This reverts commit 7b225762c8.
Remove the EPYC specific apicid decoding and use the generic
default decoding.
Also fix all the references of pkg_offset.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <159889933119.21294.8112825730577505757.stgit@naples-babu.amd.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Some QOM macros were using a X86_IOMMU_DEVICE prefix, and others
were using a X86_IOMMU prefix. Rename all of them to use the
same X86_IOMMU_DEVICE prefix.
This will make future conversion to OBJECT_DECLARE* easier.
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20200825192110.3528606-47-ehabkost@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Move typedef closer to the type check macros, to make it easier
to convert the code to OBJECT_DEFINE_TYPE() in the future.
Reviewed-by: Roman Bolshakov <r.bolshakov@yadro.com>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Tested-By: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200825192110.3528606-20-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Similar to hw_arch, each architecture defines two sourceset which are placed in
dictionaries target_arch and target_softmmu_arch. These are then picked up
from there when building the per-emulator static_library.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Meson doesn't enjoy the same flexibility we have with Make in choosing
the include path. In particular the tracing headers are using
$(build_root)/$(<D).
In order to keep the include directives unchanged,
the simplest solution is to generate headers with patterns like
"trace/trace-audio.h" and place forwarding headers in the source tree
such that for example "audio/trace.h" includes "trace/trace-audio.h".
This patch is too ugly to be applied to the Makefiles now. It's only
a way to separate the changes to the tracing header files from the
Meson rewrite of the tracing logic.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Quoting ISO C99 6.7.8p4, "All the expressions in an initializer for an
object that has static storage duration shall be constant expressions or
string literals".
The compound literal produced by the make_floatx80() macro is not such a
constant expression, per 6.6p7-9. (An implementation may accept it,
according to 6.6p10, but is not required to.)
Therefore using "floatx80_zero" and make_floatx80() for initializing
"f2xm1_table" and "fpatan_table" is not portable. And gcc-4.8 in RHEL-7.6
actually chokes on them:
> target/i386/fpu_helper.c:871:5: error: initializer element is not constant
> { make_floatx80(0xbfff, 0x8000000000000000ULL),
> ^
We've had the make_floatx80_init() macro for this purpose since commit
3bf7e40ab9 ("softfloat: fix for C99", 2012-03-17), so let's use that
macro again.
Fixes: eca30647fc ("target/i386: reimplement f2xm1 using floatx80 operations")
Fixes: ff57bb7b63 ("target/i386: reimplement fpatan using floatx80 operations")
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Joseph Myers <joseph@codesourcery.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Link: https://lists.gnu.org/archive/html/qemu-devel/2017-08/msg06566.html
Link: https://lists.gnu.org/archive/html/qemu-devel/2020-07/msg04714.html
Message-Id: <20200716144251.23004-1-lersek@redhat.com>
Message-Id: <20200724064509.331-8-alex.bennee@linaro.org>
We forgot to update cc_op before these branch insns,
which lead to losing track of the current eflags.
Buglink: https://bugs.launchpad.net/qemu/+bug/1888165
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200720154028.477457-1-richard.henderson@linaro.org>
HF2_GIF_MASK is set in env->hflags2 unconditionally on CPU reset
(see x86_cpu_reset()) but when calling KVM_SET_NESTED_STATE,
KVM_STATE_NESTED_GIF_SET is only valid for nSVM as e.g. nVMX code
looks like
if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
return -EINVAL;
}
Also, when adjusting the environment after KVM_GET_NESTED_STATE we
need not reset HF2_GIF_MASK on VMX as e.g. x86_cpu_pending_interrupt()
expects it to be set.
Alternatively, we could've made env->hflags2 SVM-only.
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Fixes: b16c0e20c7 ("KVM: add support for AMD nested live migration")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200723142701.2521161-1-vkuznets@redhat.com>
Tested-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Add the missing vmx features in Skylake-Server and Cascadelake-Server
CPU models based on the output of Paolo's script.
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20200714084148.26690-4-chenyi.qiang@intel.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Add the missing features(sha_ni, avx512ifma, rdpid, fsrm,
vmx-rdseed-exit, vmx-pml, vmx-eptp-switching) and change the model
number to 106 in the Icelake-Server-v4 CPU model.
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20200714084148.26690-3-chenyi.qiang@intel.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
For CPUs support fast short REP MOV[CPUID.(EAX=7,ECX=0):EDX(bit4)], e.g
Icelake and Tigerlake, expose it to the guest VM.
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20200714084148.26690-2-chenyi.qiang@intel.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Features unavailable due to absent of their dependent features should
not be added to env->user_features. env->user_features only contains the
feature explicity specified with -feature/+feature by user.
Fixes: 99e24dbdaa ("target/i386: introduce generic feature dependency mechanism")
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200713174436.41070-3-xiaoyao.li@intel.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Features defined in versioned CPU model are recorded in env->user_features
since they are updated as property. It's unwated because they are not
user specified.
Simply clear env->user_features as a fix. It won't clear user specified
features because user specified features are filled to
env->user_features later in x86_cpu_expand_features().
Cc: Chenyi Qiang <chenyi.qiang@intel.com>
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200713174436.41070-2-xiaoyao.li@intel.com>
[ehabkost: fix coding style]
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Blindly setting FD_CLOEXEC without a read-modify-write will
inadvertently clear any other intentionally-set bits, such as a
proposed new bit for designating a fd that must behave in 32-bit mode.
Use our wrapper function instead of an incorrect hand-rolled version.
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200420175309.75894-2-eblake@redhat.com>
Reviewed-by: Colin Xu <colin.xu@intel.com>
This is helpful when debugging stuck guest timers.
As we need apic_get_current_count for that, and it is really not
emulation specific, move it to apic_common.c and export it. Fix its
style at this chance as well.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <e00e2896-ca5b-a929-de7a-8e5762f0c1c2@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This instruction aims to give a way to choose which memory accesses
do not need to be tracked in the TSX read set, which is defined as
CPUID.(EAX=7,ECX=0):EDX[bit 16].
The release spec link is as follows:
https://software.intel.com/content/dam/develop/public/us/en/documents/\
architecture-instruction-set-extensions-programming-reference.pdf
The associated kvm patch link is as follows:
https://lore.kernel.org/patchwork/patch/1268026/
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Message-Id: <1593991036-12183-3-git-send-email-cathy.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The availability of the SERIALIZATION instruction is indicated
by the presence of the CPUID feature flag SERIALIZE, which is
defined as CPUID.(EAX=7,ECX=0):ECX[bit 14].
The release spec link is as follows:
https://software.intel.com/content/dam/develop/public/us/en/documents/\
architecture-instruction-set-extensions-programming-reference.pdf
The associated kvm patch link is as follows:
https://lore.kernel.org/patchwork/patch/1268025/
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Message-Id: <1593991036-12183-2-git-send-email-cathy.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The CPUID level need to be set to 0x14 manually on old
machine-type if Intel PT is enabled in guest. E.g. the
CPUID[0].EAX(level)=7 and CPUID[7].EBX[25](intel-pt)=1 when the
Qemu with "-machine pc-i440fx-3.1 -cpu qemu64,+intel-pt" parameter.
This patch corrects the warning message of the previous
submission(ddc2fc9).
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Message-Id: <1593499113-4768-1-git-send-email-luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases, such as if the kvm-amd "sev" module parameter is set
to 0, SEV will be unavailable but query-sev-capabilities will still
return all the information. This tricks libvirt into erroneously
reporting that SEV is available. Check the actual usability of the
feature and return the appropriate error if QEMU cannot use KVM
or KVM cannot use SEV.
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The query-sev-capabilities was reporting errors through error_report;
change it to use Error** so that the cause of the failure is clearer.
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, QEMU is overriding KVM_GET_SUPPORTED_CPUID's answer for
the WAITPKG bit depending on the "-overcommit cpu-pm" setting. This is a
bad idea because it does not even check if the host supports it, but it
can be done in x86_cpu_realizefn just like we do for the MONITOR bit.
This patch moves it there, while making it conditional on host
support for the related UMWAIT MSR.
Cc: qemu-stable@nongnu.org
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In 32-bit mode, the higher 16 bits of the destination
register are undefined. In practice CR0[31:0] is stored,
just like in 64-bit mode, so just remove the "if" that
currently differentiates the behavior.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reported-by: Roman Bolshakov <r.bolshakov@yadro.com>
Reviewed-by: Roman Bolshakov <r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Force the end of a translation block after an I/O instruction in
icount mode. For consistency, all CF_USE_ICOUNT code is kept in
disas_insn instead of having it in gen_ins and gen_outs.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make them more concise and consitent with the rest of the code in the
file and drop non-relevant TODO.
Cc: Cameron Esfahani <dirty@apple.com>
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200630102824.77604-9-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
hvf_reset_vcpu() duplicates actions performed by x86_cpu_reset(). The
difference is that hvf_reset_vcpu() stores initial values directly to
VMCS while x86_cpu_reset() stores it in CPUX86State and then
cpu_synchronize_all_post_init() or cpu_synchronize_all_post_reset()
flushes CPUX86State into VMCS. That makes hvf_reset_vcpu() a kind of
no-op.
Here's the trace of CPU state modifications during VM start:
hvf_reset_vcpu (resets VMCS)
cpu_synchronize_all_post_init (overwrites VMCS fields written by
hvf_reset_vcpu())
cpu_synchronize_all_states
hvf_reset_vcpu (resets VMCS)
cpu_synchronize_all_post_reset (overwrites VMCS fields written by
hvf_reset_vcpu())
General purpose registers, system registers, segment descriptors, flags
and IP are set by hvf_put_segments() in post-init and post-reset,
therefore it's safe to remove them from hvf_reset_vcpu().
PDPTE initialization can be dropped because Intel SDM (26.3.1.6 Checks
on Guest Page-Directory-Pointer-Table Entries) doesn't require PDPTE to
be clear unless PAE is used: "A VM entry to a guest that does not use
PAE paging does not check the validity of any PDPTEs."
And if PAE is used, PDPTE's are initialized from CR3 in macvm_set_cr0().
Cc: Cameron Esfahani <dirty@apple.com>
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200630102824.77604-8-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The only useful purpose of hvf_reset_vcpu() is to clear "IA-32e mode
guest" (LMA) VM-Entry control. But it can be moved to macvm_set_cr0()
which is indirectly used by post-init and post-reset to flush emulator
state. That enables clean removal of hvf_reset_vcpu().
LMA is set only if IA32_EFER.LME = 1, according to Intel SDM "9.8.5
Initializing IA-32e Mode" and "9.8.5.4 Switching Out of IA-32e Mode
Operation", otherwise the entry control can be safely cleared.
Cc: Cameron Esfahani <dirty@apple.com>
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200630102824.77604-7-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel SDM "9.8.5 Initializing IA-32e Mode" and "9.8.5.4 Switching Out of
IA-32e Mode Operation" define activation and deactivation of long mode
only upon a change of CR0.PG but current code invokes exit_long_mode()
unconditionally until LME is cleared.
Signed-off-by: Cameron Esfahani <dirty@apple.com>
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200630102824.77604-6-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
hvf lacks an implementation of cpu_synchronize_pre_loadvm().
Cc: Cameron Esfahani <dirty@apple.com>
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200630102824.77604-4-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
cpu_synchronize_state() is currently no-op for hvf but BIOS will hang in
vAPIC option ROM when cpu_synchronize_state() is wired to
hvf_cpu_synchronize_state().
cpu_synchronize_state() state is called from vapic_write() during option
ROM initialization. It sets dirty flag on the cpu. macvm_set_rip() is
then invoked to advance IP after the I/O write to vAPIC port.
macvm_set_rip() only modifies VMCS, it doesn't change env->eip.
Therefore on the next iteration of vCPU loop, vcpu_dirty flag is checked
and hvf_put_registers() overwrites correct RIP in VMCS with the value of
env->eip that points to the I/O write instruction. Execution of the CPU
gets stuck on the instruction.
The issue can be avoided if eip doesn't contain stale value when dirty
flag is set on cpu.
Cc: Cameron Esfahani <dirty@apple.com>
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200630102824.77604-2-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Support for nested guest live migration is part of Linux 5.8, add the
corresponding code to QEMU. The migration format consists of a few
flags, is an opaque 4k blob.
The blob is in VMCB format (the control area represents the L1 VMCB
control fields, the save area represents the pre-vmentry state; KVM does
not use the host save area since the AMD manual allows that) but QEMU
does not really care about that. However, the flags need to be
copied to hflags/hflags2 and back.
In addition, support for retrieving and setting the AMD nested virtualization
states allows the L1 guest to be reset while running a nested guest, but
a small bug in CPU reset needs to be fixed for that to work.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SSE instruction implementations all fail to raise the expected
IEEE floating-point exceptions because they do nothing to convert the
exception state from the softfloat machinery into the exception flags
in MXCSR.
Fix this by adding such conversions. Unlike for x87, emulated SSE
floating-point operations might be optimized using hardware floating
point on the host, and so a different approach is taken that is
compatible with such optimizations. The required invariant is that
all exceptions set in env->sse_status (other than "denormal operand",
for which the SSE semantics are different from those in the softfloat
code) are ones that are set in the MXCSR; the emulated MXCSR is
updated lazily when code reads MXCSR, while when code sets MXCSR, the
exceptions in env->sse_status are set accordingly.
A few instructions do not raise all the exceptions that would be
raised by the softfloat code, and those instructions are made to save
and restore the softfloat exception state accordingly.
Nothing is done about "denormal operand"; setting that (only for the
case when input denormals are *not* flushed to zero, the opposite of
the logic in the softfloat code for such an exception) will require
custom code for relevant instructions, or else architecture-specific
conditionals in the softfloat code for when to set such an exception
together with custom code for various SSE conversion and rounding
instructions that do not set that exception.
Nothing is done about trapping exceptions (for which there is minimal
and largely broken support in QEMU's emulation in the x87 case and no
support at all in the SSE case).
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2006252358000.3832@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The code to set floating-point state when MXCSR changes calls
set_flush_to_zero on &env->fp_status, so affecting the x87
floating-point state rather than the SSE state. Fix to call it for
&env->sse_status instead.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2006252357170.3832@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
During a page table walk of TCG+SVM the code in target/i386/excp_helper.c
get_hphys() uses the cr4 register of the guest instead of the hypervisor
to check for the PSE bit. In the test case we have, the guest have not
enabled (yet) the PSE bit and so the page table walk results in a wrong
host physical address resolution and wrong content read by the guest.
Attached patch is against 4.2.1, but works also on 3.1.0. It fixes the
issue for our automated testcase, which is a 32bit hypervisor w/o PAE
support running a guest VM with tcg+svm.
The test worked beforehand up to qemu 2.12, started to fail with qemu 3.0
and later. The added TCG/SVM NPT commit seems to introduce the regression.
In case someone want to try to reproduce it, the iso is at [0], the good
case is [1] and the failing case is [2]. The used commandline is:
qemu-system-i386 -no-kvm -nographic -cpu phenom -m 512 -machine q35 -cdrom seoul-vmm-test.iso
[0] https://depot.genode.org/alex-ab/images/seoul-vmm-test.iso
[1] https://depot.genode.org/alex-ab/images/seoul-vmm-good.txt
[2] https://depot.genode.org/alex-ab/images/seoul-vmm-bad.txt
Signed-off-by: Alexander Boettcher <alexander.boettcher@genode-labs.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When all we do with an Error we receive into a local variable is
propagating to somewhere else, we can just as well receive it there
right away. The previous two commits did that for sufficiently simple
cases with Coccinelle. Do it for several more manually.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200707160613.848843-37-armbru@redhat.com>
When all we do with an Error we receive into a local variable is
propagating to somewhere else, we can just as well receive it there
right away. Convert
if (!foo(..., &err)) {
...
error_propagate(errp, err);
...
return ...
}
to
if (!foo(..., errp)) {
...
...
return ...
}
where nothing else needs @err. Coccinelle script:
@rule1 forall@
identifier fun, err, errp, lbl;
expression list args, args2;
binary operator op;
constant c1, c2;
symbol false;
@@
if (
(
- fun(args, &err, args2)
+ fun(args, errp, args2)
|
- !fun(args, &err, args2)
+ !fun(args, errp, args2)
|
- fun(args, &err, args2) op c1
+ fun(args, errp, args2) op c1
)
)
{
... when != err
when != lbl:
when strict
- error_propagate(errp, err);
... when != err
(
return;
|
return c2;
|
return false;
)
}
@rule2 forall@
identifier fun, err, errp, lbl;
expression list args, args2;
expression var;
binary operator op;
constant c1, c2;
symbol false;
@@
- var = fun(args, &err, args2);
+ var = fun(args, errp, args2);
... when != err
if (
(
var
|
!var
|
var op c1
)
)
{
... when != err
when != lbl:
when strict
- error_propagate(errp, err);
... when != err
(
return;
|
return c2;
|
return false;
|
return var;
)
}
@depends on rule1 || rule2@
identifier err;
@@
- Error *err = NULL;
... when != err
Not exactly elegant, I'm afraid.
The "when != lbl:" is necessary to avoid transforming
if (fun(args, &err)) {
goto out
}
...
out:
error_propagate(errp, err);
even though other paths to label out still need the error_propagate().
For an actual example, see sclp_realize().
Without the "when strict", Coccinelle transforms vfio_msix_setup(),
incorrectly. I don't know what exactly "when strict" does, only that
it helps here.
The match of return is narrower than what I want, but I can't figure
out how to express "return where the operand doesn't use @err". For
an example where it's too narrow, see vfio_intx_enable().
Silently fails to convert hw/arm/armsse.c, because Coccinelle gets
confused by ARMSSE being used both as typedef and function-like macro
there. Converted manually.
Line breaks tidied up manually. One nested declaration of @local_err
deleted manually. Preexisting unwanted blank line dropped in
hw/riscv/sifive_e.c.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200707160613.848843-35-armbru@redhat.com>
The previous commit enables conversion of
foo(..., &err);
if (err) {
...
}
to
if (!foo(..., errp)) {
...
}
for QOM functions that now return true / false on success / error.
Coccinelle script:
@@
identifier fun = {
object_apply_global_props, object_initialize_child_with_props,
object_initialize_child_with_propsv, object_property_get,
object_property_get_bool, object_property_parse, object_property_set,
object_property_set_bool, object_property_set_int,
object_property_set_link, object_property_set_qobject,
object_property_set_str, object_property_set_uint, object_set_props,
object_set_propv, user_creatable_add_dict,
user_creatable_complete, user_creatable_del
};
expression list args, args2;
typedef Error;
Error *err;
@@
- fun(args, &err, args2);
- if (err)
+ if (!fun(args, &err, args2))
{
...
}
Fails to convert hw/arm/armsse.c, because Coccinelle gets confused by
ARMSSE being used both as typedef and function-like macro there.
Convert manually.
Line breaks tidied up manually.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20200707160613.848843-29-armbru@redhat.com>
The object_property_set_FOO() setters take property name and value in
an unusual order:
void object_property_set_FOO(Object *obj, FOO_TYPE value,
const char *name, Error **errp)
Having to pass value before name feels grating. Swap them.
Same for object_property_set(), object_property_get(), and
object_property_parse().
Convert callers with this Coccinelle script:
@@
identifier fun = {
object_property_get, object_property_parse, object_property_set_str,
object_property_set_link, object_property_set_bool,
object_property_set_int, object_property_set_uint, object_property_set,
object_property_set_qobject
};
expression obj, v, name, errp;
@@
- fun(obj, v, name, errp)
+ fun(obj, name, v, errp)
Chokes on hw/arm/musicpal.c's lcd_refresh() with the unhelpful error
message "no position information". Convert that one manually.
Fails to convert hw/arm/armsse.c, because Coccinelle gets confused by
ARMSSE being used both as typedef and function-like macro there.
Convert manually.
Fails to convert hw/rx/rx-gdbsim.c, because Coccinelle gets confused
by RXCPU being used both as typedef and function-like macro there.
Convert manually. The other files using RXCPU that way don't need
conversion.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20200707160613.848843-27-armbru@redhat.com>
[Straightforwad conflict with commit 2336172d9b "audio: set default
value for pcspk.iobase property" resolved]
The previous commit enables conversion of
visit_foo(..., &err);
if (err) {
...
}
to
if (!visit_foo(..., errp)) {
...
}
for visitor functions that now return true / false on success / error.
Coccinelle script:
@@
identifier fun =~ "check_list|input_type_enum|lv_start_struct|lv_type_bool|lv_type_int64|lv_type_str|lv_type_uint64|output_type_enum|parse_type_bool|parse_type_int64|parse_type_null|parse_type_number|parse_type_size|parse_type_str|parse_type_uint64|print_type_bool|print_type_int64|print_type_null|print_type_number|print_type_size|print_type_str|print_type_uint64|qapi_clone_start_alternate|qapi_clone_start_list|qapi_clone_start_struct|qapi_clone_type_bool|qapi_clone_type_int64|qapi_clone_type_null|qapi_clone_type_number|qapi_clone_type_str|qapi_clone_type_uint64|qapi_dealloc_start_list|qapi_dealloc_start_struct|qapi_dealloc_type_anything|qapi_dealloc_type_bool|qapi_dealloc_type_int64|qapi_dealloc_type_null|qapi_dealloc_type_number|qapi_dealloc_type_str|qapi_dealloc_type_uint64|qobject_input_check_list|qobject_input_check_struct|qobject_input_start_alternate|qobject_input_start_list|qobject_input_start_struct|qobject_input_type_any|qobject_input_type_bool|qobject_input_type_bool_keyval|qobject_input_type_int64|qobject_input_type_int64_keyval|qobject_input_type_null|qobject_input_type_number|qobject_input_type_number_keyval|qobject_input_type_size_keyval|qobject_input_type_str|qobject_input_type_str_keyval|qobject_input_type_uint64|qobject_input_type_uint64_keyval|qobject_output_start_list|qobject_output_start_struct|qobject_output_type_any|qobject_output_type_bool|qobject_output_type_int64|qobject_output_type_null|qobject_output_type_number|qobject_output_type_str|qobject_output_type_uint64|start_list|visit_check_list|visit_check_struct|visit_start_alternate|visit_start_list|visit_start_struct|visit_type_.*";
expression list args;
typedef Error;
Error *err;
@@
- fun(args, &err);
- if (err)
+ if (!fun(args, &err))
{
...
}
A few line breaks tidied up manually.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20200707160613.848843-19-armbru@redhat.com>
AMD SEV will pin all guest memory, mark discarding of RAM broken. At the
time this is called, we cannot have anyone active that relies on discards
to work properly - let's still implement error handling.
Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20200626072248.78761-8-david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
QEMU incorrectly validates FEAT_SVM feature flags against
GET_SUPPORTED_CPUID even if SVM features are being masked out by
cpu_x86_cpuid(). This can make QEMU print warnings on most AMD
CPU models, even when SVM nesting is disabled (which is the
default).
This bug was never detected before because of a Linux KVM bug:
until Linux v5.6, KVM was not filtering out SVM features in
GET_SUPPORTED_CPUID when nested was disabled. This KVM bug was
fixed in Linux v5.7-rc1, on Linux commit a50718cc3f43 ("KVM:
nSVM: Expose SVM features to L1 iff nested is enabled").
Fix the problem by adding a CPUID_EXT3_SVM dependency to all
FEAT_SVM feature flags in the feature_dependencies table.
Reported-by: Yanan Fu <yfu@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20200623230116.277409-1-ehabkost@redhat.com>
[Fix testcase. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Linux TSC calibration procedure is subject to small variations
(its common to see +-1 kHz difference between reboots on a given CPU, for example).
So migrating a guest between two hosts with identical processor can fail, in case
of a small variation in calibrated TSC between them.
Allow a conservative 250ppm error between host TSC and VM TSC frequencies,
rather than requiring an exact match. NTP daemon in the guest can
correct this difference.
Also change migration to accept this bound.
KVM_SET_TSC_KHZ depends on a kernel interface change. Without this change,
the behaviour remains the same: in case of a different frequency
between host and VM, KVM_SET_TSC_KHZ will fail and QEMU will exit.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20200616165805.GA324612@fuller.cnet>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add which features are added or removed in this version.
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Message-Id: <20200324051034.30541-1-tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The x87 fpatan emulation is currently based around conversion to
double. This is inherently unsuitable for a good emulation of any
floatx80 operation. Reimplement using the soft-float operations, as
for other such instructions.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2006230000340.24721@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The x87 fyl2x emulation is currently based around conversion to
double. This is inherently unsuitable for a good emulation of any
floatx80 operation. Reimplement using the soft-float operations,
building on top of the reimplementation of fyl2xp1 and factoring out
code to be shared between the two instructions.
The included test assumes that the result in round-to-nearest mode
should always be one of the two closest floating-point numbers to the
mathematically exact result (including that it should be exact, in the
exact cases which cover more cases than for fyl2xp1).
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2006172321530.20587@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The x87 fyl2xp1 emulation is currently based around conversion to
double. This is inherently unsuitable for a good emulation of any
floatx80 operation, even before considering that it is a particularly
naive implementation using double (adding 1 then using log rather than
attempting a better emulation using log1p).
Reimplement using the soft-float operations, as was done for f2xm1; as
in that case, m68k has related operations but not exactly this one and
it seemed safest to implement directly rather than reusing the m68k
code to avoid accumulation of errors.
A test is included with many randomly generated inputs. The
assumption of the test is that the result in round-to-nearest mode
should always be one of the two closest floating-point numbers to the
mathematical value of y * log2(x + 1); the implementation aims to do
somewhat better than that (about 70 correct bits before rounding). I
haven't investigated how accurate hardware is.
Intel manuals describe a narrower range of valid arguments to this
instruction than AMD manuals. The implementation accepts the wider
range (it's needed anyway for the core code to be reusable in a
subsequent patch reimplementing fyl2x), but the test only has inputs
in the narrower range so that it's valid on hardware that may reject
or produce poor results for inputs outside that range.
Code in the previous implementation that sets C2 for some out-of-range
arguments is not carried forward to the new implementation; C2 is
undefined for this instruction and I suspect that code was just
cut-and-pasted from the trigonometric instructions (fcos, fptan, fsin,
fsincos) where C2 *is* defined to be set for out-of-range arguments.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2006172320190.20587@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The x87 fprem and fprem1 emulation is currently based around
conversion to double, which is inherently unsuitable for a good
emulation of any floatx80 operation. Reimplement using the soft-float
floatx80 remainder operations.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <alpine.DEB.2.21.2006081657200.23637@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The x87 f2xm1 emulation is currently based around conversion to
double. This is inherently unsuitable for a good emulation of any
floatx80 operation, even before considering that it is a particularly
naive implementation using double (computing with pow and then
subtracting 1 rather than attempting a better emulation using expm1).
Reimplement using the soft-float operations, including additions and
multiplications with higher precision where appropriate to limit
accumulation of errors. I considered reusing some of the m68k code
for transcendental operations, but the instructions don't generally
correspond exactly to x87 operations (for example, m68k has 2^x and
e^x - 1, but not 2^x - 1); to avoid possible accumulation of errors
from applying multiple such operations each rounding to floatx80
precision, I wrote a direct implementation of 2^x - 1 instead. It
would be possible in principle to make the implementation more
efficient by doing the intermediate operations directly with
significands, signs and exponents and not packing / unpacking floatx80
format for each operation, but that would make it significantly more
complicated and it's not clear that's worthwhile; the m68k emulation
doesn't try to do that.
A test is included with many randomly generated inputs. The
assumption of the test is that the result in round-to-nearest mode
should always be one of the two closest floating-point numbers to the
mathematical value of 2^x - 1; the implementation aims to do somewhat
better than that (about 70 correct bits before rounding). I haven't
investigated how accurate hardware is.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2006112341010.18393@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All remaining conversions to qdev_realize() are for bus-less devices.
Coccinelle script:
// only correct for bus-less @dev!
@@
expression errp;
expression dev;
@@
- qdev_init_nofail(dev);
+ qdev_realize(dev, NULL, &error_fatal);
@ depends on !(file in "hw/core/qdev.c") && !(file in "hw/core/bus.c")@
expression errp;
expression dev;
symbol true;
@@
- object_property_set_bool(OBJECT(dev), true, "realized", errp);
+ qdev_realize(DEVICE(dev), NULL, errp);
@ depends on !(file in "hw/core/qdev.c") && !(file in "hw/core/bus.c")@
expression errp;
expression dev;
symbol true;
@@
- object_property_set_bool(dev, true, "realized", errp);
+ qdev_realize(DEVICE(dev), NULL, errp);
Note that Coccinelle chokes on ARMSSE typedef vs. macro in
hw/arm/armsse.c. Worked around by temporarily renaming the macro for
the spatch run.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200610053247.1583243-57-armbru@redhat.com>
The last real change to this file is from 2012, so it is very likely
that this file is completely out-of-date and ignored today. Let's
simply remove it to avoid confusion if someone finds it by accident.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20200611172445.5177-1-thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEVState is contained with SevGuestState. We've now fixed redundancies
and name conflicts, so there's no real point to the nested structure. Just
move all the fields of SEVState into SevGuestState.
This eliminates the SEVState structure, which as a bonus removes the
confusion with the SevState enum.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200604064219.436242-10-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The user can explicitly specify a handle via the "handle" property wired
to SevGuestState::handle. That gets passed to the KVM_SEV_LAUNCH_START
ioctl() which may update it, the final value being copied back to both
SevGuestState::handle and SEVState::handle.
AFAICT, nothing will be looking SEVState::handle before it and
SevGuestState::handle have been updated from the ioctl(). So, remove the
field and just use SevGuestState::handle directly.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200604064219.436242-9-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEVState::policy is set from the final value of the policy field in the
parameter structure for the KVM_SEV_LAUNCH_START ioctl(). But, AFAICT
that ioctl() won't ever change it from the original supplied value which
comes from SevGuestState::policy.
So, remove this field and just use SevGuestState::policy directly.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200604064219.436242-8-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SEVState structure has cbitpos and reduced_phys_bits fields which are
simply copied from the SevGuestState structure and never changed. Now that
SEVState is embedded in SevGuestState we can just access the original copy
directly.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200604064219.436242-7-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SEV code uses a pretty ugly global to access its internal state. Now
that SEVState is embedded in SevGuestState, we can avoid accessing it via
the global in some cases. In the remaining cases use a new global
referencing the containing SevGuestState which will simplify some future
transformations.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20200604064219.436242-6-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently SevGuestState contains only configuration information. For
runtime state another non-QOM struct SEVState is allocated separately.
Simplify things by instead embedding the SEVState structure in
SevGuestState.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20200604064219.436242-5-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
At the moment this is a purely passive object which is just a container for
information used elsewhere, hence the name. I'm going to change that
though, so as a preliminary rename it to SevGuestState.
That name risks confusion with both SEVState and SevState, but I'll be
working on that in following patches.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200604064219.436242-4-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Neither QSevGuestInfo nor SEVState (not to be confused with SevState) is
used anywhere outside target/i386/sev.c, so they might as well live in
there rather than in a (somewhat) exposed header.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200604064219.436242-3-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This structure is nothing but an empty wrapper around the parent class,
which by QOM conventions means we don't need it at all.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200604064219.436242-2-david@gibson.dropbear.id.au>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-14-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There's no similar field in CPUX86State, but it's needed for MMIO traps.
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-13-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The lazy flags are still needed for instruction decoder.
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-12-r.bolshakov@yadro.com>
[Move struct to target/i386/cpu.h - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HVFX86EmulatorState carries it's own copy of x86 registers. It can be
dropped in favor of regs in generic CPUX86State.
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-11-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the ones provided in target/i386/cpu.h instead.
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-10-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HVFX86EmulatorState carries it's own copy of x86 flags. It can be
dropped in favor of eflags in generic CPUX86State.
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-9-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The field is used to print address of instructions that have no parser
in decode_invalid(). RIP from VMCS is saved into fetch_rip before
decoding starts but it's also saved into env->eip in load_regs().
Therefore env->eip can be used instead of fetch_rip.
While at it, correct address printed in decode_invalid(). It prints an
address before the unknown instruction.
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-8-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop and replace rip field from HVFX86EmulatorState in favor of eip from
common CPUX86State.
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-7-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
There's no need to read VMCS twice, instruction length is already
available in ins_len.
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-6-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-5-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
They're either declared elsewhere or have no use.
While at it, rename _hvf_cpu_synchronize_post_init() to
do_hvf_cpu_synchronize_post_init().
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-3-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
"sysemu/hvf.h" is intended for inclusion in generic code. However it
also contains several hvf definitions and declarations, including
HVFState that are used only inside "hvf.c". "hvf-i386.h" would be more
appropriate place to define HVFState as it's only included by "hvf.c"
and "x86_task.c".
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200528193758.51454-2-r.bolshakov@yadro.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This corrects a bug introduced in my previous fix for SSE4.2 pcmpestri
/ pcmpestrm / pcmpistri / pcmpistrm substring search, commit
ae35eea7e4.
That commit fixed a bug that showed up in four GCC tests with one libc
implementation. The tests in question generate random inputs to the
intrinsics and compare results to a C implementation, but they only
test 1024 possible random inputs, and when the tests use the cases of
those instructions that work with word rather than byte inputs, it's
easy to have problematic cases that show up much less frequently than
that. Thus, testing with a different libc implementation, and so a
different random number generator, showed up a problem with the
previous patch.
When investigating the previous test failures, I found the description
of these instructions in the Intel manuals (starting from computing a
16x16 or 8x8 set of comparison results) confusing and hard to match up
with the more optimized implementation in QEMU, and referred to AMD
manuals which described the instructions in a different way. Those
AMD descriptions are very explicit that the whole of the string being
searched for must be found in the other operand, not running off the
end of that operand; they say "If the prototype and the SUT are equal
in length, the two strings must be identical for the comparison to be
TRUE.". However, that statement is incorrect.
In my previous commit message, I noted:
The operation in this case is a search for a string (argument d to
the helper) in another string (argument s to the helper); if a copy
of d at a particular position would run off the end of s, the
resulting output bit should be 0 whether or not the strings match in
the region where they overlap, but the QEMU implementation was
wrongly comparing only up to the point where s ends and counting it
as a match if an initial segment of d matched a terminal segment of
s. Here, "run off the end of s" means that some byte of d would
overlap some byte outside of s; thus, if d has zero length, it is
considered to match everywhere, including after the end of s.
The description "some byte of d would overlap some byte outside of s"
is accurate only when understood to refer to overlapping some byte
*within the 16-byte operand* but at or after the zero terminator; it
is valid to run over the end of s if the end of s is the end of the
16-byte operand. So the fix in the previous patch for the case of d
being empty was correct, but the other part of that patch was not
correct (as it never allowed partial matches even at the end of the
16-byte operand). Nor was the code before the previous patch correct
for the case of d nonempty, as it would always have allowed partial
matches at the end of s.
Fix with a partial revert of my previous change, combined with
inserting a check for the special case of s having maximum length to
determine where it is necessary to check for matches.
In the added test, test 1 is for the case of empty strings, which
failed before my 2017 patch, test 2 is for the bug introduced by my
2017 patch and test 3 deals with the case where a match of an initial
segment at the end of the string is not valid when the string ends
before the end of the 16-byte operand (that is, the case that would be
broken by a simple revert of the non-empty-string part of my 2017
patch).
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2006121344290.9881@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most x87 instruction implementations fail to raise the expected IEEE
floating-point exceptions because they do nothing to convert the
exception state from the softfloat machinery into the exception flags
in the x87 status word. There is special-case handling of division to
raise the divide-by-zero exception, but that handling is itself buggy:
it raises the exception in inappropriate cases (inf / 0 and nan / 0,
which should not raise any exceptions, and 0 / 0, which should raise
"invalid" instead).
Fix this by converting the floating-point exceptions raised during an
operation by the softfloat machinery into exceptions in the x87 status
word (passing through the existing fpu_set_exception function for
handling related to trapping exceptions). There are special cases
where some functions convert to integer internally but exceptions from
that conversion are not always correct exceptions for the instruction
to raise.
There might be scope for some simplification if the softfloat
exception state either could always be assumed to be in sync with the
state in the status word, or could always be ignored at the start of
each instruction and just set to 0 then; I haven't looked into that in
detail, and it might run into interactions with the various ways the
emulation does not yet handle trapping exceptions properly. I think
the approach taken here, of saving the softfloat state, setting
exceptions there to 0 and then merging the old exceptions back in
after carrying out the operation, is conservatively safe.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2005152120280.3469@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Perfmon and Debug Capability MSR named IA32_PERF_CAPABILITIES is
a feature-enumerating MSR, which only enumerates the feature full-width
write (via bit 13) by now which indicates the processor supports IA32_A_PMCx
interface for updating bits 32 and above of IA32_PMCx.
The existence of MSR IA32_PERF_CAPABILITIES is enumerated by CPUID.1:ECX[15].
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: qemu-devel@nongnu.org
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20200529074347.124619-5-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit acb9f95a removed boundary checks for ID and VCPU ID. After that,
the max definitions of that boundaries are not required anymore. This
commit is only a code cleanup.
Signed-off-by: Julio Faracco <jcfaracco@gmail.com>
Message-Id: <20200323200538.202164-1-jcfaracco@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AVX512_VP2INTERSECT compute vector pair intersection to a pair
of mask registers, which is introduced with intel Tiger Lake,
defining as CPUID.(EAX=7,ECX=0):EDX[bit 08].
Refer to the following release spec:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Message-Id: <1586760758-13638-1-git-send-email-cathy.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fist / fistt family of instructions should all store the most
negative integer in the destination format when the rounded /
truncated integer result is out of range or the input is an invalid
encoding, infinity or NaN. The fisttpl and fisttpll implementations
(32-bit and 64-bit results, truncate towards zero) failed to do this,
producing the most positive integer in some cases instead. Fix this
by copying the code used to handle this issue for fistpl and fistpll,
adjusted to use the _round_to_zero functions for the actual
conversion (but without any other changes to that code).
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2005152119160.3469@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fbstp implementation fails to check for out-of-range and invalid
values, instead just taking the result of conversion to int64_t and
storing its sign and low 18 decimal digits. Fix this by checking for
an out-of-range result (invalid conversions always result in INT64_MAX
or INT64_MIN from the softfloat code, which are large enough to be
considered as out-of-range by this code) and storing the packed BCD
indefinite encoding in that case.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2005132351110.11687@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fbstp implementation stores +0 when the rounded result should be
-0 because it compares an integer value with 0 to determine the sign.
Fix this by checking the sign bit of the operand instead.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2005132350230.11687@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fxam implementation does not check for invalid encodings, instead
treating them like NaN or normal numbers depending on the exponent.
Fix it to check that the high bit of the significand is set before
treating an encoding as NaN or normal, thus resulting in correct
handling (all of C0, C2 and C3 cleared) for invalid encodings.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2005132349311.11687@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The implementations of the fldl2t, fldl2e, fldpi, fldlg2 and fldln2
instructions load fixed constants independent of the rounding mode.
Fix them to load a value correctly rounded for the current rounding
mode (but always rounded to 64-bit precision independent of the
precision control, and without setting "inexact") as specified.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <alpine.DEB.2.21.2005132348310.11687@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fscale implementation uses floatx80_scalbn for the final scaling
operation. floatx80_scalbn ends up rounding the result using the
dynamic rounding precision configured for the FPU. But only a limited
set of x87 floating-point instructions are supposed to respect the
dynamic rounding precision, and fscale is not in that set. Fix the
implementation to save and restore the rounding precision around the
call to floatx80_scalbn.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2005070045430.18350@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fscale implementation passes infinite exponents through to generic
code that rounds the exponent to a 32-bit integer before using
floatx80_scalbn. In round-to-nearest mode, and ignoring exceptions,
this works in many cases. But it fails to handle the special cases of
scaling 0 by a +Inf exponent or an infinity by a -Inf exponent, which
should produce a NaN, and because it produces an inexact result for
finite nonzero numbers being scaled, the result is sometimes incorrect
in other rounding modes. Add appropriate handling of infinite
exponents to produce a NaN or an appropriately signed exact zero or
infinity as a result.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2005070045010.18350@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The fscale implementation does not check for invalid encodings in the
exponent operand, thus treating them like INT_MIN (the value returned
for invalid encodings by floatx80_to_int32_round_to_zero). Fix it to
treat them similarly to signaling NaN exponents, thus generating a
quiet NaN result.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2005070044190.18350@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The implementation of the fscale instruction returns a NaN exponent
unchanged. Fix it to return a quiet NaN when the provided exponent is
a signaling NaN.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2005070043330.18350@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The implementation of the fxtract instruction treats all nonzero
operands as normal numbers, so yielding incorrect results for invalid
formats, infinities, NaNs and subnormal and pseudo-denormal operands.
Implement appropriate handling of all those cases.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Acked-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <alpine.DEB.2.21.2005070042360.18350@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When we hotplug vcpus, cpu_update_state is added to vm_change_state_head
in kvm_arch_init_vcpu(). But it forgot to delete in kvm_arch_destroy_vcpu() after
unplug. Then it will cause a use-after-free access. This patch delete it in
kvm_arch_destroy_vcpu() to fix that.
Reproducer:
virsh setvcpus vm1 4 --live
virsh setvcpus vm1 2 --live
virsh suspend vm1
virsh resume vm1
The UAF stack:
==qemu-system-x86_64==28233==ERROR: AddressSanitizer: heap-use-after-free on address 0x62e00002e798 at pc 0x5573c6917d9e bp 0x7fff07139e50 sp 0x7fff07139e40
WRITE of size 1 at 0x62e00002e798 thread T0
#0 0x5573c6917d9d in cpu_update_state /mnt/sdb/qemu/target/i386/kvm.c:742
#1 0x5573c699121a in vm_state_notify /mnt/sdb/qemu/vl.c:1290
#2 0x5573c636287e in vm_prepare_start /mnt/sdb/qemu/cpus.c:2144
#3 0x5573c6362927 in vm_start /mnt/sdb/qemu/cpus.c:2150
#4 0x5573c71e8304 in qmp_cont /mnt/sdb/qemu/monitor/qmp-cmds.c:173
#5 0x5573c727cb1e in qmp_marshal_cont qapi/qapi-commands-misc.c:835
#6 0x5573c7694c7a in do_qmp_dispatch /mnt/sdb/qemu/qapi/qmp-dispatch.c:132
#7 0x5573c7694c7a in qmp_dispatch /mnt/sdb/qemu/qapi/qmp-dispatch.c:175
#8 0x5573c71d9110 in monitor_qmp_dispatch /mnt/sdb/qemu/monitor/qmp.c:145
#9 0x5573c71dad4f in monitor_qmp_bh_dispatcher /mnt/sdb/qemu/monitor/qmp.c:234
Reported-by: Euler Robot <euler.robot@huawei.com>
Signed-off-by: Pan Nengyuan <pannengyuan@huawei.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20200513132630.13412-1-pannengyuan@huawei.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dynamic allocating vcpu state structure according to smp value to be
more precise and safe. Previously it will alloccate array of fixed size
HAX_MAX_VCPU.
This is achieved by using g_new0 to dynamic allocate the array. The
allocated size is obtained from smp.max_cpus in MachineState. Also, the
size is compared with HAX_MAX_VCPU when creating the vm. The reason for
choosing dynamic array over linked list is because the status is visited
by index all the time.
This will lead to QEMU checking whether the smp value is larger than the
HAX_MAX_VCPU when creating vm, if larger, the process will terminate,
otherwise it will allocate array of size smp to store the status.
V2: Check max_cpus before open vm. (Philippe)
Signed-off-by: WangBowen <bowen.wang@intel.com>
Signed-off-by: Colin Xu <colin.xu@intel.com>
Message-Id: <20200509035952.187615-1-colin.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This code is not related to hardware emulation.
Move it under accel/ with the other hypervisors.
Reviewed-by: Paul Durrant <paul@xen.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20200508100222.7112-1-philmd@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No functional change.
This information will be used by following patches.
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Message-Id: <20200312165431.82118-15-liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Detected by asm test suite failures in dav1d
(https://code.videolan.org/videolan/dav1d). Can be reproduced by
`qemu-x86_64 -cpu core2duo ./tests/checkasm --test=mc_8bpc 1659890620`.
Signed-off-by: Janne Grunau <j@jannau.net>
Message-Id: <20200401225253.30745-1-j@jannau.net>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CPUID leaf CPUID_Fn80000008_ECX provides information about the
number of threads supported by the processor. It was found that
the field ApicIdSize(bits 15-12) was not set correctly.
ApicIdSize is defined as the number of bits required to represent
all the ApicId values within a package.
Valid Values: Value Description
3h-0h Reserved.
4h up to 16 threads.
5h up to 32 threads.
6h up to 64 threads.
7h up to 128 threads.
Fh-8h Reserved.
Fix the bit appropriately.
This came up during following thread.
https://lore.kernel.org/qemu-devel/158643709116.17430.15995069125716778943.malonedeb@wampee.canonical.com/#t
Refer the Processor Programming Reference (PPR) for AMD Family 17h
Model 01h, Revision B1 Processors. The documentation is available
from the bugzilla Link below.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Reported-by: Philipp Eppelt <1871842@bugs.launchpad.net>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <20200417215345.64800.73351.stgit@localhost.localdomain>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
IEC binary prefixes ease code review: the unit is explicit.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20200601142930.29408-9-f4bug@amsat.org>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
The Error ** argument must be NULL, &error_abort, &error_fatal, or a
pointer to a variable containing NULL. Passing an argument of the
latter kind twice without clearing it in between is wrong: if the
first call sets an error, it no longer points to NULL for the second
call.
x86_cpu_load_model() is wrong that way. Harmless, because its @errp
is always &error_abort. To fix, cut out the @errp middleman.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20200505101908.6207-11-armbru@redhat.com>
Give the previously unnamed enum a typedef name. Use it in the
prototypes of compare functions. Use it to hold the results
of the compare functions.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Devices may have component devices and buses.
Device realization may fail. Realization is recursive: a device's
realize() method realizes its components, and device_set_realized()
realizes its buses (which should in turn realize the devices on that
bus, except bus_set_realized() doesn't implement that, yet).
When realization of a component or bus fails, we need to roll back:
unrealize everything we realized so far. If any of these unrealizes
failed, the device would be left in an inconsistent state. Must not
happen.
device_set_realized() lets it happen: it ignores errors in the roll
back code starting at label child_realize_fail.
Since realization is recursive, unrealization must be recursive, too.
But how could a partly failed unrealize be rolled back? We'd have to
re-realize, which can fail. This design is fundamentally broken.
device_set_realized() does not roll back at all. Instead, it keeps
unrealizing, ignoring further errors.
It can screw up even for a device with no buses: if the lone
dc->unrealize() fails, it still unregisters vmstate, and calls
listeners' unrealize() callback.
bus_set_realized() does not roll back either. Instead, it stops
unrealizing.
Fortunately, no unrealize method can fail, as we'll see below.
To fix the design error, drop parameter @errp from all the unrealize
methods.
Any unrealize method that uses @errp now needs an update. This leads
us to unrealize() methods that can fail. Merely passing it to another
unrealize method cannot cause failure, though. Here are the ones that
do other things with @errp:
* virtio_serial_device_unrealize()
Fails when qbus_set_hotplug_handler() fails, but still does all the
other work. On failure, the device would stay realized with its
resources completely gone. Oops. Can't happen, because
qbus_set_hotplug_handler() can't actually fail here. Pass
&error_abort to qbus_set_hotplug_handler() instead.
* hw/ppc/spapr_drc.c's unrealize()
Fails when object_property_del() fails, but all the other work is
already done. On failure, the device would stay realized with its
vmstate registration gone. Oops. Can't happen, because
object_property_del() can't actually fail here. Pass &error_abort
to object_property_del() instead.
* spapr_phb_unrealize()
Fails and bails out when remove_drcs() fails, but other work is
already done. On failure, the device would stay realized with some
of its resources gone. Oops. remove_drcs() fails only when
chassis_from_bus()'s object_property_get_uint() fails, and it can't
here. Pass &error_abort to remove_drcs() instead.
Therefore, no unrealize method can fail before this patch.
device_set_realized()'s recursive unrealization via bus uses
object_property_set_bool(). Can't drop @errp there, so pass
&error_abort.
We similarly unrealize with object_property_set_bool() elsewhere,
always ignoring errors. Pass &error_abort instead.
Several unrealize methods no longer handle errors from other unrealize
methods: virtio_9p_device_unrealize(),
virtio_input_device_unrealize(), scsi_qdev_unrealize(), ...
Much of the deleted error handling looks wrong anyway.
One unrealize methods no longer ignore such errors:
usb_ehci_pci_exit().
Several realize methods no longer ignore errors when rolling back:
v9fs_device_realize_common(), pci_qdev_unrealize(),
spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(),
virtio_device_realize().
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-17-armbru@redhat.com>