Implement the MVE VMLA insn, which multiplies a vector by a scalar
and accumulates into another vector.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE VMLADAV and VMLSLDAV insns. Like the VMLALDAV and
VMLSLDAV insns already implemented, these accumulate multiplied
vector elements; but they accumulate a 32-bit result rather than a
64-bit one.
Note that these encodings overlap with what would be RdaHi=0b111 for
VMLALDAV, VMLSLDAV, VRMLALDAVH and VRMLSLDAVH.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
The MVEGenDualAccOpFn is a bit misnamed, since it is used for
the "long dual accumulate" operations that use a 64-bit
accumulator. Rename it to MVEGenLongDualAccOpFn so we can
use the former name for the 32-bit accumulator insns.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE narrowing move insns VMOVN, VQMOVN and VQMOVUN.
These take a double-width input, narrow it (possibly saturating) and
store the result to either the top or bottom half of the output
element.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE VABAV insn, which computes absolute differences
between elements of two vectors and accumulates the result into
a general purpose register.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE integer min/max across vector insns
VMAXV, VMINV, VMAXAV and VMINAV, which find the maximum
from the vector elements and a general purpose register,
and store the maximum back into the general purpose
register.
These insns overlap with VRMLALDAVH (they use what would
be RdaHi=0b110).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
All the users of the vmlaldav formats have an 'x bit in bit 12 and an
'a' bit in bit 5; move these to the format rather than specifying them
in each insn pattern.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE instructions which perform shifts by a scalar.
These are VSHL T2, VRSHL T2, VQSHL T1 and VQRSHL T2. They take the
shift amount in a general purpose register and shift every element in
the vector by that amount.
Mostly we can reuse the helper functions for shift-by-immediate; we
do need two new helpers for VQRSHL.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE VMLAS insn, which multiplies a vector by a vector
and adds a scalar.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE VPSEL insn, which sets each byte of the destination
vector Qd to the byte from either Qn or Qm depending on the value of
the corresponding bit in VPR.P0.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE integer vector comparison instructions that compare
each element against a scalar from a general purpose register. These
are "VCMP (vector)" encodings T4, T5 and T6 and "VPT (vector)"
encodings T4, T5 and T6.
We have to move the decodetree pattern for VPST, because it
overlaps with VCMP T4 with size = 0b11.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE integer vector comparison instructions. These are
"VCMP (vector)" encodings T1, T2 and T3, and "VPT (vector)" encodings
T1, T2 and T3.
These insns compare corresponding elements in each vector, and update
the VPR.P0 predicate bits with the results of the comparison. VPT
also sets the VPR.MASK01 and VPR.MASK23 fields -- it is effectively
"VCMP then VPST".
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Factor out the "generate code to update VPR.MASK01/MASK23" part of
trans_VPST(); we are going to want to reuse it for the VPT insns.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE incrementing/decrementing dup insns VIDUP, VDDUP,
VIWDUP and VDWDUP. These fill the elements of a vector with
successively incrementing values, starting at the offset specified in
a general purpose register. The final value of the offset is written
back to this register. The wrapping variants take a second general
purpose register which specifies the point where the count should
wrap back to 0.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implement the MVE VMULL (polynomial) insn. Unlike Neon, this comes
in two flavours: 8x8->16 and a 16x16->32. Also unlike Neon, the
inputs are in either the low or the high half of each double-width
element.
The assembler for this insn indicates the size with "P8" or "P16",
encoded into bit 28 as size = 0 or 1. We choose to follow the
same encoding as VQDMULL and decode this into a->size as MO_16
or MO_32 indicating the size of the result elements. This then
carries through to the helper function names where it then
matches up with the existing pmull_h() which does an 8x8->16
operation and a new pmull_w() which does the 16x16->32.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
For vector loads, predicated elements are zeroed, instead of
retaining their previous values (as happens for most data
processing operations). This means we need to distinguish
"beat not executed due to ECI" (don't touch destination
element) from "beat executed but predicated out" (zero
destination element).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
We were not paying attention to the ECI state when advancing the VPT
state. Architecturally, VPT state advance happens for every beat
(see the pseudocode VPTAdvance()), so on every beat the 4 bits of
VPR.P0 corresponding to the current beat are inverted if required,
and at the end of beats 1 and 3 the VPR MASK fields are updated.
This means that if the ECI state says we should not be executing all
4 beats then we need to skip some of the updating of the VPR that we
currently do in mve_advance_vpt().
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
In some situations we need a mask telling us which parts of the
vector correspond to beats that are not being executed because of
ECI, separately from the combined "which bytes are predicated away"
mask. Factor this mask calculation out of mve_element_mask() into
its own function.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
In mve_element_mask(), we calculate a mask for tail predication which
should have a number of 1 bits based on the value of LR. However,
our MAKE_64BIT_MASK() macro has undefined behaviour when passed a
zero length. Special case this to give the all-zeroes mask we
require.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
We got an edge case wrong in the 48-bit SQRSHRL implementation: if
the shift is to the right, although it always makes the result
smaller than the input value it might not be within the 48-bit range
the result is supposed to be if the input had some bits in [63..48]
set and the shift didn't bring all of those within the [47..0] range.
Handle this similarly to the way we already do for this case in
do_uqrshl48_d(): extend the calculated result from 48 bits,
and return that if not saturating or if it doesn't change the
result; otherwise fall through to return a saturated value.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
In do_sqrshl48_d() and do_uqrshl48_d() we got some of the edge
cases wrong and failed to saturate correctly:
(1) In do_sqrshl48_d() we used the same code that do_shrshl_bhs()
does to obtain the saturated most-negative and most-positive 48-bit
signed values for the large-shift-left case. This gives (1 << 47)
for saturate-to-most-negative, but we weren't sign-extending this
value to the 64-bit output as the pseudocode requires.
(2) For left shifts by less than 48, we copied the "8/16 bit" code
from do_sqrshl_bhs() and do_uqrshl_bhs(). This doesn't do the right
thing because it assumes the C type we're working with is at least
twice the number of bits we're saturating to (so that a shift left by
bits-1 can't shift anything off the top of the value). This isn't
true for bits == 48, so we would incorrectly return 0 rather than the
most-positive value for situations like "shift (1 << 44) right by
20". Instead check for saturation by doing the shift and signextend
and then testing whether shifting back left again gives the original
value.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
In the MVE helpers for the narrowing operations (DO_VSHRN and
DO_VSHRN_SAT) we were using the wrong bits of the predicate mask for
the 'top' versions of the insn. This is because the loop works over
the double-sized input elements and shifts the predicate mask by that
many bits each time, but when we write out the half-sized output we
must look at the mask bits for whichever half of the element we are
writing to.
Correct this by shifting the whole mask right by ESIZE bits for the
'top' insns. This allows us also to simplify the saturation bit
checking (where we had noticed that we needed to look at a different
mask bit for the 'top' insn.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
A cut-and-paste error meant we handled signed VADDV like
unsigned VADDV; fix the type used.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
In the MVE shift-and-insert insns, we special case VSLI by 0
and VSRI by <dt>. VSRI by <dt> means "don't update the destination",
which is what we've implemented. However VSLI by 0 is "set
destination to the input", so we don't want to use the same
special-casing that we do for VSRI by <dt>.
Since the generic logic gives the right answer for a shift
by 0, just use that.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Include the MVE VPR register value in the CPU dumps produced by
arm_cpu_dump_state() if we are printing FPU information. This
makes it easier to interpret debug logs when predication is
active.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Although the architecture doesn't define it as an alias, VMOVL
(vector move long) is encoded as a VSHLL with a zero shift.
Add a comment in the decode file noting that we handle VMOVL
as part of VSHLL.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Mirror the behavour of /proc/sys/abi/sve_default_vector_length
under the real linux kernel. We have no way of passing along
a real default across exec like the kernel can, but this is a
decent way of adjusting the startup vector length of a process.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/482
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20210723203344.968563-4-richard.henderson@linaro.org
[PMM: tweaked docs formatting, document -1 special-case,
added fixup patch from RTH mentioning QEMU's maximum veclen.]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Rename from sve_zcr_get_valid_len and make accessible
from outside of helper.c.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20210723203344.968563-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Currently, our only caller is sve_zcr_len_for_el, which has
already masked the length extracted from ZCR_ELx, so the
masking done here is a nop. But we will shortly have uses
from other locations, where the length will be unmasked.
Saturate the length to ARM_MAX_VQ instead of truncating to
the low 4 bits.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20210723203344.968563-2-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
For M-profile, we weren't reporting alignment faults triggered by the
generic TCG code correctly to the guest. These get passed into
arm_v7m_cpu_do_interrupt() as an EXCP_DATA_ABORT with an A-profile
style exception.fsr value of 1. We didn't check for this, and so
they fell through into the default of "assume this is an MPU fault"
and were reported to the guest as a data access violation MPU fault.
Report these alignment faults as UsageFaults which set the UNALIGNED
bit in the UFSR.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210723162146.5167-4-peter.maydell@linaro.org
In do_v7m_exception_exit(), we perform various checks as part of
performing the exception return. If one of these checks fails, the
architecture requires that we take an appropriate exception on the
existing stackframe. We implement this by calling
v7m_exception_taken() to set up to take the new exception, and then
immediately returning from do_v7m_exception_exit() without proceeding
any further with the unstack-and-exception-return process.
In a couple of checks that are new in v8.1M, we forgot the "return"
statement, with the effect that if bad code in the guest tripped over
these checks we would set up to take a UsageFault exception but then
blunder on trying to also unstack and return from the original
exception, with the probable result that the guest would crash.
Add the missing return statements.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210723162146.5167-3-peter.maydell@linaro.org
For M-profile, unlike A-profile, the low 2 bits of SP are defined to be
RES0H, which is to say that they must be hardwired to zero so that
guest attempts to write non-zero values to them are ignored.
Implement this behaviour by masking out the low bits:
* for writes to r13 by the gdbstub
* for writes to any of the various flavours of SP via MSR
* for writes to r13 via store_reg() in generated code
Note that all the direct uses of cpu_R[] in translate.c are in places
where the register is definitely not r13 (usually because that has
been checked for as an UNDEFINED or UNPREDICTABLE case and handled as
UNDEF).
All the other writes to regs[13] in C code are either:
* A-profile only code
* writes of values we can guarantee to be aligned, such as
- writes of previous-SP-value plus or minus a 4-aligned constant
- writes of the value in an SP limit register (which we already
enforce to be aligned)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210723162146.5167-2-peter.maydell@linaro.org
The hook is now unused, with breakpoints checked outside translation.
Tested-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reuse the code at the bottom of helper_check_breakpoints,
which is what we currently call from *_tr_breakpoint_check.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Always provide the atomic interface using TCGMemOpIdx oi
and uintptr_t retaddr. Rename from helper_* to cpu_* so
as to (mostly) match the exec/cpu_ldst.h functions, and
to emphasize that they are not callable from TCG directly.
Tested-by: Cole Robinson <crobinso@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
The Neon and SVE decoders use private 'plus1' functions to implement
"add one" for the !function decoder syntax. We have a generic
"plus_1" function in translate.h, so use that instead.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20210715095341.701-1-peter.maydell@linaro.org
The functions vmsa_ttbcr_write and vmsa_ttbcr_raw_write expect
the offset to be for the complete TCR structure, not the offset
to the low 32-bits of a uint64_t. Using offsetoflow32 in this
case breaks big-endian hosts.
For TTBCR2, we do want the high 32-bits of a uint64_t.
Use cp15.tcr_el[*].raw_tcr as the offsetofhigh32 argument to
clarify this.
Buglink: https://gitlab.com/qemu-project/qemu/-/issues/187
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210709230621.938821-2-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Just use translator_use_goto_tb directly at the one call site,
rather than maintaining a local wrapper.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
We have not needed to end a TB for I/O since ba3e792669
("icount: clean up cpu_can_io at the entry to the block"),
and gdbstub singlestep is handled by the generic function.
Drop the unused 'n' argument to use_goto_tb.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Using gen_goto_tb directly misses the single-step check.
Let the branch or debug exception be emitted by arm_tr_tb_stop.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
The root trace-events only declares a single TCG event:
$ git grep -w tcg trace-events
trace-events:115:# tcg/tcg-op.c
trace-events:137:vcpu tcg guest_mem_before(TCGv vaddr, uint16_t info) "info=%d", "vaddr=0x%016"PRIx64" info=%d"
and only a tcg/tcg-op.c uses it:
$ git grep -l trace_guest_mem_before_tcg
tcg/tcg-op.c
therefore it is pointless to include "trace-tcg.h" in each target
(because it is not used). Remove it.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20210629050935.2570721-1-f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Add a target-specific Kconfig. We need the definitions in Kconfig so
the minikconf tool can verify they exits. However CONFIG_FOO is only
enabled for target foo via the meson.build rules.
Two architecture have a particularity, ARM and MIPS. As their
translators have been split you can potentially build a plain 32 bit
build along with a 64-bit version including the 32-bit subset.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20210131111316.232778-6-f4bug@amsat.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20210707131744.26027-2-alex.bennee@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Nick Hudson <hnick@vmware.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement the MVE shifts by register, which perform
shifts on a single general-purpose register.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210628135835.6690-19-peter.maydell@linaro.org
Implement the MVE shifts by immediate, which perform shifts
on a single general-purpose register.
These patterns overlap with the long-shift-by-immediates,
so we have to rearrange the grouping a little here.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210628135835.6690-18-peter.maydell@linaro.org
Implement the MVE long shifts by register, which perform shifts on a
pair of general-purpose registers treated as a 64-bit quantity, with
the shift count in another general-purpose register, which might be
either positive or negative.
Like the long-shifts-by-immediate, these encodings sit in the space
that was previously the UNPREDICTABLE MOVS/ORRS with Rm==13,15.
Because LSLL_rr and ASRL_rr overlap with both MOV_rxri/ORR_rrri and
also with CSEL (as one of the previously-UNPREDICTABLE Rm==13 cases),
we have to move the CSEL pattern into the same decodetree group.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210628135835.6690-17-peter.maydell@linaro.org
The MVE extension to v8.1M includes some new shift instructions which
sit entirely within the non-coprocessor part of the encoding space
and which operate only on general-purpose registers. They take up
the space which was previously UNPREDICTABLE MOVS and ORRS encodings
with Rm == 13 or 15.
Implement the long shifts by immediate, which perform shifts on a
pair of general-purpose registers treated as a 64-bit quantity, with
an immediate shift count between 1 and 32.
Awkwardly, because the MOVS and ORRS trans functions do not UNDEF for
the Rm==13,15 case, we need to explicitly emit code to UNDEF for the
cases where v8.1M now requires that. (Trying to change MOVS and ORRS
is too difficult, because the functions that generate the code are
shared between a dozen different kinds of arithmetic or logical
instruction for all A32, T16 and T32 encodings, and for some insns
and some encodings Rm==13,15 are valid.)
We make the helper functions we need for UQSHLL and SQSHLL take
a 32-bit value which the helper casts to int8_t because we'll need
these helpers also for the shift-by-register insns, where the shift
count might be < 0 or > 32.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210628135835.6690-16-peter.maydell@linaro.org
Implement the MVE VADDLV insn; this is similar to VADDV, except
that it accumulates 32-bit elements into a 64-bit accumulator
stored in a pair of general-purpose registers.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210628135835.6690-15-peter.maydell@linaro.org