qemu/hw/char/stm32l4x5_usart.c
Jacob Abrams 6cce0dcc6f hw/char/stm32l4x5_usart.c: Enable USART ACK bit response
SW modifying USART_CR1 TE bit should cuase HW to respond by altering
USART_ISR TEACK bit, and likewise for RE and REACK bit.

This resolves some but not all issues necessary for the official STM USART
HAL driver to function as is.

Fixes: 87b77e6e01 ("hw/char/stm32l4x5_usart: Enable serial read and write")
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2540
Signed-off-by: Jacob Abrams <satur9nine@gmail.com>
Message-id: 20240911043255.51966-1-satur9nine@gmail.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2024-09-19 12:58:58 +01:00

655 lines
21 KiB
C

/*
* STM32L4X5 USART (Universal Synchronous Asynchronous Receiver Transmitter)
*
* Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
* Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* The STM32L4X5 USART is heavily inspired by the stm32f2xx_usart
* by Alistair Francis.
* The reference used is the STMicroElectronics RM0351 Reference manual
* for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "chardev/char-fe.h"
#include "chardev/char-serial.h"
#include "migration/vmstate.h"
#include "hw/char/stm32l4x5_usart.h"
#include "hw/clock.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "hw/registerfields.h"
#include "trace.h"
REG32(CR1, 0x00)
FIELD(CR1, M1, 28, 1) /* Word length (part 2, see M0) */
FIELD(CR1, EOBIE, 27, 1) /* End of Block interrupt enable */
FIELD(CR1, RTOIE, 26, 1) /* Receiver timeout interrupt enable */
FIELD(CR1, DEAT, 21, 5) /* Driver Enable assertion time */
FIELD(CR1, DEDT, 16, 5) /* Driver Enable de-assertion time */
FIELD(CR1, OVER8, 15, 1) /* Oversampling mode */
FIELD(CR1, CMIE, 14, 1) /* Character match interrupt enable */
FIELD(CR1, MME, 13, 1) /* Mute mode enable */
FIELD(CR1, M0, 12, 1) /* Word length (part 1, see M1) */
FIELD(CR1, WAKE, 11, 1) /* Receiver wakeup method */
FIELD(CR1, PCE, 10, 1) /* Parity control enable */
FIELD(CR1, PS, 9, 1) /* Parity selection */
FIELD(CR1, PEIE, 8, 1) /* PE interrupt enable */
FIELD(CR1, TXEIE, 7, 1) /* TXE interrupt enable */
FIELD(CR1, TCIE, 6, 1) /* Transmission complete interrupt enable */
FIELD(CR1, RXNEIE, 5, 1) /* RXNE interrupt enable */
FIELD(CR1, IDLEIE, 4, 1) /* IDLE interrupt enable */
FIELD(CR1, TE, 3, 1) /* Transmitter enable */
FIELD(CR1, RE, 2, 1) /* Receiver enable */
FIELD(CR1, UESM, 1, 1) /* USART enable in Stop mode */
FIELD(CR1, UE, 0, 1) /* USART enable */
REG32(CR2, 0x04)
FIELD(CR2, ADD_1, 28, 4) /* ADD[7:4] */
FIELD(CR2, ADD_0, 24, 4) /* ADD[3:0] */
FIELD(CR2, RTOEN, 23, 1) /* Receiver timeout enable */
FIELD(CR2, ABRMOD, 21, 2) /* Auto baud rate mode */
FIELD(CR2, ABREN, 20, 1) /* Auto baud rate enable */
FIELD(CR2, MSBFIRST, 19, 1) /* Most significant bit first */
FIELD(CR2, DATAINV, 18, 1) /* Binary data inversion */
FIELD(CR2, TXINV, 17, 1) /* TX pin active level inversion */
FIELD(CR2, RXINV, 16, 1) /* RX pin active level inversion */
FIELD(CR2, SWAP, 15, 1) /* Swap RX/TX pins */
FIELD(CR2, LINEN, 14, 1) /* LIN mode enable */
FIELD(CR2, STOP, 12, 2) /* STOP bits */
FIELD(CR2, CLKEN, 11, 1) /* Clock enable */
FIELD(CR2, CPOL, 10, 1) /* Clock polarity */
FIELD(CR2, CPHA, 9, 1) /* Clock phase */
FIELD(CR2, LBCL, 8, 1) /* Last bit clock pulse */
FIELD(CR2, LBDIE, 6, 1) /* LIN break detection interrupt enable */
FIELD(CR2, LBDL, 5, 1) /* LIN break detection length */
FIELD(CR2, ADDM7, 4, 1) /* 7-bit / 4-bit Address Detection */
REG32(CR3, 0x08)
/* TCBGTIE only on STM32L496xx/4A6xx devices */
FIELD(CR3, UCESM, 23, 1) /* USART Clock Enable in Stop Mode */
FIELD(CR3, WUFIE, 22, 1) /* Wakeup from Stop mode interrupt enable */
FIELD(CR3, WUS, 20, 2) /* Wakeup from Stop mode interrupt flag selection */
FIELD(CR3, SCARCNT, 17, 3) /* Smartcard auto-retry count */
FIELD(CR3, DEP, 15, 1) /* Driver enable polarity selection */
FIELD(CR3, DEM, 14, 1) /* Driver enable mode */
FIELD(CR3, DDRE, 13, 1) /* DMA Disable on Reception Error */
FIELD(CR3, OVRDIS, 12, 1) /* Overrun Disable */
FIELD(CR3, ONEBIT, 11, 1) /* One sample bit method enable */
FIELD(CR3, CTSIE, 10, 1) /* CTS interrupt enable */
FIELD(CR3, CTSE, 9, 1) /* CTS enable */
FIELD(CR3, RTSE, 8, 1) /* RTS enable */
FIELD(CR3, DMAT, 7, 1) /* DMA enable transmitter */
FIELD(CR3, DMAR, 6, 1) /* DMA enable receiver */
FIELD(CR3, SCEN, 5, 1) /* Smartcard mode enable */
FIELD(CR3, NACK, 4, 1) /* Smartcard NACK enable */
FIELD(CR3, HDSEL, 3, 1) /* Half-duplex selection */
FIELD(CR3, IRLP, 2, 1) /* IrDA low-power */
FIELD(CR3, IREN, 1, 1) /* IrDA mode enable */
FIELD(CR3, EIE, 0, 1) /* Error interrupt enable */
REG32(BRR, 0x0C)
FIELD(BRR, BRR, 0, 16)
REG32(GTPR, 0x10)
FIELD(GTPR, GT, 8, 8) /* Guard time value */
FIELD(GTPR, PSC, 0, 8) /* Prescaler value */
REG32(RTOR, 0x14)
FIELD(RTOR, BLEN, 24, 8) /* Block Length */
FIELD(RTOR, RTO, 0, 24) /* Receiver timeout value */
REG32(RQR, 0x18)
FIELD(RQR, TXFRQ, 4, 1) /* Transmit data flush request */
FIELD(RQR, RXFRQ, 3, 1) /* Receive data flush request */
FIELD(RQR, MMRQ, 2, 1) /* Mute mode request */
FIELD(RQR, SBKRQ, 1, 1) /* Send break request */
FIELD(RQR, ABBRRQ, 0, 1) /* Auto baud rate request */
REG32(ISR, 0x1C)
/* TCBGT only for STM32L475xx/476xx/486xx devices */
FIELD(ISR, REACK, 22, 1) /* Receive enable acknowledge flag */
FIELD(ISR, TEACK, 21, 1) /* Transmit enable acknowledge flag */
FIELD(ISR, WUF, 20, 1) /* Wakeup from Stop mode flag */
FIELD(ISR, RWU, 19, 1) /* Receiver wakeup from Mute mode */
FIELD(ISR, SBKF, 18, 1) /* Send break flag */
FIELD(ISR, CMF, 17, 1) /* Character match flag */
FIELD(ISR, BUSY, 16, 1) /* Busy flag */
FIELD(ISR, ABRF, 15, 1) /* Auto Baud rate flag */
FIELD(ISR, ABRE, 14, 1) /* Auto Baud rate error */
FIELD(ISR, EOBF, 12, 1) /* End of block flag */
FIELD(ISR, RTOF, 11, 1) /* Receiver timeout */
FIELD(ISR, CTS, 10, 1) /* CTS flag */
FIELD(ISR, CTSIF, 9, 1) /* CTS interrupt flag */
FIELD(ISR, LBDF, 8, 1) /* LIN break detection flag */
FIELD(ISR, TXE, 7, 1) /* Transmit data register empty */
FIELD(ISR, TC, 6, 1) /* Transmission complete */
FIELD(ISR, RXNE, 5, 1) /* Read data register not empty */
FIELD(ISR, IDLE, 4, 1) /* Idle line detected */
FIELD(ISR, ORE, 3, 1) /* Overrun error */
FIELD(ISR, NF, 2, 1) /* START bit Noise detection flag */
FIELD(ISR, FE, 1, 1) /* Framing Error */
FIELD(ISR, PE, 0, 1) /* Parity Error */
REG32(ICR, 0x20)
FIELD(ICR, WUCF, 20, 1) /* Wakeup from Stop mode clear flag */
FIELD(ICR, CMCF, 17, 1) /* Character match clear flag */
FIELD(ICR, EOBCF, 12, 1) /* End of block clear flag */
FIELD(ICR, RTOCF, 11, 1) /* Receiver timeout clear flag */
FIELD(ICR, CTSCF, 9, 1) /* CTS clear flag */
FIELD(ICR, LBDCF, 8, 1) /* LIN break detection clear flag */
/* TCBGTCF only on STM32L496xx/4A6xx devices */
FIELD(ICR, TCCF, 6, 1) /* Transmission complete clear flag */
FIELD(ICR, IDLECF, 4, 1) /* Idle line detected clear flag */
FIELD(ICR, ORECF, 3, 1) /* Overrun error clear flag */
FIELD(ICR, NCF, 2, 1) /* Noise detected clear flag */
FIELD(ICR, FECF, 1, 1) /* Framing error clear flag */
FIELD(ICR, PECF, 0, 1) /* Parity error clear flag */
REG32(RDR, 0x24)
FIELD(RDR, RDR, 0, 9)
REG32(TDR, 0x28)
FIELD(TDR, TDR, 0, 9)
static void stm32l4x5_update_isr(Stm32l4x5UsartBaseState *s)
{
if (s->cr1 & R_CR1_TE_MASK) {
s->isr |= R_ISR_TEACK_MASK;
} else {
s->isr &= ~R_ISR_TEACK_MASK;
}
if (s->cr1 & R_CR1_RE_MASK) {
s->isr |= R_ISR_REACK_MASK;
} else {
s->isr &= ~R_ISR_REACK_MASK;
}
}
static void stm32l4x5_update_irq(Stm32l4x5UsartBaseState *s)
{
if (((s->isr & R_ISR_WUF_MASK) && (s->cr3 & R_CR3_WUFIE_MASK)) ||
((s->isr & R_ISR_CMF_MASK) && (s->cr1 & R_CR1_CMIE_MASK)) ||
((s->isr & R_ISR_ABRF_MASK) && (s->cr1 & R_CR1_RXNEIE_MASK)) ||
((s->isr & R_ISR_EOBF_MASK) && (s->cr1 & R_CR1_EOBIE_MASK)) ||
((s->isr & R_ISR_RTOF_MASK) && (s->cr1 & R_CR1_RTOIE_MASK)) ||
((s->isr & R_ISR_CTSIF_MASK) && (s->cr3 & R_CR3_CTSIE_MASK)) ||
((s->isr & R_ISR_LBDF_MASK) && (s->cr2 & R_CR2_LBDIE_MASK)) ||
((s->isr & R_ISR_TXE_MASK) && (s->cr1 & R_CR1_TXEIE_MASK)) ||
((s->isr & R_ISR_TC_MASK) && (s->cr1 & R_CR1_TCIE_MASK)) ||
((s->isr & R_ISR_RXNE_MASK) && (s->cr1 & R_CR1_RXNEIE_MASK)) ||
((s->isr & R_ISR_IDLE_MASK) && (s->cr1 & R_CR1_IDLEIE_MASK)) ||
((s->isr & R_ISR_ORE_MASK) &&
((s->cr1 & R_CR1_RXNEIE_MASK) || (s->cr3 & R_CR3_EIE_MASK))) ||
/* TODO: Handle NF ? */
((s->isr & R_ISR_FE_MASK) && (s->cr3 & R_CR3_EIE_MASK)) ||
((s->isr & R_ISR_PE_MASK) && (s->cr1 & R_CR1_PEIE_MASK))) {
qemu_irq_raise(s->irq);
trace_stm32l4x5_usart_irq_raised(s->isr);
} else {
qemu_irq_lower(s->irq);
trace_stm32l4x5_usart_irq_lowered();
}
}
static int stm32l4x5_usart_base_can_receive(void *opaque)
{
Stm32l4x5UsartBaseState *s = opaque;
if (!(s->isr & R_ISR_RXNE_MASK)) {
return 1;
}
return 0;
}
static void stm32l4x5_usart_base_receive(void *opaque, const uint8_t *buf,
int size)
{
Stm32l4x5UsartBaseState *s = opaque;
if (!((s->cr1 & R_CR1_UE_MASK) && (s->cr1 & R_CR1_RE_MASK))) {
trace_stm32l4x5_usart_receiver_not_enabled(
FIELD_EX32(s->cr1, CR1, UE), FIELD_EX32(s->cr1, CR1, RE));
return;
}
/* Check if overrun detection is enabled and if there is an overrun */
if (!(s->cr3 & R_CR3_OVRDIS_MASK) && (s->isr & R_ISR_RXNE_MASK)) {
/*
* A character has been received while
* the previous has not been read = Overrun.
*/
s->isr |= R_ISR_ORE_MASK;
trace_stm32l4x5_usart_overrun_detected(s->rdr, *buf);
} else {
/* No overrun */
s->rdr = *buf;
s->isr |= R_ISR_RXNE_MASK;
trace_stm32l4x5_usart_rx(s->rdr);
}
stm32l4x5_update_irq(s);
}
/*
* Try to send tx data, and arrange to be called back later if
* we can't (ie the char backend is busy/blocking).
*/
static gboolean usart_transmit(void *do_not_use, GIOCondition cond,
void *opaque)
{
Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(opaque);
int ret;
/* TODO: Handle 9 bits transmission */
uint8_t ch = s->tdr;
s->watch_tag = 0;
if (!(s->cr1 & R_CR1_TE_MASK) || (s->isr & R_ISR_TXE_MASK)) {
return G_SOURCE_REMOVE;
}
ret = qemu_chr_fe_write(&s->chr, &ch, 1);
if (ret <= 0) {
s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
usart_transmit, s);
if (!s->watch_tag) {
/*
* Most common reason to be here is "no chardev backend":
* just insta-drain the buffer, so the serial output
* goes into a void, rather than blocking the guest.
*/
goto buffer_drained;
}
/* Transmit pending */
trace_stm32l4x5_usart_tx_pending();
return G_SOURCE_REMOVE;
}
buffer_drained:
/* Character successfully sent */
trace_stm32l4x5_usart_tx(ch);
s->isr |= R_ISR_TC_MASK | R_ISR_TXE_MASK;
stm32l4x5_update_irq(s);
return G_SOURCE_REMOVE;
}
static void usart_cancel_transmit(Stm32l4x5UsartBaseState *s)
{
if (s->watch_tag) {
g_source_remove(s->watch_tag);
s->watch_tag = 0;
}
}
static void stm32l4x5_update_params(Stm32l4x5UsartBaseState *s)
{
int speed, parity, data_bits, stop_bits;
uint32_t value, usart_div;
QEMUSerialSetParams ssp;
/* Select the parity type */
if (s->cr1 & R_CR1_PCE_MASK) {
if (s->cr1 & R_CR1_PS_MASK) {
parity = 'O';
} else {
parity = 'E';
}
} else {
parity = 'N';
}
/* Select the number of stop bits */
switch (FIELD_EX32(s->cr2, CR2, STOP)) {
case 0:
stop_bits = 1;
break;
case 2:
stop_bits = 2;
break;
default:
qemu_log_mask(LOG_UNIMP,
"UNIMPLEMENTED: fractionnal stop bits; CR2[13:12] = %u",
FIELD_EX32(s->cr2, CR2, STOP));
return;
}
/* Select the length of the word */
switch ((FIELD_EX32(s->cr1, CR1, M1) << 1) | FIELD_EX32(s->cr1, CR1, M0)) {
case 0:
data_bits = 8;
break;
case 1:
data_bits = 9;
break;
case 2:
data_bits = 7;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"UNDEFINED: invalid word length, CR1.M = 0b11");
return;
}
/* Select the baud rate */
value = FIELD_EX32(s->brr, BRR, BRR);
if (value < 16) {
qemu_log_mask(LOG_GUEST_ERROR,
"UNDEFINED: BRR less than 16: %u", value);
return;
}
if (FIELD_EX32(s->cr1, CR1, OVER8) == 0) {
/*
* Oversampling by 16
* BRR = USARTDIV
*/
usart_div = value;
} else {
/*
* Oversampling by 8
* - BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right.
* - BRR[3] must be kept cleared.
* - BRR[15:4] = USARTDIV[15:4]
* - The frequency is multiplied by 2
*/
usart_div = ((value & 0xFFF0) | ((value & 0x0007) << 1)) / 2;
}
speed = clock_get_hz(s->clk) / usart_div;
ssp.speed = speed;
ssp.parity = parity;
ssp.data_bits = data_bits;
ssp.stop_bits = stop_bits;
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
trace_stm32l4x5_usart_update_params(speed, parity, data_bits, stop_bits);
}
static void stm32l4x5_usart_base_reset_hold(Object *obj, ResetType type)
{
Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(obj);
s->cr1 = 0x00000000;
s->cr2 = 0x00000000;
s->cr3 = 0x00000000;
s->brr = 0x00000000;
s->gtpr = 0x00000000;
s->rtor = 0x00000000;
s->isr = 0x020000C0;
s->rdr = 0x00000000;
s->tdr = 0x00000000;
usart_cancel_transmit(s);
stm32l4x5_update_irq(s);
}
static void usart_update_rqr(Stm32l4x5UsartBaseState *s, uint32_t value)
{
/* TXFRQ */
/* Reset RXNE flag */
if (value & R_RQR_RXFRQ_MASK) {
s->isr &= ~R_ISR_RXNE_MASK;
}
/* MMRQ */
/* SBKRQ */
/* ABRRQ */
stm32l4x5_update_irq(s);
}
static uint64_t stm32l4x5_usart_base_read(void *opaque, hwaddr addr,
unsigned int size)
{
Stm32l4x5UsartBaseState *s = opaque;
uint64_t retvalue = 0;
switch (addr) {
case A_CR1:
retvalue = s->cr1;
break;
case A_CR2:
retvalue = s->cr2;
break;
case A_CR3:
retvalue = s->cr3;
break;
case A_BRR:
retvalue = FIELD_EX32(s->brr, BRR, BRR);
break;
case A_GTPR:
retvalue = s->gtpr;
break;
case A_RTOR:
retvalue = s->rtor;
break;
case A_RQR:
/* RQR is a write only register */
retvalue = 0x00000000;
break;
case A_ISR:
retvalue = s->isr;
break;
case A_ICR:
/* ICR is a clear register */
retvalue = 0x00000000;
break;
case A_RDR:
retvalue = FIELD_EX32(s->rdr, RDR, RDR);
/* Reset RXNE flag */
s->isr &= ~R_ISR_RXNE_MASK;
stm32l4x5_update_irq(s);
break;
case A_TDR:
retvalue = FIELD_EX32(s->tdr, TDR, TDR);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
break;
}
trace_stm32l4x5_usart_read(addr, retvalue);
return retvalue;
}
static void stm32l4x5_usart_base_write(void *opaque, hwaddr addr,
uint64_t val64, unsigned int size)
{
Stm32l4x5UsartBaseState *s = opaque;
const uint32_t value = val64;
trace_stm32l4x5_usart_write(addr, value);
switch (addr) {
case A_CR1:
s->cr1 = value;
stm32l4x5_update_params(s);
stm32l4x5_update_isr(s);
stm32l4x5_update_irq(s);
return;
case A_CR2:
s->cr2 = value;
stm32l4x5_update_params(s);
return;
case A_CR3:
s->cr3 = value;
return;
case A_BRR:
s->brr = value;
stm32l4x5_update_params(s);
return;
case A_GTPR:
s->gtpr = value;
return;
case A_RTOR:
s->rtor = value;
return;
case A_RQR:
usart_update_rqr(s, value);
return;
case A_ISR:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: ISR is read only !\n", __func__);
return;
case A_ICR:
/* Clear the status flags */
s->isr &= ~value;
stm32l4x5_update_irq(s);
return;
case A_RDR:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: RDR is read only !\n", __func__);
return;
case A_TDR:
s->tdr = value;
s->isr &= ~R_ISR_TXE_MASK;
usart_transmit(NULL, G_IO_OUT, s);
return;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
}
}
static const MemoryRegionOps stm32l4x5_usart_base_ops = {
.read = stm32l4x5_usart_base_read,
.write = stm32l4x5_usart_base_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.max_access_size = 4,
.min_access_size = 4,
.unaligned = false
},
.impl = {
.max_access_size = 4,
.min_access_size = 4,
.unaligned = false
},
};
static Property stm32l4x5_usart_base_properties[] = {
DEFINE_PROP_CHR("chardev", Stm32l4x5UsartBaseState, chr),
DEFINE_PROP_END_OF_LIST(),
};
static void stm32l4x5_usart_base_init(Object *obj)
{
Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(obj);
sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
memory_region_init_io(&s->mmio, obj, &stm32l4x5_usart_base_ops, s,
TYPE_STM32L4X5_USART_BASE, 0x400);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
s->clk = qdev_init_clock_in(DEVICE(s), "clk", NULL, s, 0);
}
static int stm32l4x5_usart_base_post_load(void *opaque, int version_id)
{
Stm32l4x5UsartBaseState *s = (Stm32l4x5UsartBaseState *)opaque;
stm32l4x5_update_params(s);
return 0;
}
static const VMStateDescription vmstate_stm32l4x5_usart_base = {
.name = TYPE_STM32L4X5_USART_BASE,
.version_id = 1,
.minimum_version_id = 1,
.post_load = stm32l4x5_usart_base_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cr1, Stm32l4x5UsartBaseState),
VMSTATE_UINT32(cr2, Stm32l4x5UsartBaseState),
VMSTATE_UINT32(cr3, Stm32l4x5UsartBaseState),
VMSTATE_UINT32(brr, Stm32l4x5UsartBaseState),
VMSTATE_UINT32(gtpr, Stm32l4x5UsartBaseState),
VMSTATE_UINT32(rtor, Stm32l4x5UsartBaseState),
VMSTATE_UINT32(isr, Stm32l4x5UsartBaseState),
VMSTATE_UINT32(rdr, Stm32l4x5UsartBaseState),
VMSTATE_UINT32(tdr, Stm32l4x5UsartBaseState),
VMSTATE_CLOCK(clk, Stm32l4x5UsartBaseState),
VMSTATE_END_OF_LIST()
}
};
static void stm32l4x5_usart_base_realize(DeviceState *dev, Error **errp)
{
ERRP_GUARD();
Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(dev);
if (!clock_has_source(s->clk)) {
error_setg(errp, "USART clock must be wired up by SoC code");
return;
}
qemu_chr_fe_set_handlers(&s->chr, stm32l4x5_usart_base_can_receive,
stm32l4x5_usart_base_receive, NULL, NULL,
s, NULL, true);
}
static void stm32l4x5_usart_base_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
rc->phases.hold = stm32l4x5_usart_base_reset_hold;
device_class_set_props(dc, stm32l4x5_usart_base_properties);
dc->realize = stm32l4x5_usart_base_realize;
dc->vmsd = &vmstate_stm32l4x5_usart_base;
}
static void stm32l4x5_usart_class_init(ObjectClass *oc, void *data)
{
Stm32l4x5UsartBaseClass *subc = STM32L4X5_USART_BASE_CLASS(oc);
subc->type = STM32L4x5_USART;
}
static void stm32l4x5_uart_class_init(ObjectClass *oc, void *data)
{
Stm32l4x5UsartBaseClass *subc = STM32L4X5_USART_BASE_CLASS(oc);
subc->type = STM32L4x5_UART;
}
static void stm32l4x5_lpuart_class_init(ObjectClass *oc, void *data)
{
Stm32l4x5UsartBaseClass *subc = STM32L4X5_USART_BASE_CLASS(oc);
subc->type = STM32L4x5_LPUART;
}
static const TypeInfo stm32l4x5_usart_types[] = {
{
.name = TYPE_STM32L4X5_USART_BASE,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(Stm32l4x5UsartBaseState),
.instance_init = stm32l4x5_usart_base_init,
.class_size = sizeof(Stm32l4x5UsartBaseClass),
.class_init = stm32l4x5_usart_base_class_init,
.abstract = true,
}, {
.name = TYPE_STM32L4X5_USART,
.parent = TYPE_STM32L4X5_USART_BASE,
.class_init = stm32l4x5_usart_class_init,
}, {
.name = TYPE_STM32L4X5_UART,
.parent = TYPE_STM32L4X5_USART_BASE,
.class_init = stm32l4x5_uart_class_init,
}, {
.name = TYPE_STM32L4X5_LPUART,
.parent = TYPE_STM32L4X5_USART_BASE,
.class_init = stm32l4x5_lpuart_class_init,
}
};
DEFINE_TYPES(stm32l4x5_usart_types)