9ea17007c4
The AES MixColumns and InvMixColumns operations are relatively expensive 4x4 matrix multiplications in GF(2^8), which is why C implementations usually rely on precomputed lookup tables rather than performing the calculations on demand. Given that we already carry those tables in QEMU, we can just grab the right value in the implementation of the RISC-V AES32 instructions. Note that the tables in question are permuted according to the respective Sbox, so we can omit the Sbox lookup as well in this case. Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Philippe Mathieu-Daudé <philmd@linaro.org> Cc: Zewen Ye <lustrew@foxmail.com> Cc: Weiwei Li <liweiwei@iscas.ac.cn> Cc: Junqiang Wang <wangjunqiang@iscas.ac.cn> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-ID: <20230731084043.1791984-1-ardb@kernel.org> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
209 lines
5.6 KiB
C
209 lines
5.6 KiB
C
/*
|
|
* RISC-V Crypto Emulation Helpers for QEMU.
|
|
*
|
|
* Copyright (c) 2021 Ruibo Lu, luruibo2000@163.com
|
|
* Copyright (c) 2021 Zewen Ye, lustrew@foxmail.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "crypto/aes.h"
|
|
#include "crypto/aes-round.h"
|
|
#include "crypto/sm4.h"
|
|
|
|
#define sext32_xlen(x) (target_ulong)(int32_t)(x)
|
|
|
|
static inline target_ulong aes32_operation(target_ulong shamt,
|
|
target_ulong rs1, target_ulong rs2,
|
|
bool enc, bool mix)
|
|
{
|
|
uint8_t si = rs2 >> shamt;
|
|
uint32_t mixed;
|
|
target_ulong res;
|
|
|
|
if (enc) {
|
|
if (mix) {
|
|
mixed = be32_to_cpu(AES_Te0[si]);
|
|
} else {
|
|
mixed = AES_sbox[si];
|
|
}
|
|
} else {
|
|
if (mix) {
|
|
mixed = be32_to_cpu(AES_Td0[si]);
|
|
} else {
|
|
mixed = AES_isbox[si];
|
|
}
|
|
}
|
|
mixed = rol32(mixed, shamt);
|
|
res = rs1 ^ mixed;
|
|
|
|
return sext32_xlen(res);
|
|
}
|
|
|
|
target_ulong HELPER(aes32esmi)(target_ulong rs1, target_ulong rs2,
|
|
target_ulong shamt)
|
|
{
|
|
return aes32_operation(shamt, rs1, rs2, true, true);
|
|
}
|
|
|
|
target_ulong HELPER(aes32esi)(target_ulong rs1, target_ulong rs2,
|
|
target_ulong shamt)
|
|
{
|
|
return aes32_operation(shamt, rs1, rs2, true, false);
|
|
}
|
|
|
|
target_ulong HELPER(aes32dsmi)(target_ulong rs1, target_ulong rs2,
|
|
target_ulong shamt)
|
|
{
|
|
return aes32_operation(shamt, rs1, rs2, false, true);
|
|
}
|
|
|
|
target_ulong HELPER(aes32dsi)(target_ulong rs1, target_ulong rs2,
|
|
target_ulong shamt)
|
|
{
|
|
return aes32_operation(shamt, rs1, rs2, false, false);
|
|
}
|
|
|
|
static const AESState aes_zero = { };
|
|
|
|
target_ulong HELPER(aes64esm)(target_ulong rs1, target_ulong rs2)
|
|
{
|
|
AESState t;
|
|
|
|
t.d[HOST_BIG_ENDIAN] = rs1;
|
|
t.d[!HOST_BIG_ENDIAN] = rs2;
|
|
aesenc_SB_SR_MC_AK(&t, &t, &aes_zero, false);
|
|
return t.d[HOST_BIG_ENDIAN];
|
|
}
|
|
|
|
target_ulong HELPER(aes64es)(target_ulong rs1, target_ulong rs2)
|
|
{
|
|
AESState t;
|
|
|
|
t.d[HOST_BIG_ENDIAN] = rs1;
|
|
t.d[!HOST_BIG_ENDIAN] = rs2;
|
|
aesenc_SB_SR_AK(&t, &t, &aes_zero, false);
|
|
return t.d[HOST_BIG_ENDIAN];
|
|
}
|
|
|
|
target_ulong HELPER(aes64ds)(target_ulong rs1, target_ulong rs2)
|
|
{
|
|
AESState t;
|
|
|
|
t.d[HOST_BIG_ENDIAN] = rs1;
|
|
t.d[!HOST_BIG_ENDIAN] = rs2;
|
|
aesdec_ISB_ISR_AK(&t, &t, &aes_zero, false);
|
|
return t.d[HOST_BIG_ENDIAN];
|
|
}
|
|
|
|
target_ulong HELPER(aes64dsm)(target_ulong rs1, target_ulong rs2)
|
|
{
|
|
AESState t, z = { };
|
|
|
|
/*
|
|
* This instruction does not include a round key,
|
|
* so supply a zero to our primitive.
|
|
*/
|
|
t.d[HOST_BIG_ENDIAN] = rs1;
|
|
t.d[!HOST_BIG_ENDIAN] = rs2;
|
|
aesdec_ISB_ISR_IMC_AK(&t, &t, &z, false);
|
|
return t.d[HOST_BIG_ENDIAN];
|
|
}
|
|
|
|
target_ulong HELPER(aes64ks2)(target_ulong rs1, target_ulong rs2)
|
|
{
|
|
uint64_t RS1 = rs1;
|
|
uint64_t RS2 = rs2;
|
|
uint32_t rs1_hi = RS1 >> 32;
|
|
uint32_t rs2_lo = RS2;
|
|
uint32_t rs2_hi = RS2 >> 32;
|
|
|
|
uint32_t r_lo = (rs1_hi ^ rs2_lo);
|
|
uint32_t r_hi = (rs1_hi ^ rs2_lo ^ rs2_hi);
|
|
target_ulong result = ((uint64_t)r_hi << 32) | r_lo;
|
|
|
|
return result;
|
|
}
|
|
|
|
target_ulong HELPER(aes64ks1i)(target_ulong rs1, target_ulong rnum)
|
|
{
|
|
uint64_t RS1 = rs1;
|
|
static const uint8_t round_consts[10] = {
|
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
|
|
};
|
|
|
|
uint8_t enc_rnum = rnum;
|
|
uint32_t temp = (RS1 >> 32) & 0xFFFFFFFF;
|
|
uint8_t rcon_ = 0;
|
|
target_ulong result;
|
|
|
|
if (enc_rnum != 0xA) {
|
|
temp = ror32(temp, 8); /* Rotate right by 8 */
|
|
rcon_ = round_consts[enc_rnum];
|
|
}
|
|
|
|
temp = ((uint32_t)AES_sbox[(temp >> 24) & 0xFF] << 24) |
|
|
((uint32_t)AES_sbox[(temp >> 16) & 0xFF] << 16) |
|
|
((uint32_t)AES_sbox[(temp >> 8) & 0xFF] << 8) |
|
|
((uint32_t)AES_sbox[(temp >> 0) & 0xFF] << 0);
|
|
|
|
temp ^= rcon_;
|
|
|
|
result = ((uint64_t)temp << 32) | temp;
|
|
|
|
return result;
|
|
}
|
|
|
|
target_ulong HELPER(aes64im)(target_ulong rs1)
|
|
{
|
|
AESState t;
|
|
|
|
t.d[HOST_BIG_ENDIAN] = rs1;
|
|
t.d[!HOST_BIG_ENDIAN] = 0;
|
|
aesdec_IMC(&t, &t, false);
|
|
return t.d[HOST_BIG_ENDIAN];
|
|
}
|
|
|
|
target_ulong HELPER(sm4ed)(target_ulong rs1, target_ulong rs2,
|
|
target_ulong shamt)
|
|
{
|
|
uint32_t sb_in = (uint8_t)(rs2 >> shamt);
|
|
uint32_t sb_out = (uint32_t)sm4_sbox[sb_in];
|
|
|
|
uint32_t x = sb_out ^ (sb_out << 8) ^ (sb_out << 2) ^ (sb_out << 18) ^
|
|
((sb_out & 0x3f) << 26) ^ ((sb_out & 0xC0) << 10);
|
|
|
|
uint32_t rotl = rol32(x, shamt);
|
|
|
|
return sext32_xlen(rotl ^ (uint32_t)rs1);
|
|
}
|
|
|
|
target_ulong HELPER(sm4ks)(target_ulong rs1, target_ulong rs2,
|
|
target_ulong shamt)
|
|
{
|
|
uint32_t sb_in = (uint8_t)(rs2 >> shamt);
|
|
uint32_t sb_out = sm4_sbox[sb_in];
|
|
|
|
uint32_t x = sb_out ^ ((sb_out & 0x07) << 29) ^ ((sb_out & 0xFE) << 7) ^
|
|
((sb_out & 0x01) << 23) ^ ((sb_out & 0xF8) << 13);
|
|
|
|
uint32_t rotl = rol32(x, shamt);
|
|
|
|
return sext32_xlen(rotl ^ (uint32_t)rs1);
|
|
}
|
|
#undef sext32_xlen
|