx->satp = set_field(0, RISCV_IOMMU_ATP_MODE_FIELD,
RISCV_IOMMU_DC_FSC_MODE_BARE);
ctx->tc = RISCV_IOMMU_DC_TC_V;
if (s->enable_ats) {
ctx->tc |= RISCV_IOMMU_DC_TC_EN_ATS;
}
ctx->ta = 0;
ctx->msiptp = 0;
return 0;
case RISCV_IOMMU_DDTP_MODE_1LVL:
depth = 0;
break;
case RISCV_IOMMU_DDTP_MODE_2LVL:
depth = 1;
break;
case RISCV_IOMMU_DDTP_MODE_3LVL:
depth = 2;
break;
default:
return RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED;
}
/*
* Check supported device id width (in bits).
* See IOMMU Specification, Chapter 6. Software guidelines.
* - if extended device-context format is used:
* 1LVL: 6, 2LVL: 15, 3LVL: 24
* - if base device-context format is used:
* 1LVL: 7, 2LVL: 16, 3LVL: 24
*/
if (ctx->devid >= (1 << (depth * 9 + 6 + (dc_fmt && depth != 2)))) {
return RISCV_IOMMU_FQ_CAUSE_TTYPE_BLOCKED;
}
/* Device directory tree walk */
for (; depth-- > 0; ) {
/*
* Select device id index bits based on device directory tree level
* and device context format.
* See IOMMU Specification, Chapter 2. Data Structures.
* - if extended device-context format is used:
* device index: [23:15][14:6][5:0]
* - if base device-context format is used:
* device index: [23:16][15:7][6:0]
*/
const int split = depth * 9 + 6 + dc_fmt;
addr |= ((ctx->devid >> split) << 3) & ~TARGET_PAGE_MASK;
if (dma_memory_read(s->target_as, addr, &de, sizeof(de),
MEMTXATTRS_UNSPECIFIED) != MEMTX_OK) {
return RISCV_IOMMU_FQ_CAUSE_DDT_LOAD_FAULT;
}
le64_to_cpus(&de);
if (!(de & RISCV_IOMMU_DDTE_VALID)) {
/* invalid directory entry */
return RISCV_IOMMU_FQ_CAUSE_DDT_INVALID;
}
if (de & ~(RISCV_IOMMU_DDTE_PPN | RISCV_IOMMU_DDTE_VALID)) {
/* reserved bits set */
return RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED;
}
addr = PPN_PHYS(get_field(de, RISCV_IOMMU_DDTE_PPN));
}
/* index into device context entry page */
addr |= (ctx->devid * dc_len) & ~TARGET_PAGE_MASK;
memset(&dc, 0, sizeof(dc));
if (dma_memory_read(s->target_as, addr, &dc, dc_len,
MEMTXATTRS_UNSPECIFIED) != MEMTX_OK) {
return RISCV_IOMMU_FQ_CAUSE_DDT_LOAD_FAULT;
}
/* Set translation context. */
ctx->tc = le64_to_cpu(dc.tc);
ctx->gatp = le64_to_cpu(dc.iohgatp);
ctx->satp = le64_to_cpu(dc.fsc);
ctx->ta = le64_to_cpu(dc.ta);
ctx->msiptp = le64_to_cpu(dc.msiptp);
ctx->msi_addr_mask = le64_to_cpu(dc.msi_addr_mask);
ctx->msi_addr_pattern = le64_to_cpu(dc.msi_addr_pattern);
if (!(ctx->tc & RISCV_IOMMU_DC_TC_V)) {
return RISCV_IOMMU_FQ_CAUSE_DDT_INVALID;
}
if (!riscv_iommu_validate_device_ctx(s, ctx)) {
return RISCV_IOMMU_FQ_CAUSE_DDT_MISCONFIGURED;
}
/* FSC field checks */
mode = get_field(ctx->satp, RISCV_IOMMU_DC_FSC_MODE);
addr = PPN_PHYS(get_field(ctx->satp, RISCV_IOMMU_DC_FSC_PPN));
if (!(ctx->tc & RISCV_IOMMU_DC_TC_PDTV)) {
if (ctx->process_id != RISCV_IOMMU_NOPROCID) {
/* PID is disabled */
return RISCV_IOMMU_FQ_CAUSE_TTYPE_BLOCKED;
}
if (mode > RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV57) {
/* Invalid translation mode */
return RISCV_IOMMU_FQ_CAUSE_DDT_INVALID;
}
return 0;
}
if (ctx->process_id == RISCV_IOMMU_NOPROCID) {
if (!(ctx->tc & RISCV_IOMMU_DC_TC_DPE)) {
/* No default process_id enabled, set BARE mode */
ctx->satp = 0ULL;
return 0;
} else {
/* Use default process_id #0 */
ctx->process_id = 0;
}
}
if (mode == RISCV_IOMMU_DC_FSC_MODE_BARE) {
/* No S-Stage translation, done. */
return 0;
}
/* FSC.TC.PDTV enabled */
if (mode > RISCV_IOMMU_DC_FSC_PDTP_MODE_PD20) {
/* Invalid PDTP.MODE */
return RISCV_IOMMU_FQ_CAUSE_PDT_MISCONFIGURED;
}
for (depth = mode - RISCV_IOMMU_DC_FSC_PDTP_MODE_PD8; depth-- > 0; ) {
/*
* Select process id index bits based on process directory tree
* level. See IOMMU Specification, 2.2. Process-Directory-Table.
*/
const int split = depth * 9 + 8;
addr |= ((ctx->process_id >> split) << 3) & ~TARGET_PAGE_MASK;
if (dma_memory_read(s->target_as, addr, &de, sizeof(de),
MEMTXATTRS_UNSPECIFIED) != MEMTX_OK) {
return RISCV_IOMMU_FQ_CAUSE_PDT_LOAD_FAULT;
}
le64_to_cpus(&de);
if (!(de & RISCV_IOMMU_PC_TA_V)) {
return RISCV_IOMMU_FQ_CAUSE_PDT_INVALID;
}
addr = PPN_PHYS(get_field(de, RISCV_IOMMU_PC_FSC_PPN));
}
/* Leaf entry in PDT */
addr |= (ctx->process_id << 4) & ~TARGET_PAGE_MASK;
if (dma_memory_read(s->target_as, addr, &dc.ta, sizeof(uint64_t) * 2,
MEMTXATTRS_UNSPECIFIED) != MEMTX_OK) {
return RISCV_IOMMU_FQ_CAUSE_PDT_LOAD_FAULT;
}
/* Use FSC and TA from process directory entry. */
ctx->ta = le64_to_cpu(dc.ta);
ctx->satp = le64_to_cpu(dc.fsc);
if (!(ctx->ta & RISCV_IOMMU_PC_TA_V)) {
return RISCV_IOMMU_FQ_CAUSE_PDT_INVALID;
}
if (!riscv_iommu_validate_process_ctx(s, ctx)) {
return RISCV_IOMMU_FQ_CAUSE_PDT_MISCONFIGURED;
}
return 0;
}
/* Translation Context cache support */
static gboolean riscv_iommu_ctx_equal(gconstpointer v1, gconstpointer v2)
{
RISCVIOMMUContext *c1 = (RISCVIOMMUContext *) v1;
RISCVIOMMUContext *c2 = (RISCVIOMMUContext *) v2;
return c1->devid == c2->devid &&
c1->process_id == c2->process_id;
}
static guint riscv_iommu_ctx_hash(gconstpointer v)
{
RISCVIOMMUContext *ctx = (RISCVIOMMUContext *) v;
/*
* Generate simple hash of (process_id, devid)
* assuming 24-bit wide devid.
*/
return (guint)(ctx->devid) + ((guint)(ctx->process_id) << 24);
}
static void riscv_iommu_ctx_inval_devid_procid(gpointer key, gpointer value,
gpointer data)
{
RISCVIOMMUContext *ctx = (RISCVIOMMUContext *) value;
RISCVIOMMUContext *arg = (RISCVIOMMUContext *) data;
if (ctx->tc & RISCV_IOMMU_DC_TC_V &&
ctx->devid == arg->devid &&
ctx->process_id == arg->process_id) {
ctx->tc &= ~RISCV_IOMMU_DC_TC_V;
}
}
static void riscv_iommu_ctx_inval_devid(gpointer key, gpointer value,
gpointer data)
{
RISCVIOMMUContext *ctx = (RISCVIOMMUContext *) value;
RISCVIOMMUContext *arg = (RISCVIOMMUContext *) data;
if (ctx->tc & RISCV_IOMMU_DC_TC_V &&
ctx->devid == arg->devid) {
ctx->tc &= ~RISCV_IOMMU_DC_TC_V;
}
}
static void riscv_iommu_ctx_inval_all(gpointer key, gpointer value,
gpointer data)
{
RISCVIOMMUContext *ctx = (RISCVIOMMUContext *) value;
if (ctx->tc & RISCV_IOMMU_DC_TC_V) {
ctx->tc &= ~RISCV_IOMMU_DC_TC_V;
}
}
static void riscv_iommu_ctx_inval(RISCVIOMMUState *s, GHFunc func,
uint32_t devid, uint32_t process_id)
{
GHashTable *ctx_cache;
RISCVIOMMUContext key = {
.devid = devid,
.process_id = process_id,
};
ctx_cache = g_hash_table_ref(s->ctx_cache);
g_hash_table_foreach(ctx_cache, func, &key);
g_hash_table_unref(ctx_cache);
}
/* Find or allocate translation context for a given {device_id, process_id} */
static RISCVIOMMUContext *riscv_iommu_ctx(RISCVIOMMUState *s,
unsigned devid, unsigned process_id,
void **ref)
{
GHashTable *ctx_cache;
RISCVIOMMUContext *ctx;
RISCVIOMMUContext key = {
.devid = devid,
.process_id = process_id,
};
ctx_cache = g_hash_table_ref(s->ctx_cache);
ctx = g_hash_table_lookup(ctx_cache, &key);
if (ctx && (ctx->tc & RISCV_IOMMU_DC_TC_V)) {
*ref = ctx_cache;
return ctx;
}
ctx = g_new0(RISCVIOMMUContext, 1);
ctx->devid = devid;
ctx->process_id = process_id;
int fault = riscv_iommu_ctx_fetch(s, ctx);
if (!fault) {
if (g_hash_table_size(ctx_cache) >= LIMIT_CACHE_CTX) {
g_hash_table_unref(ctx_cache);
ctx_cache = g_hash_table_new_full(riscv_iommu_ctx_hash,
riscv_iommu_ctx_equal,
g_free, NULL);
g_hash_table_ref(ctx_cache);
g_hash_table_unref(qatomic_xchg(&s->ctx_cache, ctx_cache));
}
g_hash_table_add(ctx_cache, ctx);
*ref = ctx_cache;
return ctx;
}
g_hash_table_unref(ctx_cache);
*ref = NULL;
riscv_iommu_report_fault(s, ctx, RISCV_IOMMU_FQ_TTYPE_UADDR_RD,
fault, !!process_id, 0, 0);
g_free(ctx);
return NULL;
}
static void riscv_iommu_ctx_put(RISCVIOMMUState *s, void *ref)
{
if (ref) {
g_hash_table_unref((GHashTable *)ref);
}
}
/* Find or allocate address space for a given device */
static AddressSpace *riscv_iommu_space(RISCVIOMMUState *s, uint32_t devid)
{
RISCVIOMMUSpace *as;
/* FIXME: PCIe bus remapping for attached endpoints. */
devid |= s->bus << 8;
QLIST_FOREACH(as, &s->spaces, list) {
if (as->devid == devid) {
break;
}
}
if (as == NULL) {
char name[64];
as = g_new0(RISCVIOMMUSpace, 1);
as->iommu = s;
as->devid = devid;
snprintf(name, sizeof(name), "riscv-iommu-%04x:%02x.%d-iova",
PCI_BUS_NUM(as->devid), PCI_SLOT(as->devid), PCI_FUNC(as->devid));
/* IOVA address space, untranslated addresses */
memory_region_init_iommu(&as->iova_mr, sizeof(as->iova_mr),
TYPE_RISCV_IOMMU_MEMORY_REGION,
OBJECT(as), "riscv_iommu", UINT64_MAX);
address_space_init(&as->iova_as, MEMORY_REGION(&as->iova_mr), name);
QLIST_INSERT_HEAD(&s->spaces, as, list);
trace_riscv_iommu_new(s->parent_obj.id, PCI_BUS_NUM(as->devid),
PCI_SLOT(as->devid), PCI_FUNC(as->devid));
}
return &as->iova_as;
}
/* Translation Object cache support */
static gboolean riscv_iommu_iot_equal(gconstpointer v1, gconstpointer v2)
{
RISCVIOMMUEntry *t1 = (RISCVIOMMUEntry *) v1;
RISCVIOMMUEntry *t2 = (RISCVIOMMUEntry *) v2;
return t1->gscid == t2->gscid && t1->pscid == t2->pscid &&
t1->iova == t2->iova;
}
static guint riscv_iommu_iot_hash(gconstpointer v)
{
RISCVIOMMUEntry *t = (RISCVIOMMUEntry *) v;
return (guint)t->iova;
}
/* GV: 1 PSCV: 1 AV: 1 */
static void riscv_iommu_iot_inval_pscid_iova(gpointer key, gpointer value,
gpointer data)
{
RISCVIOMMUEntry *iot = (RISCVIOMMUEntry *) value;
RISCVIOMMUEntry *arg = (RISCVIOMMUEntry *) data;
if (iot->gscid == arg->gscid &&
iot->pscid == arg->pscid &&
iot->iova == arg->iova) {
iot->perm = IOMMU_NONE;
}
}
/* GV: 1 PSCV: 1 AV: 0 */
static void riscv_iommu_iot_inval_pscid(gpointer key, gpointer value,
gpointer data)
{
RISCVIOMMUEntry *iot = (RISCVIOMMUEntry *) value;
RISCVIOMMUEntry *arg = (RISCVIOMMUEntry *) data;
if (iot->gscid == arg->gscid &&
iot->pscid == arg->pscid) {
iot->perm = IOMMU_NONE;
}
}
/* GV: 1 GVMA: 1 */
static void riscv_iommu_iot_inval_gscid_gpa(gpointer key, gpointer value,
gpointer data)
{
RISCVIOMMUEntry *iot = (RISCVIOMMUEntry *) value;
RISCVIOMMUEntry *arg = (RISCVIOMMUEntry *) data;
if (iot->gscid == arg->gscid) {
/* simplified cache, no GPA matching */
iot->perm = IOMMU_NONE;
}
}
/* GV: 1 GVMA: 0 */
static void riscv_iommu_iot_inval_gscid(gpointer key, gpointer value,
gpointer data)
{
RISCVIOMMUEntry *iot = (RISCVIOMMUEntry *) value;
RISCVIOMMUEntry *arg = (RISCVIOMMUEntry *) data;
if (iot->gscid == arg->gscid) {
iot->perm = IOMMU_NONE;
}
}
/* GV: 0 */
static void riscv_iommu_iot_inval_all(gpointer key, gpointer value,
gpointer data)
{
RISCVIOMMUEntry *iot = (RISCVIOMMUEntry *) value;
iot->perm = IOMMU_NONE;
}
/* caller should keep ref-count for iot_cache object */
static RISCVIOMMUEntry *riscv_iommu_iot_lookup(RISCVIOMMUContext *ctx,
GHashTable *iot_cache, hwaddr iova)
{
RISCVIOMMUEntry key = {
.gscid = get_field(ctx->gatp, RISCV_IOMMU_DC_IOHGATP_GSCID),
.pscid = get_field(ctx->ta, RISCV_IOMMU_DC_TA_PSCID),
.iova = PPN_DOWN(iova),
};
return g_hash_table_lookup(iot_cache, &key);
}
/* caller should keep ref-count for iot_cache object */
static void riscv_iommu_iot_update(RISCVIOMMUState *s,
GHashTable *iot_cache, RISCVIOMMUEntry *iot)
{
if (!s->iot_limit) {
return;
}
if (g_hash_table_size(s->iot_cache) >= s->iot_limit) {
iot_cache = g_hash_table_new_full(riscv_iommu_iot_hash,
riscv_iommu_iot_equal,
g_free, NULL);
g_hash_table_unref(qatomic_xchg(&s->iot_cache, iot_cache));
}
g_hash_table_add(iot_cache, iot);
}
static void riscv_iommu_iot_inval(RISCVIOMMUState *s, GHFunc func,
uint32_t gscid, uint32_t pscid, hwaddr iova)
{
GHashTable *iot_cache;
RISCVIOMMUEntry key = {
.gscid = gscid,
.pscid = pscid,
.iova = PPN_DOWN(iova),
};
iot_cache = g_hash_table_ref(s->iot_cache);
g_hash_table_foreach(iot_cache, func, &key);
g_hash_table_unref(iot_cache);
}
static int riscv_iommu_translate(RISCVIOMMUState *s, RISCVIOMMUContext *ctx,
IOMMUTLBEntry *iotlb, bool enable_cache)
{
RISCVIOMMUEntry *iot;
IOMMUAccessFlags perm;
bool enable_pid;
bool enable_pri;
GHashTable *iot_cache;
int fault;
iot_cache = g_hash_table_ref(s->iot_cache);
/*
* TC[32] is reserved for custom extensions, used here to temporarily
* enable automatic page-request generation for ATS queries.
*/
enable_pri = (iotlb->perm == IOMMU_NONE) && (ctx->tc & BIT_ULL(32));
enable_pid = (ctx->tc & RISCV_IOMMU_DC_TC_PDTV);
/* Check for ATS request. */
if (iotlb->perm == IOMMU_NONE) {
/* Check if ATS is disabled. */
if (!(ctx->tc & RISCV_IOMMU_DC_TC_EN_ATS)) {
enable_pri = false;
fault = RISCV_IOMMU_FQ_CAUSE_TTYPE_BLOCKED;
goto done;
}
}
iot = riscv_iommu_iot_lookup(ctx, iot_cache, iotlb->iova);
perm = iot ? iot->perm : IOMMU_NONE;
if (perm != IOMMU_NONE) {
iotlb->translated_addr = PPN_PHYS(iot->phys);
iotlb->addr_mask = ~TARGET_PAGE_MASK;
iotlb->perm = perm;
fault = 0;
goto done;
}
/* Translate using device directory / page table information. */
fault = riscv_iommu_spa_fetch(s, ctx, iotlb);
if (!fault && iotlb->target_as == &s->trap_as) {
/* Do not cache trapped MSI translations */
goto done;
}
/*
* We made an implementation choice to not cache identity-mapped
* translations, as allowed by the specification, to avoid
* translation cache evictions for other devices sharing the
* IOMMU hardware model.
*/
if (!fault && iotlb->translated_addr != iotlb->iova && enable_cache) {
iot = g_new0(RISCVIOMMUEntry, 1);
iot->iova = PPN_DOWN(iotlb->iova);
iot->phys = PPN_DOWN(iotlb->translated_addr);
iot->gscid = get_field(ctx->gatp, RISCV_IOMMU_DC_IOHGATP_GSCID);
iot->pscid = get_field(ctx->ta, RISCV_IOMMU_DC_TA_PSCID);
iot->perm = iotlb->perm;
riscv_iommu_iot_update(s, iot_cache, iot);
}
done:
g_hash_table_unref(iot_cache);
if (enable_pri && fault) {
struct riscv_iommu_pq_record pr = {0};
if (enable_pid) {
pr.hdr = set_field(RISCV_IOMMU_PREQ_HDR_PV,
RISCV_IOMMU_PREQ_HDR_PID, ctx->process_id);
}
pr.hdr = set_field(pr.hdr, RISCV_IOMMU_PREQ_HDR_DID, ctx->devid);
pr.payload = (iotlb->iova & TARGET_PAGE_MASK) |
RISCV_IOMMU_PREQ_PAYLOAD_M;
riscv_iommu_pri(s, &pr);
return fault;
}
if (fault) {
unsigned ttype = RISCV_IOMMU_FQ_TTYPE_PCIE_ATS_REQ;
if (iotlb->perm & IOMMU_RW) {
ttype = RISCV_IOMMU_FQ_TTYPE_UADDR_WR;
} else if (iotlb->perm & IOMMU_RO) {
ttype = RISCV_IOMMU_FQ_TTYPE_UADDR_RD;
}
riscv_iommu_report_fault(s, ctx, ttype, fault, enable_pid,
iotlb->iova, iotlb->translated_addr);
return fault;
}
return 0;
}
/* IOMMU Command Interface */
static MemTxResult riscv_iommu_iofence(RISCVIOMMUState *s, bool notify,
uint64_t addr, uint32_t data)
{
/*
* ATS processing in this implementation of the IOMMU is synchronous,
* no need to wait for completions here.
*/
if (!notify) {
return MEMTX_OK;
}
return dma_memory_write(s->target_as, addr, &data, sizeof(data),
MEMTXATTRS_UNSPECIFIED);
}
static void riscv_iommu_ats(RISCVIOMMUState *s,
struct riscv_iommu_command *cmd, IOMMUNotifierFlag flag,
IOMMUAccessFlags perm,
void (*trace_fn)(const char *id))
{
RISCVIOMMUSpace *as = NULL;
IOMMUNotifier *n;
IOMMUTLBEvent event;
uint32_t pid;
uint32_t devid;
const bool pv = cmd->dword0 & RISCV_IOMMU_CMD_ATS_PV;
if (cmd->dword0 & RISCV_IOMMU_CMD_ATS_DSV) {
/* Use device segment and requester id */
devid = get_field(cmd->dword0,
RISCV_IOMMU_CMD_ATS_DSEG | RISCV_IOMMU_CMD_ATS_RID);
} else {
devid = get_field(cmd->dword0, RISCV_IOMMU_CMD_ATS_RID);
}
pid = get_field(cmd->dword0, RISCV_IOMMU_CMD_ATS_PID);
QLIST_FOREACH(as, &s->spaces, list) {
if (as->devid == devid) {
break;
}
}
if (!as || !as->notifier) {
return;
}
event.type = flag;
event.entry.perm = perm;
event.entry.target_as = s->target_as;
IOMMU_NOTIFIER_FOREACH(n, &as->iova_mr) {
if (!pv || n->iommu_idx == pid) {
event.entry.iova = n->start;
event.entry.addr_mask = n->end - n->start;
trace_fn(as->iova_mr.parent_obj.name);
memory_region_notify_iommu_one(n, &event);
}
}
}
static void riscv_iommu_ats_inval(RISCVIOMMUState *s,
struct riscv_iommu_command *cmd)
{
return riscv_iommu_ats(s, cmd, IOMMU_NOTIFIER_DEVIOTLB_UNMAP, IOMMU_NONE,
trace_riscv_iommu_ats_inval);
}
static void riscv_iommu_ats_prgr(RISCVIOMMUState *s,
struct riscv_iommu_command *cmd)
{
unsigned resp_code = get_field(cmd->dword1,
RISCV_IOMMU_CMD_ATS_PRGR_RESP_CODE);
/* Using the access flag to carry response code information */
IOMMUAccessFlags perm = resp_code ? IOMMU_NONE : IOMMU_RW;
return riscv_iommu_ats(s, cmd, IOMMU_NOTIFIER_MAP, perm,
trace_riscv_iommu_ats_prgr);
}
static void riscv_iommu_process_ddtp(RISCVIOMMUState *s)
{
uint64_t old_ddtp = s->ddtp;
uint64_t new_ddtp = riscv_iommu_reg_get64(s, RISCV_IOMMU_REG_DDTP);
unsigned new_mode = get_field(new_ddtp, RISCV_IOMMU_DDTP_MODE);
unsigned old_mode = get_field(old_ddtp, RISCV_IOMMU_DDTP_MODE);
bool ok = false;
/*
* Check for allowed DDTP.MODE transitions:
* {OFF, BARE} -> {OFF, BARE, 1LVL, 2LVL, 3LVL}
* {1LVL, 2LVL, 3LVL} -> {OFF, BARE}
*/
if (new_mode == old_mode ||
new_mode == RISCV_IOMMU_DDTP_MODE_OFF ||
new_mode == RISCV_IOMMU_DDTP_MODE_BARE) {
ok = true;
} else if (new_mode == RISCV_IOMMU_DDTP_MODE_1LVL ||
new_mode == RISCV_IOMMU_DDTP_MODE_2LVL ||
new_mode == RISCV_IOMMU_DDTP_MODE_3LVL) {
ok = old_mode == RISCV_IOMMU_DDTP_MODE_OFF ||
old_mode == RISCV_IOMMU_DDTP_MODE_BARE;
}
if (ok) {
/* clear reserved and busy bits, report back sanitized version */
new_ddtp = set_field(new_ddtp & RISCV_IOMMU_DDTP_PPN,
RISCV_IOMMU_DDTP_MODE, new_mode);
} else {
new_ddtp = old_ddtp;
}
s->ddtp = new_ddtp;
riscv_iommu_reg_set64(s, RISCV_IOMMU_REG_DDTP, new_ddtp);
}
/* Command function and opcode field. */
#define RISCV_IOMMU_CMD(func, op) (((func) << 7) | (op))
static void riscv_iommu_process_cq_tail(RISCVIOMMUState *s)
{
struct riscv_iommu_command cmd;
MemTxResult res;
dma_addr_t addr;
uint32_t tail, head, ctrl;
uint64_t cmd_opcode;
GHFunc func;
ctrl = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_CQCSR);
tail = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_CQT) & s->cq_mask;
head = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_CQH) & s->cq_mask;
/* Check for pending error or queue processing disabled */
if (!(ctrl & RISCV_IOMMU_CQCSR_CQON) ||
!!(ctrl & (RISCV_IOMMU_CQCSR_CMD_ILL | RISCV_IOMMU_CQCSR_CQMF))) {
return;
}
while (tail != head) {
addr = s->cq_addr + head * sizeof(cmd);
res = dma_memory_read(s->target_as, addr, &cmd, sizeof(cmd),
MEMTXATTRS_UNSPECIFIED);
if (res != MEMTX_OK) {
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_CQCSR,
RISCV_IOMMU_CQCSR_CQMF, 0);
goto fault;
}
trace_riscv_iommu_cmd(s->parent_obj.id, cmd.dword0, cmd.dword1);
cmd_opcode = get_field(cmd.dword0,
RISCV_IOMMU_CMD_OPCODE | RISCV_IOMMU_CMD_FUNC);
switch (cmd_opcode) {
case RISCV_IOMMU_CMD(RISCV_IOMMU_CMD_IOFENCE_FUNC_C,
RISCV_IOMMU_CMD_IOFENCE_OPCODE):
res = riscv_iommu_iofence(s,
cmd.dword0 & RISCV_IOMMU_CMD_IOFENCE_AV, cmd.dword1 << 2,
get_field(cmd.dword0, RISCV_IOMMU_CMD_IOFENCE_DATA));
if (res != MEMTX_OK) {
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_CQCSR,
RISCV_IOMMU_CQCSR_CQMF, 0);
goto fault;
}
break;
case RISCV_IOMMU_CMD(RISCV_IOMMU_CMD_IOTINVAL_FUNC_GVMA,
RISCV_IOMMU_CMD_IOTINVAL_OPCODE):
if (cmd.dword0 & RISCV_IOMMU_CMD_IOTINVAL_PSCV) {
/* illegal command arguments IOTINVAL.GVMA & PSCV == 1 */
goto cmd_ill;
} else if (!(cmd.dword0 & RISCV_IOMMU_CMD_IOTINVAL_GV)) {
/* invalidate all cache mappings */
func = riscv_iommu_iot_inval_all;
} else if (!(cmd.dword0 & RISCV_IOMMU_CMD_IOTINVAL_AV)) {
/* invalidate cache matching GSCID */
func = riscv_iommu_iot_inval_gscid;
} else {
/* invalidate cache matching GSCID and ADDR (GPA) */
func = riscv_iommu_iot_inval_gscid_gpa;
}
riscv_iommu_iot_inval(s, func,
get_field(cmd.dword0, RISCV_IOMMU_CMD_IOTINVAL_GSCID), 0,
cmd.dword1 << 2 & TARGET_PAGE_MASK);
break;
case RISCV_IOMMU_CMD(RISCV_IOMMU_CMD_IOTINVAL_FUNC_VMA,
RISCV_IOMMU_CMD_IOTINVAL_OPCODE):
if (!(cmd.dword0 & RISCV_IOMMU_CMD_IOTINVAL_GV)) {
/* invalidate all cache mappings, simplified model */
func = riscv_iommu_iot_inval_all;
} else if (!(cmd.dword0 & RISCV_IOMMU_CMD_IOTINVAL_PSCV)) {
/* invalidate cache matching GSCID, simplified model */
func = riscv_iommu_iot_inval_gscid;
} else if (!(cmd.dword0 & RISCV_IOMMU_CMD_IOTINVAL_AV)) {
/* invalidate cache matching GSCID and PSCID */
func = riscv_iommu_iot_inval_pscid;
} else {
/* invalidate cache matching GSCID and PSCID and ADDR (IOVA) */
func = riscv_iommu_iot_inval_pscid_iova;
}
riscv_iommu_iot_inval(s, func,
get_field(cmd.dword0, RISCV_IOMMU_CMD_IOTINVAL_GSCID),
get_field(cmd.dword0, RISCV_IOMMU_CMD_IOTINVAL_PSCID),
cmd.dword1 << 2 & TARGET_PAGE_MASK);
break;
case RISCV_IOMMU_CMD(RISCV_IOMMU_CMD_IODIR_FUNC_INVAL_DDT,
RISCV_IOMMU_CMD_IODIR_OPCODE):
if (!(cmd.dword0 & RISCV_IOMMU_CMD_IODIR_DV)) {
/* invalidate all device context cache mappings */
func = riscv_iommu_ctx_inval_all;
} else {
/* invalidate all device context matching DID */
func = riscv_iommu_ctx_inval_devid;
}
riscv_iommu_ctx_inval(s, func,
get_field(cmd.dword0, RISCV_IOMMU_CMD_IODIR_DID), 0);
break;
case RISCV_IOMMU_CMD(RISCV_IOMMU_CMD_IODIR_FUNC_INVAL_PDT,
RISCV_IOMMU_CMD_IODIR_OPCODE):
if (!(cmd.dword0 & RISCV_IOMMU_CMD_IODIR_DV)) {
/* illegal command arguments IODIR_PDT & DV == 0 */
goto cmd_ill;
} else {
func = riscv_iommu_ctx_inval_devid_procid;
}
riscv_iommu_ctx_inval(s, func,
get_field(cmd.dword0, RISCV_IOMMU_CMD_IODIR_DID),
get_field(cmd.dword0, RISCV_IOMMU_CMD_IODIR_PID));
break;
/* ATS commands */
case RISCV_IOMMU_CMD(RISCV_IOMMU_CMD_ATS_FUNC_INVAL,
RISCV_IOMMU_CMD_ATS_OPCODE):
if (!s->enable_ats) {
goto cmd_ill;
}
riscv_iommu_ats_inval(s, &cmd);
break;
case RISCV_IOMMU_CMD(RISCV_IOMMU_CMD_ATS_FUNC_PRGR,
RISCV_IOMMU_CMD_ATS_OPCODE):
if (!s->enable_ats) {
goto cmd_ill;
}
riscv_iommu_ats_prgr(s, &cmd);
break;
default:
cmd_ill:
/* Invalid instruction, do not advance instruction index. */
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_CQCSR,
RISCV_IOMMU_CQCSR_CMD_ILL, 0);
goto fault;
}
/* Advance and update head pointer after command completes. */
head = (head + 1) & s->cq_mask;
riscv_iommu_reg_set32(s, RISCV_IOMMU_REG_CQH, head);
}
return;
fault:
if (ctrl & RISCV_IOMMU_CQCSR_CIE) {
riscv_iommu_notify(s, RISCV_IOMMU_INTR_CQ);
}
}
static void riscv_iommu_process_cq_control(RISCVIOMMUState *s)
{
uint64_t base;
uint32_t ctrl_set = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_CQCSR);
uint32_t ctrl_clr;
bool enable = !!(ctrl_set & RISCV_IOMMU_CQCSR_CQEN);
bool active = !!(ctrl_set & RISCV_IOMMU_CQCSR_CQON);
if (enable && !active) {
base = riscv_iommu_reg_get64(s, RISCV_IOMMU_REG_CQB);
s->cq_mask = (2ULL << get_field(base, RISCV_IOMMU_CQB_LOG2SZ)) - 1;
s->cq_addr = PPN_PHYS(get_field(base, RISCV_IOMMU_CQB_PPN));
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_CQT], ~s->cq_mask);
stl_le_p(&s->regs_rw[RISCV_IOMMU_REG_CQH], 0);
stl_le_p(&s->regs_rw[RISCV_IOMMU_REG_CQT], 0);
ctrl_set = RISCV_IOMMU_CQCSR_CQON;
ctrl_clr = RISCV_IOMMU_CQCSR_BUSY | RISCV_IOMMU_CQCSR_CQMF |
RISCV_IOMMU_CQCSR_CMD_ILL | RISCV_IOMMU_CQCSR_CMD_TO |
RISCV_IOMMU_CQCSR_FENCE_W_IP;
} else if (!enable && active) {
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_CQT], ~0);
ctrl_set = 0;
ctrl_clr = RISCV_IOMMU_CQCSR_BUSY | RISCV_IOMMU_CQCSR_CQON;
} else {
ctrl_set = 0;
ctrl_clr = RISCV_IOMMU_CQCSR_BUSY;
}
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_CQCSR, ctrl_set, ctrl_clr);
}
static void riscv_iommu_process_fq_control(RISCVIOMMUState *s)
{
uint64_t base;
uint32_t ctrl_set = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_FQCSR);
uint32_t ctrl_clr;
bool enable = !!(ctrl_set & RISCV_IOMMU_FQCSR_FQEN);
bool active = !!(ctrl_set & RISCV_IOMMU_FQCSR_FQON);
if (enable && !active) {
base = riscv_iommu_reg_get64(s, RISCV_IOMMU_REG_FQB);
s->fq_mask = (2ULL << get_field(base, RISCV_IOMMU_FQB_LOG2SZ)) - 1;
s->fq_addr = PPN_PHYS(get_field(base, RISCV_IOMMU_FQB_PPN));
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_FQH], ~s->fq_mask);
stl_le_p(&s->regs_rw[RISCV_IOMMU_REG_FQH], 0);
stl_le_p(&s->regs_rw[RISCV_IOMMU_REG_FQT], 0);
ctrl_set = RISCV_IOMMU_FQCSR_FQON;
ctrl_clr = RISCV_IOMMU_FQCSR_BUSY | RISCV_IOMMU_FQCSR_FQMF |
RISCV_IOMMU_FQCSR_FQOF;
} else if (!enable && active) {
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_FQH], ~0);
ctrl_set = 0;
ctrl_clr = RISCV_IOMMU_FQCSR_BUSY | RISCV_IOMMU_FQCSR_FQON;
} else {
ctrl_set = 0;
ctrl_clr = RISCV_IOMMU_FQCSR_BUSY;
}
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_FQCSR, ctrl_set, ctrl_clr);
}
static void riscv_iommu_process_pq_control(RISCVIOMMUState *s)
{
uint64_t base;
uint32_t ctrl_set = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_PQCSR);
uint32_t ctrl_clr;
bool enable = !!(ctrl_set & RISCV_IOMMU_PQCSR_PQEN);
bool active = !!(ctrl_set & RISCV_IOMMU_PQCSR_PQON);
if (enable && !active) {
base = riscv_iommu_reg_get64(s, RISCV_IOMMU_REG_PQB);
s->pq_mask = (2ULL << get_field(base, RISCV_IOMMU_PQB_LOG2SZ)) - 1;
s->pq_addr = PPN_PHYS(get_field(base, RISCV_IOMMU_PQB_PPN));
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_PQH], ~s->pq_mask);
stl_le_p(&s->regs_rw[RISCV_IOMMU_REG_PQH], 0);
stl_le_p(&s->regs_rw[RISCV_IOMMU_REG_PQT], 0);
ctrl_set = RISCV_IOMMU_PQCSR_PQON;
ctrl_clr = RISCV_IOMMU_PQCSR_BUSY | RISCV_IOMMU_PQCSR_PQMF |
RISCV_IOMMU_PQCSR_PQOF;
} else if (!enable && active) {
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_PQH], ~0);
ctrl_set = 0;
ctrl_clr = RISCV_IOMMU_PQCSR_BUSY | RISCV_IOMMU_PQCSR_PQON;
} else {
ctrl_set = 0;
ctrl_clr = RISCV_IOMMU_PQCSR_BUSY;
}
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_PQCSR, ctrl_set, ctrl_clr);
}
static void riscv_iommu_process_dbg(RISCVIOMMUState *s)
{
uint64_t iova = riscv_iommu_reg_get64(s, RISCV_IOMMU_REG_TR_REQ_IOVA);
uint64_t ctrl = riscv_iommu_reg_get64(s, RISCV_IOMMU_REG_TR_REQ_CTL);
unsigned devid = get_field(ctrl, RISCV_IOMMU_TR_REQ_CTL_DID);
unsigned pid = get_field(ctrl, RISCV_IOMMU_TR_REQ_CTL_PID);
RISCVIOMMUContext *ctx;
void *ref;
if (!(ctrl & RISCV_IOMMU_TR_REQ_CTL_GO_BUSY)) {
return;
}
ctx = riscv_iommu_ctx(s, devid, pid, &ref);
if (ctx == NULL) {
riscv_iommu_reg_set64(s, RISCV_IOMMU_REG_TR_RESPONSE,
RISCV_IOMMU_TR_RESPONSE_FAULT |
(RISCV_IOMMU_FQ_CAUSE_DMA_DISABLED << 10));
} else {
IOMMUTLBEntry iotlb = {
.iova = iova,
.perm = ctrl & RISCV_IOMMU_TR_REQ_CTL_NW ? IOMMU_RO : IOMMU_RW,
.addr_mask = ~0,
.target_as = NULL,
};
int fault = riscv_iommu_translate(s, ctx, &iotlb, false);
if (fault) {
iova = RISCV_IOMMU_TR_RESPONSE_FAULT | (((uint64_t) fault) << 10);
} else {
iova = iotlb.translated_addr & ~iotlb.addr_mask;
iova >>= TARGET_PAGE_BITS;
iova &= RISCV_IOMMU_TR_RESPONSE_PPN;
/* We do not support superpages (> 4kbs) for now */
iova &= ~RISCV_IOMMU_TR_RESPONSE_S;
}
riscv_iommu_reg_set64(s, RISCV_IOMMU_REG_TR_RESPONSE, iova);
}
riscv_iommu_reg_mod64(s, RISCV_IOMMU_REG_TR_REQ_CTL, 0,
RISCV_IOMMU_TR_REQ_CTL_GO_BUSY);
riscv_iommu_ctx_put(s, ref);
}
typedef void riscv_iommu_process_fn(RISCVIOMMUState *s);
static void riscv_iommu_update_icvec(RISCVIOMMUState *s, uint64_t data)
{
uint64_t icvec = 0;
icvec |= MIN(data & RISCV_IOMMU_ICVEC_CIV,
s->icvec_avail_vectors & RISCV_IOMMU_ICVEC_CIV);
icvec |= MIN(data & RISCV_IOMMU_ICVEC_FIV,
s->icvec_avail_vectors & RISCV_IOMMU_ICVEC_FIV);
icvec |= MIN(data & RISCV_IOMMU_ICVEC_PMIV,
s->icvec_avail_vectors & RISCV_IOMMU_ICVEC_PMIV);
icvec |= MIN(data & RISCV_IOMMU_ICVEC_PIV,
s->icvec_avail_vectors & RISCV_IOMMU_ICVEC_PIV);
trace_riscv_iommu_icvec_write(data, icvec);
riscv_iommu_reg_set64(s, RISCV_IOMMU_REG_ICVEC, icvec);
}
static void riscv_iommu_update_ipsr(RISCVIOMMUState *s, uint64_t data)
{
uint32_t cqcsr, fqcsr, pqcsr;
uint32_t ipsr_set = 0;
uint32_t ipsr_clr = 0;
if (data & RISCV_IOMMU_IPSR_CIP) {
cqcsr = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_CQCSR);
if (cqcsr & RISCV_IOMMU_CQCSR_CIE &&
(cqcsr & RISCV_IOMMU_CQCSR_FENCE_W_IP ||
cqcsr & RISCV_IOMMU_CQCSR_CMD_ILL ||
cqcsr & RISCV_IOMMU_CQCSR_CMD_TO ||
cqcsr & RISCV_IOMMU_CQCSR_CQMF)) {
ipsr_set |= RISCV_IOMMU_IPSR_CIP;
} else {
ipsr_clr |= RISCV_IOMMU_IPSR_CIP;
}
} else {
ipsr_clr |= RISCV_IOMMU_IPSR_CIP;
}
if (data & RISCV_IOMMU_IPSR_FIP) {
fqcsr = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_FQCSR);
if (fqcsr & RISCV_IOMMU_FQCSR_FIE &&
(fqcsr & RISCV_IOMMU_FQCSR_FQOF ||
fqcsr & RISCV_IOMMU_FQCSR_FQMF)) {
ipsr_set |= RISCV_IOMMU_IPSR_FIP;
} else {
ipsr_clr |= RISCV_IOMMU_IPSR_FIP;
}
} else {
ipsr_clr |= RISCV_IOMMU_IPSR_FIP;
}
if (data & RISCV_IOMMU_IPSR_PIP) {
pqcsr = riscv_iommu_reg_get32(s, RISCV_IOMMU_REG_PQCSR);
if (pqcsr & RISCV_IOMMU_PQCSR_PIE &&
(pqcsr & RISCV_IOMMU_PQCSR_PQOF ||
pqcsr & RISCV_IOMMU_PQCSR_PQMF)) {
ipsr_set |= RISCV_IOMMU_IPSR_PIP;
} else {
ipsr_clr |= RISCV_IOMMU_IPSR_PIP;
}
} else {
ipsr_clr |= RISCV_IOMMU_IPSR_PIP;
}
riscv_iommu_reg_mod32(s, RISCV_IOMMU_REG_IPSR, ipsr_set, ipsr_clr);
}
/*
* Write the resulting value of 'data' for the reg specified
* by 'reg_addr', after considering read-only/read-write/write-clear
* bits, in the pointer 'dest'.
*
* The result is written in little-endian.
*/
static void riscv_iommu_write_reg_val(RISCVIOMMUState *s,
void *dest, hwaddr reg_addr,
int size, uint64_t data)
{
uint64_t ro = ldn_le_p(&s->regs_ro[reg_addr], size);
uint64_t wc = ldn_le_p(&s->regs_wc[reg_addr], size);
uint64_t rw = ldn_le_p(&s->regs_rw[reg_addr], size);
stn_le_p(dest, size, ((rw & ro) | (data & ~ro)) & ~(data & wc));
}
static MemTxResult riscv_iommu_mmio_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size,
MemTxAttrs attrs)
{
riscv_iommu_process_fn *process_fn = NULL;
RISCVIOMMUState *s = opaque;
uint32_t regb = addr & ~3;
uint32_t busy = 0;
uint64_t val = 0;
if ((addr & (size - 1)) != 0) {
/* Unsupported MMIO alignment or access size */
return MEMTX_ERROR;
}
if (addr + size > RISCV_IOMMU_REG_MSI_CONFIG) {
/* Unsupported MMIO access location. */
return MEMTX_ACCESS_ERROR;
}
/* Track actionable MMIO write. */
switch (regb) {
case RISCV_IOMMU_REG_DDTP:
case RISCV_IOMMU_REG_DDTP + 4:
process_fn = riscv_iommu_process_ddtp;
regb = RISCV_IOMMU_REG_DDTP;
busy = RISCV_IOMMU_DDTP_BUSY;
break;
case RISCV_IOMMU_REG_CQT:
process_fn = riscv_iommu_process_cq_tail;
break;
case RISCV_IOMMU_REG_CQCSR:
process_fn = riscv_iommu_process_cq_control;
busy = RISCV_IOMMU_CQCSR_BUSY;
break;
case RISCV_IOMMU_REG_FQCSR:
process_fn = riscv_iommu_process_fq_control;
busy = RISCV_IOMMU_FQCSR_BUSY;
break;
case RISCV_IOMMU_REG_PQCSR:
process_fn = riscv_iommu_process_pq_control;
busy = RISCV_IOMMU_PQCSR_BUSY;
break;
case RISCV_IOMMU_REG_ICVEC:
case RISCV_IOMMU_REG_IPSR:
/*
* ICVEC and IPSR have special read/write procedures. We'll
* call their respective helpers and exit.
*/
riscv_iommu_write_reg_val(s, &val, addr, size, data);
/*
* 'val' is stored as LE. Switch to host endianess
* before using it.
*/
val = le64_to_cpu(val);
if (regb == RISCV_IOMMU_REG_ICVEC) {
riscv_iommu_update_icvec(s, val);
} else {
riscv_iommu_update_ipsr(s, val);
}
return MEMTX_OK;
case RISCV_IOMMU_REG_TR_REQ_CTL:
process_fn = riscv_iommu_process_dbg;
regb = RISCV_IOMMU_REG_TR_REQ_CTL;
busy = RISCV_IOMMU_TR_REQ_CTL_GO_BUSY;
break;
default:
break;
}
/*
* Registers update might be not synchronized with core logic.
* If system software updates register when relevant BUSY bit
* is set IOMMU behavior of additional writes to the register
* is UNSPECIFIED.
*/
riscv_iommu_write_reg_val(s, &s->regs_rw[addr], addr, size, data);
/* Busy flag update, MSB 4-byte register. */
if (busy) {
uint32_t rw = ldl_le_p(&s->regs_rw[regb]);
stl_le_p(&s->regs_rw[regb], rw | busy);
}
if (process_fn) {
process_fn(s);
}
return MEMTX_OK;
}
static MemTxResult riscv_iommu_mmio_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size, MemTxAttrs attrs)
{
RISCVIOMMUState *s = opaque;
uint64_t val = -1;
uint8_t *ptr;
if ((addr & (size - 1)) != 0) {
/* Unsupported MMIO alignment. */
return MEMTX_ERROR;
}
if (addr + size > RISCV_IOMMU_REG_MSI_CONFIG) {
return MEMTX_ACCESS_ERROR;
}
ptr = &s->regs_rw[addr];
val = ldn_le_p(ptr, size);
*data = val;
return MEMTX_OK;
}
static const MemoryRegionOps riscv_iommu_mmio_ops = {
.read_with_attrs = riscv_iommu_mmio_read,
.write_with_attrs = riscv_iommu_mmio_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 8,
.unaligned = false,
},
.valid = {
.min_access_size = 4,
.max_access_size = 8,
}
};
/*
* Translations matching MSI pattern check are redirected to "riscv-iommu-trap"
* memory region as untranslated address, for additional MSI/MRIF interception
* by IOMMU interrupt remapping implementation.
* Note: Device emulation code generating an MSI is expected to provide a valid
* memory transaction attributes with requested_id set.
*/
static MemTxResult riscv_iommu_trap_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size, MemTxAttrs attrs)
{
RISCVIOMMUState* s = (RISCVIOMMUState *)opaque;
RISCVIOMMUContext *ctx;
MemTxResult res;
void *ref;
uint32_t devid = attrs.requester_id;
if (attrs.unspecified) {
return MEMTX_ACCESS_ERROR;
}
/* FIXME: PCIe bus remapping for attached endpoints. */
devid |= s->bus << 8;
ctx = riscv_iommu_ctx(s, devid, 0, &ref);
if (ctx == NULL) {
res = MEMTX_ACCESS_ERROR;
} else {
res = riscv_iommu_msi_write(s, ctx, addr, data, size, attrs);
}
riscv_iommu_ctx_put(s, ref);
return res;
}
static MemTxResult riscv_iommu_trap_read(void *opaque, hwaddr addr,
uint64_t *data, unsigned size, MemTxAttrs attrs)
{
return MEMTX_ACCESS_ERROR;
}
static const MemoryRegionOps riscv_iommu_trap_ops = {
.read_with_attrs = riscv_iommu_trap_read,
.write_with_attrs = riscv_iommu_trap_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 8,
.unaligned = true,
},
.valid = {
.min_access_size = 4,
.max_access_size = 8,
}
};
static void riscv_iommu_realize(DeviceState *dev, Error **errp)
{
RISCVIOMMUState *s = RISCV_IOMMU(dev);
s->cap = s->version & RISCV_IOMMU_CAP_VERSION;
if (s->enable_msi) {
s->cap |= RISCV_IOMMU_CAP_MSI_FLAT | RISCV_IOMMU_CAP_MSI_MRIF;
}
if (s->enable_ats) {
s->cap |= RISCV_IOMMU_CAP_ATS;
}
if (s->enable_s_stage) {
s->cap |= RISCV_IOMMU_CAP_SV32 | RISCV_IOMMU_CAP_SV39 |
RISCV_IOMMU_CAP_SV48 | RISCV_IOMMU_CAP_SV57;
}
if (s->enable_g_stage) {
s->cap |= RISCV_IOMMU_CAP_SV32X4 | RISCV_IOMMU_CAP_SV39X4 |
RISCV_IOMMU_CAP_SV48X4 | RISCV_IOMMU_CAP_SV57X4;
}
/* Enable translation debug interface */
s->cap |= RISCV_IOMMU_CAP_DBG;
/* Report QEMU target physical address space limits */
s->cap = set_field(s->cap, RISCV_IOMMU_CAP_PAS,
TARGET_PHYS_ADDR_SPACE_BITS);
/* TODO: method to report supported PID bits */
s->pid_bits = 8; /* restricted to size of MemTxAttrs.pid */
s->cap |= RISCV_IOMMU_CAP_PD8;
/* Out-of-reset translation mode: OFF (DMA disabled) BARE (passthrough) */
s->ddtp = set_field(0, RISCV_IOMMU_DDTP_MODE, s->enable_off ?
RISCV_IOMMU_DDTP_MODE_OFF : RISCV_IOMMU_DDTP_MODE_BARE);
/* register storage */
s->regs_rw = g_new0(uint8_t, RISCV_IOMMU_REG_SIZE);
s->regs_ro = g_new0(uint8_t, RISCV_IOMMU_REG_SIZE);
s->regs_wc = g_new0(uint8_t, RISCV_IOMMU_REG_SIZE);
/* Mark all registers read-only */
memset(s->regs_ro, 0xff, RISCV_IOMMU_REG_SIZE);
/*
* Register complete MMIO space, including MSI/PBA registers.
* Note, PCIDevice implementation will add overlapping MR for MSI/PBA,
* managed directly by the PCIDevice implementation.
*/
memory_region_init_io(&s->regs_mr, OBJECT(dev), &riscv_iommu_mmio_ops, s,
"riscv-iommu-regs", RISCV_IOMMU_REG_SIZE);
/* Set power-on register state */
stq_le_p(&s->regs_rw[RISCV_IOMMU_REG_CAP], s->cap);
stq_le_p(&s->regs_rw[RISCV_IOMMU_REG_FCTL], 0);
stq_le_p(&s->regs_ro[RISCV_IOMMU_REG_FCTL],
~(RISCV_IOMMU_FCTL_BE | RISCV_IOMMU_FCTL_WSI));
stq_le_p(&s->regs_ro[RISCV_IOMMU_REG_DDTP],
~(RISCV_IOMMU_DDTP_PPN | RISCV_IOMMU_DDTP_MODE));
stq_le_p(&s->regs_ro[RISCV_IOMMU_REG_CQB],
~(RISCV_IOMMU_CQB_LOG2SZ | RISCV_IOMMU_CQB_PPN));
stq_le_p(&s->regs_ro[RISCV_IOMMU_REG_FQB],
~(RISCV_IOMMU_FQB_LOG2SZ | RISCV_IOMMU_FQB_PPN));
stq_le_p(&s->regs_ro[RISCV_IOMMU_REG_PQB],
~(RISCV_IOMMU_PQB_LOG2SZ | RISCV_IOMMU_PQB_PPN));
stl_le_p(&s->regs_wc[RISCV_IOMMU_REG_CQCSR], RISCV_IOMMU_CQCSR_CQMF |
RISCV_IOMMU_CQCSR_CMD_TO | RISCV_IOMMU_CQCSR_CMD_ILL);
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_CQCSR], RISCV_IOMMU_CQCSR_CQON |
RISCV_IOMMU_CQCSR_BUSY);
stl_le_p(&s->regs_wc[RISCV_IOMMU_REG_FQCSR], RISCV_IOMMU_FQCSR_FQMF |
RISCV_IOMMU_FQCSR_FQOF);
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_FQCSR], RISCV_IOMMU_FQCSR_FQON |
RISCV_IOMMU_FQCSR_BUSY);
stl_le_p(&s->regs_wc[RISCV_IOMMU_REG_PQCSR], RISCV_IOMMU_PQCSR_PQMF |
RISCV_IOMMU_PQCSR_PQOF);
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_PQCSR], RISCV_IOMMU_PQCSR_PQON |
RISCV_IOMMU_PQCSR_BUSY);
stl_le_p(&s->regs_wc[RISCV_IOMMU_REG_IPSR], ~0);
stl_le_p(&s->regs_ro[RISCV_IOMMU_REG_ICVEC], 0);
stq_le_p(&s->regs_rw[RISCV_IOMMU_REG_DDTP], s->ddtp);
/* If debug registers enabled. */
if (s->cap & RISCV_IOMMU_CAP_DBG) {
stq_le_p(&s->regs_ro[RISCV_IOMMU_REG_TR_REQ_IOVA], 0);
stq_le_p(&s->regs_ro[RISCV_IOMMU_REG_TR_REQ_CTL],
RISCV_IOMMU_TR_REQ_CTL_GO_BUSY);
}
/* Memory region for downstream access, if specified. */
if (s->target_mr) {
s->target_as = g_new0(AddressSpace, 1);
address_space_init(s->target_as, s->target_mr,
"riscv-iommu-downstream");
} else {
/* Fallback to global system memory. */
s->target_as = &address_space_memory;
}
/* Memory region for untranslated MRIF/MSI writes */
memory_region_init_io(&s->trap_mr, OBJECT(dev), &riscv_iommu_trap_ops, s,
"riscv-iommu-trap", ~0ULL);
address_space_init(&s->trap_as, &s->trap_mr, "riscv-iommu-trap-as");
/* Device translation context cache */
s->ctx_cache = g_hash_table_new_full(riscv_iommu_ctx_hash,
riscv_iommu_ctx_equal,
g_free, NULL);
s->iot_cache = g_hash_table_new_full(riscv_iommu_iot_hash,
riscv_iommu_iot_equal,
g_free, NULL);
s->iommus.le_next = NULL;
s->iommus.le_prev = NULL;
QLIST_INIT(&s->spaces);
}
static void riscv_iommu_unrealize(DeviceState *dev)
{
RISCVIOMMUState *s = RISCV_IOMMU(dev);
g_hash_table_unref(s->iot_cache);
g_hash_table_unref(s->ctx_cache);
}
static Property riscv_iommu_properties[] = {
DEFINE_PROP_UINT32("version", RISCVIOMMUState, version,
RISCV_IOMMU_SPEC_DOT_VER),
DEFINE_PROP_UINT32("bus", RISCVIOMMUState, bus, 0x0),
DEFINE_PROP_UINT32("ioatc-limit", RISCVIOMMUState, iot_limit,
LIMIT_CACHE_IOT),
DEFINE_PROP_BOOL("intremap", RISCVIOMMUState, enable_msi, TRUE),
DEFINE_PROP_BOOL("ats", RISCVIOMMUState, enable_ats, TRUE),
DEFINE_PROP_BOOL("off", RISCVIOMMUState, enable_off, TRUE),
DEFINE_PROP_BOOL("s-stage", RISCVIOMMUState, enable_s_stage, TRUE),
DEFINE_PROP_BOOL("g-stage", RISCVIOMMUState, enable_g_stage, TRUE),
DEFINE_PROP_LINK("downstream-mr", RISCVIOMMUState, target_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void riscv_iommu_class_init(ObjectClass *klass, void* data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
/* internal device for riscv-iommu-{pci/sys}, not user-creatable */
dc->user_creatable = false;
dc->realize = riscv_iommu_realize;
dc->unrealize = riscv_iommu_unrealize;
device_class_set_props(dc, riscv_iommu_properties);
}
static const TypeInfo riscv_iommu_info = {
.name = TYPE_RISCV_IOMMU,
.parent = TYPE_DEVICE,
.instance_size = sizeof(RISCVIOMMUState),
.class_init = riscv_iommu_class_init,
};
static const char *IOMMU_FLAG_STR[] = {
"NA",
"RO",
"WR",
"RW",
};
/* RISC-V IOMMU Memory Region - Address Translation Space */
static IOMMUTLBEntry riscv_iommu_memory_region_translate(
IOMMUMemoryRegion *iommu_mr, hwaddr addr,
IOMMUAccessFlags flag, int iommu_idx)
{
RISCVIOMMUSpace *as = container_of(iommu_mr, RISCVIOMMUSpace, iova_mr);
RISCVIOMMUContext *ctx;
void *ref;
IOMMUTLBEntry iotlb = {
.iova = addr,
.target_as = as->iommu->target_as,
.addr_mask = ~0ULL,
.perm = flag,
};
ctx = riscv_iommu_ctx(as->iommu, as->devid, iommu_idx, &ref);
if (ctx == NULL) {
/* Translation disabled or invalid. */
iotlb.addr_mask = 0;
iotlb.perm = IOMMU_NONE;
} else if (riscv_iommu_translate(as->iommu, ctx, &iotlb, true)) {
/* Translation disabled or fault reported. */
iotlb.addr_mask = 0;
iotlb.perm = IOMMU_NONE;
}
/* Trace all dma translations with original access flags. */
trace_riscv_iommu_dma(as->iommu->parent_obj.id, PCI_BUS_NUM(as->devid),
PCI_SLOT(as->devid), PCI_FUNC(as->devid), iommu_idx,
IOMMU_FLAG_STR[flag & IOMMU_RW], iotlb.iova,
iotlb.translated_addr);
riscv_iommu_ctx_put(as->iommu, ref);
return iotlb;
}
static int riscv_iommu_memory_region_notify(
IOMMUMemoryRegion *iommu_mr, IOMMUNotifierFlag old,
IOMMUNotifierFlag new, Error **errp)
{
RISCVIOMMUSpace *as = container_of(iommu_mr, RISCVIOMMUSpace, iova_mr);
if (old == IOMMU_NOTIFIER_NONE) {
as->notifier = true;
trace_riscv_iommu_notifier_add(iommu_mr->parent_obj.name);
} else if (new == IOMMU_NOTIFIER_NONE) {
as->notifier = false;
trace_riscv_iommu_notifier_del(iommu_mr->parent_obj.name);
}
return 0;
}
static inline bool pci_is_iommu(PCIDevice *pdev)
{
return pci_get_word(pdev->config + PCI_CLASS_DEVICE) == 0x0806;
}
static AddressSpace *riscv_iommu_find_as(PCIBus *bus, void *opaque, int devfn)
{
RISCVIOMMUState *s = (RISCVIOMMUState *) opaque;
PCIDevice *pdev = pci_find_device(bus, pci_bus_num(bus), devfn);
AddressSpace *as = NULL;
if (pdev && pci_is_iommu(pdev)) {
return s->target_as;
}
/* Find first registered IOMMU device */
while (s->iommus.le_prev) {
s = *(s->iommus.le_prev);
}
/* Find first matching IOMMU */
while (s != NULL && as == NULL) {
as = riscv_iommu_space(s, PCI_BUILD_BDF(pci_bus_num(bus), devfn));
s = s->iommus.le_next;
}
return as ? as : &address_space_memory;
}
static const PCIIOMMUOps riscv_iommu_ops = {
.get_address_space = riscv_iommu_find_as,
};
void riscv_iommu_pci_setup_iommu(RISCVIOMMUState *iommu, PCIBus *bus,
Error **errp)
{
if (bus->iommu_ops &&
bus->iommu_ops->get_address_space == riscv_iommu_find_as) {
/* Allow multiple IOMMUs on the same PCIe bus, link known devices */
RISCVIOMMUState *last = (RISCVIOMMUState *)bus->iommu_opaque;
QLIST_INSERT_AFTER(last, iommu, iommus);
} else if (!bus->iommu_ops && !bus->iommu_opaque) {
pci_setup_iommu(bus, &riscv_iommu_ops, iommu);
} else {
error_setg(errp, "can't register secondary IOMMU for PCI bus #%d",
pci_bus_num(bus));
}
}
static int riscv_iommu_memory_region_index(IOMMUMemoryRegion *iommu_mr,
MemTxAttrs attrs)
{
return attrs.unspecified ? RISCV_IOMMU_NOPROCID : (int)attrs.pid;
}
static int riscv_iommu_memory_region_index_len(IOMMUMemoryRegion *iommu_mr)
{
RISCVIOMMUSpace *as = container_of(iommu_mr, RISCVIOMMUSpace, iova_mr);
return 1 << as->iommu->pid_bits;
}
static void riscv_iommu_memory_region_init(ObjectClass *klass, void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = riscv_iommu_memory_region_translate;
imrc->notify_flag_changed = riscv_iommu_memory_region_notify;
imrc->attrs_to_index = riscv_iommu_memory_region_index;
imrc->num_indexes = riscv_iommu_memory_region_index_len;
}
static const TypeInfo riscv_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_RISCV_IOMMU_MEMORY_REGION,
.class_init = riscv_iommu_memory_region_init,
};
static void riscv_iommu_register_mr_types(void)
{
type_register_static(&riscv_iommu_memory_region_info);
type_register_static(&riscv_iommu_info);
}
type_init(riscv_iommu_register_mr_types);