qemu/target-arm/op.c
pbrook b010980544 ARM TCG conversion 9/16.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4146 c046a42c-6fe2-441c-8c8c-71466251a162
2008-03-31 03:47:03 +00:00

615 lines
12 KiB
C

/*
* ARM micro operations
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005-2007 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
void OPPROTO op_addl_T0_T1_cc(void)
{
unsigned int src1;
src1 = T0;
T0 += T1;
env->NZF = T0;
env->CF = T0 < src1;
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
}
void OPPROTO op_adcl_T0_T1_cc(void)
{
unsigned int src1;
src1 = T0;
if (!env->CF) {
T0 += T1;
env->CF = T0 < src1;
} else {
T0 += T1 + 1;
env->CF = T0 <= src1;
}
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
env->NZF = T0;
FORCE_RET();
}
#define OPSUB(sub, sbc, res, T0, T1) \
\
void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
{ \
unsigned int src1; \
src1 = T0; \
T0 -= T1; \
env->NZF = T0; \
env->CF = src1 >= T1; \
env->VF = (src1 ^ T1) & (src1 ^ T0); \
res = T0; \
} \
\
void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
{ \
unsigned int src1; \
src1 = T0; \
if (!env->CF) { \
T0 = T0 - T1 - 1; \
env->CF = src1 > T1; \
} else { \
T0 = T0 - T1; \
env->CF = src1 >= T1; \
} \
env->VF = (src1 ^ T1) & (src1 ^ T0); \
env->NZF = T0; \
res = T0; \
FORCE_RET(); \
}
OPSUB(sub, sbc, T0, T0, T1)
OPSUB(rsb, rsc, T0, T1, T0)
void OPPROTO op_addq_T0_T1(void)
{
uint64_t res;
res = ((uint64_t)T1 << 32) | T0;
res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
T1 = res >> 32;
T0 = res;
}
void OPPROTO op_addq_lo_T0_T1(void)
{
uint64_t res;
res = ((uint64_t)T1 << 32) | T0;
res += (uint64_t)(env->regs[PARAM1]);
T1 = res >> 32;
T0 = res;
}
/* Dual 16-bit accumulate. */
void OPPROTO op_addq_T0_T1_dual(void)
{
uint64_t res;
res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
res += (int32_t)T0;
res += (int32_t)T1;
env->regs[PARAM1] = (uint32_t)res;
env->regs[PARAM2] = res >> 32;
}
/* Dual 16-bit subtract accumulate. */
void OPPROTO op_subq_T0_T1_dual(void)
{
uint64_t res;
res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
res += (int32_t)T0;
res -= (int32_t)T1;
env->regs[PARAM1] = (uint32_t)res;
env->regs[PARAM2] = res >> 32;
}
void OPPROTO op_logicq_cc(void)
{
env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
}
/* memory access */
#define MEMSUFFIX _raw
#include "op_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.h"
#define MEMSUFFIX _kernel
#include "op_mem.h"
#endif
void OPPROTO op_clrex(void)
{
cpu_lock();
helper_clrex(env);
cpu_unlock();
}
/* T1 based, use T0 as shift count */
void OPPROTO op_shll_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
T1 = 0;
else
T1 = T1 << shift;
FORCE_RET();
}
void OPPROTO op_shrl_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
T1 = 0;
else
T1 = (uint32_t)T1 >> shift;
FORCE_RET();
}
void OPPROTO op_sarl_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
shift = 31;
T1 = (int32_t)T1 >> shift;
}
void OPPROTO op_rorl_T1_T0(void)
{
int shift;
shift = T0 & 0x1f;
if (shift) {
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
FORCE_RET();
}
/* T1 based, use T0 as shift count and compute CF */
void OPPROTO op_shll_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = T1 & 1;
else
env->CF = 0;
T1 = 0;
} else if (shift != 0) {
env->CF = (T1 >> (32 - shift)) & 1;
T1 = T1 << shift;
}
FORCE_RET();
}
void OPPROTO op_shrl_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = (T1 >> 31) & 1;
else
env->CF = 0;
T1 = 0;
} else if (shift != 0) {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = (uint32_t)T1 >> shift;
}
FORCE_RET();
}
void OPPROTO op_sarl_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
env->CF = (T1 >> 31) & 1;
T1 = (int32_t)T1 >> 31;
} else if (shift != 0) {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = (int32_t)T1 >> shift;
}
FORCE_RET();
}
void OPPROTO op_rorl_T1_T0_cc(void)
{
int shift1, shift;
shift1 = T0 & 0xff;
shift = shift1 & 0x1f;
if (shift == 0) {
if (shift1 != 0)
env->CF = (T1 >> 31) & 1;
} else {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
FORCE_RET();
}
/* VFP support. We follow the convention used for VFP instrunctions:
Single precition routines have a "s" suffix, double precision a
"d" suffix. */
#define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
#define VFP_BINOP(name) \
VFP_OP(name, s) \
{ \
FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \
} \
VFP_OP(name, d) \
{ \
FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
#undef VFP_BINOP
#define VFP_HELPER(name) \
VFP_OP(name, s) \
{ \
do_vfp_##name##s(); \
} \
VFP_OP(name, d) \
{ \
do_vfp_##name##d(); \
}
VFP_HELPER(abs)
VFP_HELPER(sqrt)
VFP_HELPER(cmp)
VFP_HELPER(cmpe)
#undef VFP_HELPER
/* XXX: Will this do the right thing for NANs. Should invert the signbit
without looking at the rest of the value. */
VFP_OP(neg, s)
{
FT0s = float32_chs(FT0s);
}
VFP_OP(neg, d)
{
FT0d = float64_chs(FT0d);
}
VFP_OP(F1_ld0, s)
{
union {
uint32_t i;
float32 s;
} v;
v.i = 0;
FT1s = v.s;
}
VFP_OP(F1_ld0, d)
{
union {
uint64_t i;
float64 d;
} v;
v.i = 0;
FT1d = v.d;
}
/* Helper routines to perform bitwise copies between float and int. */
static inline float32 vfp_itos(uint32_t i)
{
union {
uint32_t i;
float32 s;
} v;
v.i = i;
return v.s;
}
static inline uint32_t vfp_stoi(float32 s)
{
union {
uint32_t i;
float32 s;
} v;
v.s = s;
return v.i;
}
static inline float64 vfp_itod(uint64_t i)
{
union {
uint64_t i;
float64 d;
} v;
v.i = i;
return v.d;
}
static inline uint64_t vfp_dtoi(float64 d)
{
union {
uint64_t i;
float64 d;
} v;
v.d = d;
return v.i;
}
/* Integer to float conversion. */
VFP_OP(uito, s)
{
FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
}
VFP_OP(uito, d)
{
FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
}
VFP_OP(sito, s)
{
FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
}
VFP_OP(sito, d)
{
FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
}
/* Float to integer conversion. */
VFP_OP(toui, s)
{
FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status));
}
VFP_OP(toui, d)
{
FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status));
}
VFP_OP(tosi, s)
{
FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status));
}
VFP_OP(tosi, d)
{
FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status));
}
/* TODO: Set rounding mode properly. */
VFP_OP(touiz, s)
{
FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status));
}
VFP_OP(touiz, d)
{
FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status));
}
VFP_OP(tosiz, s)
{
FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status));
}
VFP_OP(tosiz, d)
{
FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status));
}
/* floating point conversion */
VFP_OP(fcvtd, s)
{
FT0d = float32_to_float64(FT0s, &env->vfp.fp_status);
}
VFP_OP(fcvts, d)
{
FT0s = float64_to_float32(FT0d, &env->vfp.fp_status);
}
/* VFP3 fixed point conversion. */
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
VFP_OP(name##to, p) \
{ \
ftype tmp; \
tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(FT0##p), \
&env->vfp.fp_status); \
FT0##p = ftype##_scalbn(tmp, PARAM1, &env->vfp.fp_status); \
} \
VFP_OP(to##name, p) \
{ \
ftype tmp; \
tmp = ftype##_scalbn(FT0##p, PARAM1, &env->vfp.fp_status); \
FT0##p = vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
&env->vfp.fp_status)); \
}
VFP_CONV_FIX(sh, d, float64, int16, )
VFP_CONV_FIX(sl, d, float64, int32, )
VFP_CONV_FIX(uh, d, float64, uint16, u)
VFP_CONV_FIX(ul, d, float64, uint32, u)
VFP_CONV_FIX(sh, s, float32, int16, )
VFP_CONV_FIX(sl, s, float32, int32, )
VFP_CONV_FIX(uh, s, float32, uint16, u)
VFP_CONV_FIX(ul, s, float32, uint32, u)
/* Get and Put values from registers. */
VFP_OP(getreg_F0, d)
{
FT0d = *(float64 *)((char *) env + PARAM1);
}
VFP_OP(getreg_F0, s)
{
FT0s = *(float32 *)((char *) env + PARAM1);
}
VFP_OP(getreg_F1, d)
{
FT1d = *(float64 *)((char *) env + PARAM1);
}
VFP_OP(getreg_F1, s)
{
FT1s = *(float32 *)((char *) env + PARAM1);
}
VFP_OP(setreg_F0, d)
{
*(float64 *)((char *) env + PARAM1) = FT0d;
}
VFP_OP(setreg_F0, s)
{
*(float32 *)((char *) env + PARAM1) = FT0s;
}
void OPPROTO op_vfp_movl_T0_fpscr(void)
{
do_vfp_get_fpscr ();
}
void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
{
T0 = env->vfp.xregs[ARM_VFP_FPSCR] & (0xf << 28);
}
void OPPROTO op_vfp_movl_fpscr_T0(void)
{
do_vfp_set_fpscr();
}
void OPPROTO op_vfp_movl_T0_xreg(void)
{
T0 = env->vfp.xregs[PARAM1];
}
void OPPROTO op_vfp_movl_xreg_T0(void)
{
env->vfp.xregs[PARAM1] = T0;
}
/* Move between FT0s to T0 */
void OPPROTO op_vfp_mrs(void)
{
T0 = vfp_stoi(FT0s);
}
void OPPROTO op_vfp_msr(void)
{
FT0s = vfp_itos(T0);
}
/* Move between FT0d and {T0,T1} */
void OPPROTO op_vfp_mrrd(void)
{
CPU_DoubleU u;
u.d = FT0d;
T0 = u.l.lower;
T1 = u.l.upper;
}
void OPPROTO op_vfp_mdrr(void)
{
CPU_DoubleU u;
u.l.lower = T0;
u.l.upper = T1;
FT0d = u.d;
}
/* Load immediate. PARAM1 is the 32 most significant bits of the value. */
void OPPROTO op_vfp_fconstd(void)
{
CPU_DoubleU u;
u.l.upper = PARAM1;
u.l.lower = 0;
FT0d = u.d;
}
void OPPROTO op_vfp_fconsts(void)
{
FT0s = vfp_itos(PARAM1);
}
void OPPROTO op_movl_cp_T0(void)
{
helper_set_cp(env, PARAM1, T0);
FORCE_RET();
}
void OPPROTO op_movl_T0_cp(void)
{
T0 = helper_get_cp(env, PARAM1);
FORCE_RET();
}
void OPPROTO op_movl_cp15_T0(void)
{
helper_set_cp15(env, PARAM1, T0);
FORCE_RET();
}
void OPPROTO op_movl_T0_cp15(void)
{
T0 = helper_get_cp15(env, PARAM1);
FORCE_RET();
}
void OPPROTO op_v7m_mrs_T0(void)
{
T0 = helper_v7m_mrs(env, PARAM1);
}
void OPPROTO op_v7m_msr_T0(void)
{
helper_v7m_msr(env, PARAM1, T0);
}
void OPPROTO op_movl_T0_sp(void)
{
if (PARAM1 == env->v7m.current_sp)
T0 = env->regs[13];
else
T0 = env->v7m.other_sp;
FORCE_RET();
}
#include "op_neon.h"
/* iwMMXt support */
#include "op_iwmmxt.c"