qemu/hw/nvme/nvme.h
Arun Kumar 79e490058f hw/nvme: i/o cmd set independent namespace data structure
Add support for the I/O Command Set Independent Namespace Data
Structure (CNS 8h and 1fh).

Signed-off-by: Arun Kumar <arun.kka@samsung.com>
Reviewed-by: Klaus Jensen <k.jensen@samsung.com>
Link: https://lore.kernel.org/r/20240925004407.3521406-1-arun.kka@samsung.com
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2024-11-04 19:09:45 +01:00

715 lines
18 KiB
C

/*
* QEMU NVM Express
*
* Copyright (c) 2012 Intel Corporation
* Copyright (c) 2021 Minwoo Im
* Copyright (c) 2021 Samsung Electronics Co., Ltd.
*
* Authors:
* Keith Busch <kbusch@kernel.org>
* Klaus Jensen <k.jensen@samsung.com>
* Gollu Appalanaidu <anaidu.gollu@samsung.com>
* Dmitry Fomichev <dmitry.fomichev@wdc.com>
* Minwoo Im <minwoo.im.dev@gmail.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
#ifndef HW_NVME_NVME_H
#define HW_NVME_NVME_H
#include "qemu/uuid.h"
#include "hw/pci/pci_device.h"
#include "hw/block/block.h"
#include "block/nvme.h"
#define NVME_MAX_CONTROLLERS 256
#define NVME_MAX_NAMESPACES 256
#define NVME_EUI64_DEFAULT ((uint64_t)0x5254000000000000)
#define NVME_FDP_MAX_EVENTS 63
#define NVME_FDP_MAXPIDS 128
/*
* The controller only supports Submission and Completion Queue Entry Sizes of
* 64 and 16 bytes respectively.
*/
#define NVME_SQES 6
#define NVME_CQES 4
QEMU_BUILD_BUG_ON(NVME_MAX_NAMESPACES > NVME_NSID_BROADCAST - 1);
typedef struct NvmeCtrl NvmeCtrl;
typedef struct NvmeNamespace NvmeNamespace;
#define TYPE_NVME_BUS "nvme-bus"
OBJECT_DECLARE_SIMPLE_TYPE(NvmeBus, NVME_BUS)
typedef struct NvmeBus {
BusState parent_bus;
} NvmeBus;
#define TYPE_NVME_SUBSYS "nvme-subsys"
#define NVME_SUBSYS(obj) \
OBJECT_CHECK(NvmeSubsystem, (obj), TYPE_NVME_SUBSYS)
#define SUBSYS_SLOT_RSVD (void *)0xFFFF
typedef struct NvmeReclaimUnit {
uint64_t ruamw;
} NvmeReclaimUnit;
typedef struct NvmeRuHandle {
uint8_t ruht;
uint8_t ruha;
uint64_t event_filter;
uint8_t lbafi;
uint64_t ruamw;
/* reclaim units indexed by reclaim group */
NvmeReclaimUnit *rus;
} NvmeRuHandle;
typedef struct NvmeFdpEventBuffer {
NvmeFdpEvent events[NVME_FDP_MAX_EVENTS];
unsigned int nelems;
unsigned int start;
unsigned int next;
} NvmeFdpEventBuffer;
typedef struct NvmeEnduranceGroup {
uint8_t event_conf;
struct {
NvmeFdpEventBuffer host_events, ctrl_events;
uint16_t nruh;
uint16_t nrg;
uint8_t rgif;
uint64_t runs;
uint64_t hbmw;
uint64_t mbmw;
uint64_t mbe;
bool enabled;
NvmeRuHandle *ruhs;
} fdp;
} NvmeEnduranceGroup;
typedef struct NvmeSubsystem {
DeviceState parent_obj;
NvmeBus bus;
uint8_t subnqn[256];
char *serial;
NvmeCtrl *ctrls[NVME_MAX_CONTROLLERS];
NvmeNamespace *namespaces[NVME_MAX_NAMESPACES + 1];
NvmeEnduranceGroup endgrp;
struct {
char *nqn;
struct {
bool enabled;
uint64_t runs;
uint16_t nruh;
uint32_t nrg;
} fdp;
} params;
} NvmeSubsystem;
int nvme_subsys_register_ctrl(NvmeCtrl *n, Error **errp);
void nvme_subsys_unregister_ctrl(NvmeSubsystem *subsys, NvmeCtrl *n);
static inline NvmeCtrl *nvme_subsys_ctrl(NvmeSubsystem *subsys,
uint32_t cntlid)
{
if (!subsys || cntlid >= NVME_MAX_CONTROLLERS) {
return NULL;
}
if (subsys->ctrls[cntlid] == SUBSYS_SLOT_RSVD) {
return NULL;
}
return subsys->ctrls[cntlid];
}
static inline NvmeNamespace *nvme_subsys_ns(NvmeSubsystem *subsys,
uint32_t nsid)
{
if (!subsys || !nsid || nsid > NVME_MAX_NAMESPACES) {
return NULL;
}
return subsys->namespaces[nsid];
}
#define TYPE_NVME_NS "nvme-ns"
#define NVME_NS(obj) \
OBJECT_CHECK(NvmeNamespace, (obj), TYPE_NVME_NS)
typedef struct NvmeZone {
NvmeZoneDescr d;
uint64_t w_ptr;
QTAILQ_ENTRY(NvmeZone) entry;
} NvmeZone;
#define FDP_EVT_MAX 0xff
#define NVME_FDP_MAX_NS_RUHS 32u
#define FDPVSS 0
static const uint8_t nvme_fdp_evf_shifts[FDP_EVT_MAX] = {
/* Host events */
[FDP_EVT_RU_NOT_FULLY_WRITTEN] = 0,
[FDP_EVT_RU_ATL_EXCEEDED] = 1,
[FDP_EVT_CTRL_RESET_RUH] = 2,
[FDP_EVT_INVALID_PID] = 3,
/* CTRL events */
[FDP_EVT_MEDIA_REALLOC] = 32,
[FDP_EVT_RUH_IMPLICIT_RU_CHANGE] = 33,
};
#define NGUID_LEN 16
typedef struct {
uint8_t data[NGUID_LEN];
} NvmeNGUID;
bool nvme_nguid_is_null(const NvmeNGUID *nguid);
extern const PropertyInfo qdev_prop_nguid;
#define DEFINE_PROP_NGUID_NODEFAULT(_name, _state, _field) \
DEFINE_PROP(_name, _state, _field, qdev_prop_nguid, NvmeNGUID)
typedef struct NvmeNamespaceParams {
bool detached;
bool shared;
uint32_t nsid;
QemuUUID uuid;
NvmeNGUID nguid;
uint64_t eui64;
bool eui64_default;
uint16_t ms;
uint8_t mset;
uint8_t pi;
uint8_t pil;
uint8_t pif;
uint16_t mssrl;
uint32_t mcl;
uint8_t msrc;
bool zoned;
bool cross_zone_read;
uint64_t zone_size_bs;
uint64_t zone_cap_bs;
uint32_t max_active_zones;
uint32_t max_open_zones;
uint32_t zd_extension_size;
uint32_t numzrwa;
uint64_t zrwas;
uint64_t zrwafg;
struct {
char *ruhs;
} fdp;
} NvmeNamespaceParams;
typedef struct NvmeAtomic {
uint32_t atomic_max_write_size;
bool atomic_writes;
} NvmeAtomic;
typedef struct NvmeNamespace {
DeviceState parent_obj;
BlockConf blkconf;
int32_t bootindex;
int64_t size;
int64_t moff;
NvmeIdNs id_ns;
NvmeIdNsNvm id_ns_nvm;
NvmeIdNsInd id_ns_ind;
NvmeLBAF lbaf;
unsigned int nlbaf;
size_t lbasz;
const uint32_t *iocs;
uint8_t csi;
uint16_t status;
int attached;
uint8_t pif;
struct {
uint16_t zrwas;
uint16_t zrwafg;
uint32_t numzrwa;
} zns;
QTAILQ_ENTRY(NvmeNamespace) entry;
NvmeIdNsZoned *id_ns_zoned;
NvmeZone *zone_array;
QTAILQ_HEAD(, NvmeZone) exp_open_zones;
QTAILQ_HEAD(, NvmeZone) imp_open_zones;
QTAILQ_HEAD(, NvmeZone) closed_zones;
QTAILQ_HEAD(, NvmeZone) full_zones;
uint32_t num_zones;
uint64_t zone_size;
uint64_t zone_capacity;
uint32_t zone_size_log2;
uint8_t *zd_extensions;
int32_t nr_open_zones;
int32_t nr_active_zones;
NvmeNamespaceParams params;
NvmeSubsystem *subsys;
NvmeEnduranceGroup *endgrp;
struct {
uint32_t err_rec;
} features;
struct {
uint16_t nphs;
/* reclaim unit handle identifiers indexed by placement handle */
uint16_t *phs;
} fdp;
} NvmeNamespace;
static inline uint32_t nvme_nsid(NvmeNamespace *ns)
{
if (ns) {
return ns->params.nsid;
}
return 0;
}
static inline size_t nvme_l2b(NvmeNamespace *ns, uint64_t lba)
{
return lba << ns->lbaf.ds;
}
static inline size_t nvme_m2b(NvmeNamespace *ns, uint64_t lba)
{
return ns->lbaf.ms * lba;
}
static inline int64_t nvme_moff(NvmeNamespace *ns, uint64_t lba)
{
return ns->moff + nvme_m2b(ns, lba);
}
static inline bool nvme_ns_ext(NvmeNamespace *ns)
{
return !!NVME_ID_NS_FLBAS_EXTENDED(ns->id_ns.flbas);
}
static inline NvmeZoneState nvme_get_zone_state(NvmeZone *zone)
{
return zone->d.zs >> 4;
}
static inline void nvme_set_zone_state(NvmeZone *zone, NvmeZoneState state)
{
zone->d.zs = state << 4;
}
static inline uint64_t nvme_zone_rd_boundary(NvmeNamespace *ns, NvmeZone *zone)
{
return zone->d.zslba + ns->zone_size;
}
static inline uint64_t nvme_zone_wr_boundary(NvmeZone *zone)
{
return zone->d.zslba + zone->d.zcap;
}
static inline bool nvme_wp_is_valid(NvmeZone *zone)
{
uint8_t st = nvme_get_zone_state(zone);
return st != NVME_ZONE_STATE_FULL &&
st != NVME_ZONE_STATE_READ_ONLY &&
st != NVME_ZONE_STATE_OFFLINE;
}
static inline uint8_t *nvme_get_zd_extension(NvmeNamespace *ns,
uint32_t zone_idx)
{
return &ns->zd_extensions[zone_idx * ns->params.zd_extension_size];
}
static inline void nvme_aor_inc_open(NvmeNamespace *ns)
{
assert(ns->nr_open_zones >= 0);
if (ns->params.max_open_zones) {
ns->nr_open_zones++;
assert(ns->nr_open_zones <= ns->params.max_open_zones);
}
}
static inline void nvme_aor_dec_open(NvmeNamespace *ns)
{
if (ns->params.max_open_zones) {
assert(ns->nr_open_zones > 0);
ns->nr_open_zones--;
}
assert(ns->nr_open_zones >= 0);
}
static inline void nvme_aor_inc_active(NvmeNamespace *ns)
{
assert(ns->nr_active_zones >= 0);
if (ns->params.max_active_zones) {
ns->nr_active_zones++;
assert(ns->nr_active_zones <= ns->params.max_active_zones);
}
}
static inline void nvme_aor_dec_active(NvmeNamespace *ns)
{
if (ns->params.max_active_zones) {
assert(ns->nr_active_zones > 0);
ns->nr_active_zones--;
assert(ns->nr_active_zones >= ns->nr_open_zones);
}
assert(ns->nr_active_zones >= 0);
}
static inline void nvme_fdp_stat_inc(uint64_t *a, uint64_t b)
{
uint64_t ret = *a + b;
*a = ret < *a ? UINT64_MAX : ret;
}
void nvme_ns_init_format(NvmeNamespace *ns);
int nvme_ns_setup(NvmeNamespace *ns, Error **errp);
void nvme_ns_drain(NvmeNamespace *ns);
void nvme_ns_shutdown(NvmeNamespace *ns);
void nvme_ns_cleanup(NvmeNamespace *ns);
typedef struct NvmeAsyncEvent {
QTAILQ_ENTRY(NvmeAsyncEvent) entry;
NvmeAerResult result;
} NvmeAsyncEvent;
enum {
NVME_SG_ALLOC = 1 << 0,
NVME_SG_DMA = 1 << 1,
};
typedef struct NvmeSg {
int flags;
union {
QEMUSGList qsg;
QEMUIOVector iov;
};
} NvmeSg;
typedef enum NvmeTxDirection {
NVME_TX_DIRECTION_TO_DEVICE = 0,
NVME_TX_DIRECTION_FROM_DEVICE = 1,
} NvmeTxDirection;
typedef struct NvmeRequest {
struct NvmeSQueue *sq;
struct NvmeNamespace *ns;
BlockAIOCB *aiocb;
uint16_t status;
void *opaque;
NvmeCqe cqe;
NvmeCmd cmd;
BlockAcctCookie acct;
NvmeSg sg;
bool atomic_write;
QTAILQ_ENTRY(NvmeRequest)entry;
} NvmeRequest;
typedef struct NvmeBounceContext {
NvmeRequest *req;
struct {
QEMUIOVector iov;
uint8_t *bounce;
} data, mdata;
} NvmeBounceContext;
static inline const char *nvme_adm_opc_str(uint8_t opc)
{
switch (opc) {
case NVME_ADM_CMD_DELETE_SQ: return "NVME_ADM_CMD_DELETE_SQ";
case NVME_ADM_CMD_CREATE_SQ: return "NVME_ADM_CMD_CREATE_SQ";
case NVME_ADM_CMD_GET_LOG_PAGE: return "NVME_ADM_CMD_GET_LOG_PAGE";
case NVME_ADM_CMD_DELETE_CQ: return "NVME_ADM_CMD_DELETE_CQ";
case NVME_ADM_CMD_CREATE_CQ: return "NVME_ADM_CMD_CREATE_CQ";
case NVME_ADM_CMD_IDENTIFY: return "NVME_ADM_CMD_IDENTIFY";
case NVME_ADM_CMD_ABORT: return "NVME_ADM_CMD_ABORT";
case NVME_ADM_CMD_SET_FEATURES: return "NVME_ADM_CMD_SET_FEATURES";
case NVME_ADM_CMD_GET_FEATURES: return "NVME_ADM_CMD_GET_FEATURES";
case NVME_ADM_CMD_ASYNC_EV_REQ: return "NVME_ADM_CMD_ASYNC_EV_REQ";
case NVME_ADM_CMD_NS_ATTACHMENT: return "NVME_ADM_CMD_NS_ATTACHMENT";
case NVME_ADM_CMD_DIRECTIVE_SEND: return "NVME_ADM_CMD_DIRECTIVE_SEND";
case NVME_ADM_CMD_VIRT_MNGMT: return "NVME_ADM_CMD_VIRT_MNGMT";
case NVME_ADM_CMD_DIRECTIVE_RECV: return "NVME_ADM_CMD_DIRECTIVE_RECV";
case NVME_ADM_CMD_DBBUF_CONFIG: return "NVME_ADM_CMD_DBBUF_CONFIG";
case NVME_ADM_CMD_FORMAT_NVM: return "NVME_ADM_CMD_FORMAT_NVM";
default: return "NVME_ADM_CMD_UNKNOWN";
}
}
static inline const char *nvme_io_opc_str(uint8_t opc)
{
switch (opc) {
case NVME_CMD_FLUSH: return "NVME_NVM_CMD_FLUSH";
case NVME_CMD_WRITE: return "NVME_NVM_CMD_WRITE";
case NVME_CMD_READ: return "NVME_NVM_CMD_READ";
case NVME_CMD_COMPARE: return "NVME_NVM_CMD_COMPARE";
case NVME_CMD_WRITE_ZEROES: return "NVME_NVM_CMD_WRITE_ZEROES";
case NVME_CMD_DSM: return "NVME_NVM_CMD_DSM";
case NVME_CMD_VERIFY: return "NVME_NVM_CMD_VERIFY";
case NVME_CMD_COPY: return "NVME_NVM_CMD_COPY";
case NVME_CMD_ZONE_MGMT_SEND: return "NVME_ZONED_CMD_MGMT_SEND";
case NVME_CMD_ZONE_MGMT_RECV: return "NVME_ZONED_CMD_MGMT_RECV";
case NVME_CMD_ZONE_APPEND: return "NVME_ZONED_CMD_ZONE_APPEND";
default: return "NVME_NVM_CMD_UNKNOWN";
}
}
typedef struct NvmeSQueue {
struct NvmeCtrl *ctrl;
uint16_t sqid;
uint16_t cqid;
uint32_t head;
uint32_t tail;
uint32_t size;
uint64_t dma_addr;
uint64_t db_addr;
uint64_t ei_addr;
QEMUBH *bh;
EventNotifier notifier;
bool ioeventfd_enabled;
NvmeRequest *io_req;
QTAILQ_HEAD(, NvmeRequest) req_list;
QTAILQ_HEAD(, NvmeRequest) out_req_list;
QTAILQ_ENTRY(NvmeSQueue) entry;
} NvmeSQueue;
typedef struct NvmeCQueue {
struct NvmeCtrl *ctrl;
uint8_t phase;
uint16_t cqid;
uint16_t irq_enabled;
uint32_t head;
uint32_t tail;
uint32_t vector;
uint32_t size;
uint64_t dma_addr;
uint64_t db_addr;
uint64_t ei_addr;
QEMUBH *bh;
EventNotifier notifier;
bool ioeventfd_enabled;
QTAILQ_HEAD(, NvmeSQueue) sq_list;
QTAILQ_HEAD(, NvmeRequest) req_list;
} NvmeCQueue;
#define TYPE_NVME "nvme"
#define NVME(obj) \
OBJECT_CHECK(NvmeCtrl, (obj), TYPE_NVME)
typedef struct NvmeParams {
char *serial;
uint32_t num_queues; /* deprecated since 5.1 */
uint32_t max_ioqpairs;
uint16_t msix_qsize;
uint16_t mqes;
uint32_t cmb_size_mb;
uint8_t aerl;
uint32_t aer_max_queued;
uint8_t mdts;
uint8_t vsl;
bool use_intel_id;
uint8_t zasl;
bool auto_transition_zones;
bool legacy_cmb;
bool ioeventfd;
uint16_t sriov_max_vfs;
uint16_t sriov_vq_flexible;
uint16_t sriov_vi_flexible;
uint32_t sriov_max_vq_per_vf;
uint32_t sriov_max_vi_per_vf;
bool msix_exclusive_bar;
struct {
bool mem;
} ctratt;
uint16_t atomic_awun;
uint16_t atomic_awupf;
bool atomic_dn;
} NvmeParams;
typedef struct NvmeCtrl {
PCIDevice parent_obj;
MemoryRegion bar0;
MemoryRegion iomem;
NvmeBar bar;
NvmeParams params;
NvmeBus bus;
uint16_t cntlid;
bool qs_created;
uint32_t page_size;
uint16_t page_bits;
uint16_t max_prp_ents;
uint32_t max_q_ents;
uint8_t outstanding_aers;
uint32_t irq_status;
int cq_pending;
uint64_t host_timestamp; /* Timestamp sent by the host */
uint64_t timestamp_set_qemu_clock_ms; /* QEMU clock time */
uint64_t starttime_ms;
uint16_t temperature;
uint8_t smart_critical_warning;
uint32_t conf_msix_qsize;
uint32_t conf_ioqpairs;
uint64_t dbbuf_dbs;
uint64_t dbbuf_eis;
bool dbbuf_enabled;
struct {
MemoryRegion mem;
uint8_t *buf;
bool cmse;
hwaddr cba;
} cmb;
struct {
HostMemoryBackend *dev;
bool cmse;
hwaddr cba;
} pmr;
uint8_t aer_mask;
NvmeRequest **aer_reqs;
QTAILQ_HEAD(, NvmeAsyncEvent) aer_queue;
int aer_queued;
uint32_t dmrsl;
/* Namespace ID is started with 1 so bitmap should be 1-based */
#define NVME_CHANGED_NSID_SIZE (NVME_MAX_NAMESPACES + 1)
DECLARE_BITMAP(changed_nsids, NVME_CHANGED_NSID_SIZE);
NvmeSubsystem *subsys;
NvmeNamespace namespace;
NvmeNamespace *namespaces[NVME_MAX_NAMESPACES + 1];
NvmeSQueue **sq;
NvmeCQueue **cq;
NvmeSQueue admin_sq;
NvmeCQueue admin_cq;
NvmeIdCtrl id_ctrl;
struct {
struct {
uint16_t temp_thresh_hi;
uint16_t temp_thresh_low;
};
uint32_t async_config;
NvmeHostBehaviorSupport hbs;
} features;
NvmePriCtrlCap pri_ctrl_cap;
uint32_t nr_sec_ctrls;
NvmeSecCtrlEntry *sec_ctrl_list;
struct {
uint16_t vqrfap;
uint16_t virfap;
} next_pri_ctrl_cap; /* These override pri_ctrl_cap after reset */
uint32_t dn; /* Disable Normal */
NvmeAtomic atomic;
} NvmeCtrl;
typedef enum NvmeResetType {
NVME_RESET_FUNCTION = 0,
NVME_RESET_CONTROLLER = 1,
} NvmeResetType;
static inline NvmeNamespace *nvme_ns(NvmeCtrl *n, uint32_t nsid)
{
if (!nsid || nsid > NVME_MAX_NAMESPACES) {
return NULL;
}
return n->namespaces[nsid];
}
static inline NvmeCQueue *nvme_cq(NvmeRequest *req)
{
NvmeSQueue *sq = req->sq;
NvmeCtrl *n = sq->ctrl;
return n->cq[sq->cqid];
}
static inline NvmeCtrl *nvme_ctrl(NvmeRequest *req)
{
NvmeSQueue *sq = req->sq;
return sq->ctrl;
}
static inline uint16_t nvme_cid(NvmeRequest *req)
{
if (!req) {
return 0xffff;
}
return le16_to_cpu(req->cqe.cid);
}
static inline NvmeSecCtrlEntry *nvme_sctrl(NvmeCtrl *n)
{
PCIDevice *pci_dev = &n->parent_obj;
NvmeCtrl *pf = NVME(pcie_sriov_get_pf(pci_dev));
if (pci_is_vf(pci_dev)) {
return &pf->sec_ctrl_list[pcie_sriov_vf_number(pci_dev)];
}
return NULL;
}
static inline NvmeSecCtrlEntry *nvme_sctrl_for_cntlid(NvmeCtrl *n,
uint16_t cntlid)
{
NvmeSecCtrlEntry *list = n->sec_ctrl_list;
uint8_t i;
for (i = 0; i < n->nr_sec_ctrls; i++) {
if (le16_to_cpu(list[i].scid) == cntlid) {
return &list[i];
}
}
return NULL;
}
void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns);
uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req);
uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req);
void nvme_rw_complete_cb(void *opaque, int ret);
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd);
#endif /* HW_NVME_NVME_H */