Linux 5.14 will add support for nested TSC scaling. Add the
corresponding feature in QEMU; to keep support for existing kernels,
do not add it to any processor yet.
The handling of the VMCS enumeration MSR is ugly; once we have more than
one case, we may want to add a table to check VMX features against.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This fixes host and max cpu initialization, by running the accel cpu
initialization only after all instance init functions are called for all
X86 cpu subclasses.
The bug this is fixing is related to the "max" and "host" i386 cpu
subclasses, which set cpu->max_features, which is then used at cpu
realization time.
In order to properly split the accel-specific max features code that
needs to be executed at cpu instance initialization time,
we cannot call the accel cpu initialization at the end of the x86 base
class initialization, or we will have no way to specialize
"max features" cpu behavior, overriding the "max" cpu class defaults,
and checking for the "max features" flag itself.
This patch moves the accel-specific cpu instance initialization to after
all x86 cpu instance code has been executed, including subclasses,
so that proper initialization of cpu "host" and "max" can be restored.
Fixes: f5cc5a5c ("i386: split cpu accelerators from cpu.c,"...)
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Message-Id: <20210603123001.17843-3-cfontana@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
i386 realizefn code is sensitive to ordering, and recent commits
aimed at refactoring it, splitting accelerator-specific code,
broke assumptions which need to be fixed.
We need to:
* process hyper-v enlightements first, as they assume features
not to be expanded
* only then, expand features
* after expanding features, attempt to check them and modify them in the
accel-specific realizefn code called by cpu_exec_realizefn().
* after the framework has been called via cpu_exec_realizefn,
the code can check for what has or hasn't been set by accel-specific
code, or extend its results, ie:
- check and evenually set code_urev default
- modify cpu->mwait after potentially being set from host CPUID.
- finally check for phys_bits assuming all user and accel-specific
adjustments have already been taken into account.
Fixes: f5cc5a5c ("i386: split cpu accelerators from cpu.c"...)
Fixes: 30565f10 ("cpu: call AccelCPUClass::cpu_realizefn in"...)
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Message-Id: <20210603123001.17843-2-cfontana@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V feature leaves are weird. We have some of them in
feature_word_info[] array but we don't use feature_word_info
magic to enable them. Neither do we use feature_dependencies[]
mechanism to validate the configuration as it doesn't allign
well with Hyper-V's many-to-many dependency chains. Some of
the feature leaves hold not only feature bits, but also values.
E.g. FEAT_HV_NESTED_EAX contains both features and the supported
Enlightened VMCS range.
Hyper-V features are already represented in 'struct X86CPU' with
uint64_t hyperv_features so duplicating them in env->features adds
little (or zero) benefits. THe other half of Hyper-V emulation features
is also stored with values in hyperv_vendor_id[], hyperv_limits[],...
so env->features[] is already incomplete.
Remove Hyper-V feature leaves from env->features[] completely.
kvm_hyperv_properties[] is converted to using raw CPUID func/reg
pairs for features, this allows us to get rid of hv_cpuid_get_fw()
conversion.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20210422161130.652779-8-vkuznets@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
When cpu->hyperv_vendor is not set manually we default to "Microsoft Hv"
and in 'hv_passthrough' mode we get the information from the host. This
information is stored in cpu->hyperv_vendor_id[] array but we don't update
cpu->hyperv_vendor string so e.g. QMP's query-cpu-model-expansion output
is incorrect.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20210422161130.652779-2-vkuznets@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
The 'max' CPU under TCG currently reports a family/model/stepping that
approximately corresponds to an AMD K7 vintage architecture.
The K7 series predates the introduction of 64-bit support by AMD
in the K8 series. This has been reported to lead to LLVM complaints
about generating 64-bit code for a 32-bit CPU target
LLVM ERROR: 64-bit code requested on a subtarget that doesn't support it!
It appears LLVM looks at the family/model/stepping, despite qemu64
reporting it is 64-bit capable.
This patch changes 'max' to report a CPUID with the family, model
and stepping taken from a
AMD Athlon(tm) 64 X2 Dual Core Processor 4000+
which is one of the first 64-bit AMD CPUs.
Closes https://gitlab.com/qemu-project/qemu/-/issues/191
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
Message-Id: <20210507133650.645526-3-berrange@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
The 'qemu64' CPUID currently reports a family/model/stepping that
approximately corresponds to an AMD K7 vintage architecture.
The K7 series predates the introduction of 64-bit support by AMD
in the K8 series. This has been reported to lead to LLVM complaints
about generating 64-bit code for a 32-bit CPU target
LLVM ERROR: 64-bit code requested on a subtarget that doesn't support it!
It appears LLVM looks at the family/model/stepping, despite qemu64
reporting it is 64-bit capable.
This patch changes 'qemu64' to report a CPUID with the family, model
and stepping taken from a
AMD Athlon(tm) 64 X2 Dual Core Processor 4000+
which is one of the first 64-bit AMD CPUs.
Closes https://gitlab.com/qemu-project/qemu/-/issues/191
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20210507133650.645526-2-berrange@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Hyper-V 2016 refuses to boot on Skylake+ CPU models because they lack
'xsaves'/'vmx-xsaves' features and this diverges from real hardware. The
same issue emerges with AMD "EPYC" CPU model prior to version 3 which got
'xsaves' added. EPYC-Rome/EPYC-Milan CPU models have 'xsaves' enabled from
the very beginning so the comment blaming KVM to explain why other CPUs
lack 'xsaves' is likely outdated.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210412073952.860944-1-vkuznets@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210517105140.1062037-23-f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210517105140.1062037-22-f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210517105140.1062037-21-f4bug@amsat.org>
[rth: Drop declaration movement from target/*/cpu.h]
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210517105140.1062037-20-f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
The write_elf*() handlers are used to dump vmcore images.
This feature is only meaningful for system emulation.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210517105140.1062037-19-f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
cpu_get_crash_info() is called on GUEST_PANICKED events,
which only occur in system emulation.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210517105140.1062037-18-f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Migration is specific to system emulation.
- Move the CPUClass::vmsd field to SysemuCPUOps,
- restrict VMSTATE_CPU() macro to sysemu,
- vmstate_dummy is now unused, remove it.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210517105140.1062037-16-f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Introduce a structure to hold handler specific to sysemu.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210517105140.1062037-15-f4bug@amsat.org>
[rth: Squash "restrict hw/core/sysemu-cpu-ops.h" patch]
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Quoting Peter Maydell [*]:
There are two ways to handle migration for
a CPU object:
(1) like any other device, so it has a dc->vmsd that covers
migration for the whole object. As usual for objects that are a
subclass of a parent that has state, the first entry in the
VMStateDescription field list is VMSTATE_CPU(), which migrates
the cpu_common fields, followed by whatever the CPU's own migration
fields are.
(2) a backwards-compatible mechanism for CPUs that were
originally migrated using manual "write fields to the migration
stream structures". The on-the-wire migration format
for those is based on the 'env' pointer (which isn't a QOM object),
and the cpu_common part of the migration data is elsewhere.
cpu_exec_realizefn() handles both possibilities:
* for type 1, dc->vmsd is set and cc->vmsd is not,
so cpu_exec_realizefn() does nothing, and the standard
"register dc->vmsd for a device" code does everything needed
* for type 2, dc->vmsd is NULL and so we register the
vmstate_cpu_common directly to handle the cpu-common fields,
and the cc->vmsd to handle the per-CPU stuff
You can't change a CPU from one type to the other without breaking
migration compatibility, which is why some guest architectures
are stuck on the cc->vmsd form. New targets should use dc->vmsd.
To avoid new targets to start using type (2), rename cc->vmsd as
cc->legacy_vmsd. The correct field to implement is dc->vmsd (the
DeviceClass one).
See also commit b170fce3dd ("cpu: Register VMStateDescription
through CPUState") for historic background.
[*] https://www.mail-archive.com/qemu-devel@nongnu.org/msg800849.html
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Cc: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20210517105140.1062037-13-f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Expose AVX (VEX-encoded) versions of the Vector Neural Network
Instructions to guest.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 4] AVX_VNNI
The following instructions are available when this feature is
present in the guest.
1. VPDPBUS: Multiply and Add Unsigned and Signed Bytes
2. VPDPBUSDS: Multiply and Add Unsigned and Signed Bytes with Saturation
3. VPDPWSSD: Multiply and Add Signed Word Integers
4. VPDPWSSDS: Multiply and Add Signed Integers with Saturation
As for the kvm related code, please reference Linux commit id 1085a6b585d7.
The release document ref below link:
https://software.intel.com/content/www/us/en/develop/download/\
intel-architecture-instruction-set-extensions-programming-reference.html
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20210407015609.22936-1-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
avoid open coding the accesses to cpu->accel_cpu interfaces,
and instead introduce:
accel_cpu_instance_init,
accel_cpu_realizefn
to be used by the targets/ initfn code,
and by cpu_exec_realizefn respectively.
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210322132800.7470-7-cfontana@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
move the call to accel_cpu->cpu_realizefn to the general
cpu_exec_realizefn from target/i386, so it does not need to be
called for every target explicitly as we enable more targets.
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210322132800.7470-6-cfontana@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
i386 is the first user of AccelCPUClass, allowing to split
cpu.c into:
cpu.c cpuid and common x86 cpu functionality
host-cpu.c host x86 cpu functions and "host" cpu type
kvm/kvm-cpu.c KVM x86 AccelCPUClass
hvf/hvf-cpu.c HVF x86 AccelCPUClass
tcg/tcg-cpu.c TCG x86 AccelCPUClass
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
[claudio]:
Rebased on commit b8184135 ("target/i386: allow modifying TCG phys-addr-bits")
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Message-Id: <20210322132800.7470-5-cfontana@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Found the following cpu feature bits missing from EPYC-Rome model.
ibrs : Indirect Branch Restricted Speculation
ssbd : Speculative Store Bypass Disable
These new features will be added in EPYC-Rome-v2. The -cpu help output
after the change.
x86 EPYC-Rome (alias configured by machine type)
x86 EPYC-Rome-v1 AMD EPYC-Rome Processor
x86 EPYC-Rome-v2 AMD EPYC-Rome Processor
Reported-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <161478622280.16275.6399866734509127420.stgit@bmoger-ubuntu>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
An assorted set of spelling fixes in various places.
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Reviewed-by: Stefan Weil <sw@weilnetz.de>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20210309111510.79495-1-mjt@msgid.tls.msk.ru>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Bus lock debug exception is a feature that can notify the kernel by
generate an #DB trap after the instruction acquires a bus lock when
CPL>0. This allows the kernel to enforce user application throttling or
mitigations.
This feature is enumerated via CPUID.(EAX=7,ECX=0).ECX[bit 24].
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20210202090224.13274-1-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The preferred syntax is to use "foo=on|off", rather than a bare
"+foo" or "-foo"
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
Message-Id: <20210216191027.595031-11-berrange@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds the support for AMD 3rd generation processors. The model
display for the new processor will be EPYC-Milan.
Adds the following new feature bits on top of the feature bits from
the first and second generation EPYC models.
pcid : Process context identifiers support
ibrs : Indirect Branch Restricted Speculation
ssbd : Speculative Store Bypass Disable
erms : Enhanced REP MOVSB/STOSB support
fsrm : Fast Short REP MOVSB support
invpcid : Invalidate processor context ID
pku : Protection keys support
svme-addr-chk : SVM instructions address check for #GP handling
Depends on the following kernel commits:
14c2bf81fcd2 ("KVM: SVM: Fix #GP handling for doubly-nested virtualization")
3b9c723ed7cf ("KVM: SVM: Add support for SVM instruction address check change")
4aa2691dcbd3 ("8ce1c461188799d863398dd2865d KVM: x86: Factor out x86 instruction emulation with decoding")
4407a797e941 ("KVM: SVM: Enable INVPCID feature on AMD")
9715092f8d7e ("KVM: X86: Move handling of INVPCID types to x86")
3f3393b3ce38 ("KVM: X86: Rename and move the function vmx_handle_memory_failure to x86.c")
830bd71f2c06 ("KVM: SVM: Remove set_cr_intercept, clr_cr_intercept and is_cr_intercept")
4c44e8d6c193 ("KVM: SVM: Add new intercept word in vmcb_control_area")
c62e2e94b9d4 ("KVM: SVM: Modify 64 bit intercept field to two 32 bit vectors")
9780d51dc2af ("KVM: SVM: Modify intercept_exceptions to generic intercepts")
30abaa88382c ("KVM: SVM: Change intercept_dr to generic intercepts")
03bfeeb988a9 ("KVM: SVM: Change intercept_cr to generic intercepts")
c45ad7229d13 ("KVM: SVM: Introduce vmcb_(set_intercept/clr_intercept/_is_intercept)")
a90c1ed9f11d ("(pcid) KVM: nSVM: Remove unused field")
fa44b82eb831 ("KVM: x86: Move MPK feature detection to common code")
38f3e775e9c2 ("x86/Kconfig: Update config and kernel doc for MPK feature on AMD")
37486135d3a7 ("KVM: x86: Fix pkru save/restore when guest CR4.PKE=0, move it to x86.c")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <161290460478.11352.8933244555799318236.stgit@bmoger-ubuntu>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Provide initial support for SEV-ES. This includes creating a function to
indicate the guest is an SEV-ES guest (which will return false until all
support is in place), performing the proper SEV initialization and
ensuring that the guest CPU state is measured as part of the launch.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Co-developed-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Venu Busireddy <venu.busireddy@oracle.com>
Message-Id: <2e6386cbc1ddeaf701547dd5677adf5ddab2b6bd.1611682609.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose the VMX exit/entry load pkrs control bits in
VMX_TRUE_EXIT_CTLS/VMX_TRUE_ENTRY_CTLS MSRs to guest, which supports the
PKS in nested VM.
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20210205083325.13880-3-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Protection Keys for Supervisor-mode pages is a simple extension of
the PKU feature that QEMU already implements. For supervisor-mode
pages, protection key restrictions come from a new MSR. The MSR
has no XSAVE state associated to it.
PKS is only respected in long mode. However, in principle it is
possible to set the MSR even outside long mode, and in fact
even the XSAVE state for PKRU could be set outside long mode
using XRSTOR. So do not limit the migration subsections for
PKRU and PKRS to long mode.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Newer AMD CPUs will add CPUID_0x8000000A_EDX[28] bit, which indicates
that SVM instructions (VMRUN/VMSAVE/VMLOAD) will trigger #VMEXIT before
CPU checking their EAX against reserved memory regions. This change will
allow the hypervisor to avoid intercepting #GP and emulating SVM
instructions. KVM turns on this CPUID bit for nested VMs. In order to
support it, let us populate this bit, along with other SVM feature bits,
in FEAT_SVM.
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210126202456.589932-1-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
32-bit targets by definition do not support long mode; therefore, the
bit must be masked in the features supported by the accelerator.
As a side effect, this avoids setting up the 0x80000008 CPUID leaf
for
qemu-system-i386 -cpu host
which since commit 5a140b255d ("x86/cpu: Use max host physical address
if -cpu max option is applied") would have printed this error:
qemu-system-i386: phys-bits should be between 32 and 36 (but is 48)
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The easiest spots to use QAPI_LIST_APPEND are where we already have an
obvious pointer to the tail of a list. While at it, consistently use
the variable name 'tail' for that purpose.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20210113221013.390592-5-eblake@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
QEMU option -cpu max(max_features) means "Enables all features supported by
the accelerator in the current host", this looks true for all the features
except guest max physical address width, so add this patch to enable it.
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Message-Id: <20210113090430.26394-1-weijiang.yang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Anywhere we create a list of just one item or by prepending items
(typically because order doesn't matter), we can use
QAPI_LIST_PREPEND(). But places where we must keep the list in order
by appending remain open-coded until later patches.
Note that as a side effect, this also performs a cleanup of two minor
issues in qga/commands-posix.c: the old code was performing
new = g_malloc0(sizeof(*ret));
which 1) is confusing because you have to verify whether 'new' and
'ret' are variables with the same type, and 2) would conflict with C++
compilation (not an actual problem for this file, but makes
copy-and-paste harder).
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20201113011340.463563-5-eblake@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
[Straightforward conflicts due to commit a8aa94b5f8 "qga: update
schema for guest-get-disks 'dependents' field" and commit a10b453a52
"target/mips: Move mips_cpu_add_definition() from helper.c to cpu.c"
resolved. Commit message tweaked.]
Signed-off-by: Markus Armbruster <armbru@redhat.com>
to do this, we need to take code out of cpu.c and helper.c,
and also move some prototypes from cpu.h, for code that is
needed in tcg/xxx_helper.c, and which in turn is part of the
callbacks registered by the class initialization.
Therefore, do some shuffling of the parts of cpu.h that
are only relevant for tcg/, and put them in tcg/helper-tcg.h
For FT0 and similar macros, put them in tcg/fpu-helper.c
since they are used only there.
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20201212155530.23098-8-cfontana@suse.de>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
AVX512 Half-precision floating point (FP16) has better performance
compared to FP32 if the presicion or magnitude requirements are met.
It's defined as CPUID.(EAX=7,ECX=0):EDX[bit 23].
Refer to
https://software.intel.com/content/www/us/en/develop/download/\
intel-architecture-instruction-set-extensions-programming-reference.html
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Message-Id: <20201216224002.32677-1-cathy.zhang@intel.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
As a preparation to expanding Hyper-V CPU features early, move
hyperv_limits initialization to x86_cpu_realizefn().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201119103221.1665171-5-vkuznets@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
As a preparation to expanding Hyper-V CPU features early, move
hyperv_version_id initialization to x86_cpu_realizefn().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201119103221.1665171-4-vkuznets@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
As a preparation to expanding Hyper-V CPU features early, move
hyperv_interface_id initialization to x86_cpu_realizefn().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201119103221.1665171-3-vkuznets@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
As a preparation to expanding Hyper-V CPU features early, move
hyperv_vendor_id initialization to x86_cpu_realizefn(). Introduce
x86_cpu_hyperv_realize() to not not pollute x86_cpu_realizefn()
itself.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201119103221.1665171-2-vkuznets@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Class properties make QOM introspection simpler and easier, as
they don't require an object to be instantiated.
Also, the hundreds of instance properties were having an impact
on QMP commands that create temporary CPU objects. On my
machine, run time of qmp_query_cpu_definitions() changed
from ~200ms to ~16ms after applying this patch.
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20201111183823.283752-5-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
The current implementation will disable the guest Intel PT feature
if the Intel PT LIP feature is supported on the host, but the LIP
feature is comming soon(e.g. SnowRidge and later).
This patch will make the guest LIP feature configurable and Intel
PT feature can be enabled in guest when the guest LIP status same
with the host.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Message-Id: <20201202101042.11967-1-luwei.kang@intel.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
This patch adds support the kernel-irqchip option for
WHPX with on or off value. 'split' value is not supported
for the option. The option only works for the latest version
of Windows (ones that are coming out on Insiders). The
change maintains backward compatibility on older version of
Windows where this option is not supported.
Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com>
Message-Id: <SN4PR2101MB0880B13258DA9251F8459F4DC0170@SN4PR2101MB0880.namprd21.prod.outlook.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>