spapr_irq_init currently uses existing macro SPAPR_XIRQ_BASE to refer to
the range of CPU IPIs during initialization of nr-irqs property.
It is more appropriate to have its own define which can be further
reused as appropriate for correct interpretation.
Suggested-by: Cedric Le Goater <clg@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Kowshik Jois <kowsjois@linux.ibm.com>
Signed-off-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
(cherry picked from commit 2df5c1f5b0)
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Never used from the start.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <20201120174646.619395-6-groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The sPAPR machine has four different IRQ backends, each implementing
the XICS or XIVE interrupt mode or both in the case of the 'dual'
backend.
If a machine is started in P8 compat mode, QEMU should necessarily
support the XICS interrupt mode and in that case, the XIVE-only IRQ
backend is invalid. Currently, spapr_irq_check() tests the pointer
value to the IRQ backend to check for this condition, instead use the
'xics' flag. It's equivalent and it will ease the introduction of new
XIVE-only IRQ backends if needed.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20200820140106.2357228-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When starting an L2 KVM guest with `ic-mode=dual,kernel-irqchip=on`,
QEMU fails with:
KVM is too old to support ic-mode=dual,kernel-irqchip=on
This error message was introduced to detect older KVM versions that
didn't allow destruction and re-creation of the XICS KVM device that
we do at reboot. But it is actually the same issue that we get with
nested guests : when running under pseries, KVM currently provides
a genuine XICS device (not the XICS-on-XIVE device that we get
under powernv) which doesn't support destruction/re-creation.
This will eventually be fixed in KVM but in the meantime, update
the error message and documentation to mention the nested case.
While here, mention that in "No XIVE support in KVM" section that
this can also happen with "guest OSes supporting XIVE" since
we check this at init time before starting the guest.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Buglink: https://bugs.launchpad.net/qemu/+bug/1890290
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <159664243614.622889.18307368735989783528.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When all we do with an Error we receive into a local variable is
propagating to somewhere else, we can just as well receive it there
right away. Convert
if (!foo(..., &err)) {
...
error_propagate(errp, err);
...
return ...
}
to
if (!foo(..., errp)) {
...
...
return ...
}
where nothing else needs @err. Coccinelle script:
@rule1 forall@
identifier fun, err, errp, lbl;
expression list args, args2;
binary operator op;
constant c1, c2;
symbol false;
@@
if (
(
- fun(args, &err, args2)
+ fun(args, errp, args2)
|
- !fun(args, &err, args2)
+ !fun(args, errp, args2)
|
- fun(args, &err, args2) op c1
+ fun(args, errp, args2) op c1
)
)
{
... when != err
when != lbl:
when strict
- error_propagate(errp, err);
... when != err
(
return;
|
return c2;
|
return false;
)
}
@rule2 forall@
identifier fun, err, errp, lbl;
expression list args, args2;
expression var;
binary operator op;
constant c1, c2;
symbol false;
@@
- var = fun(args, &err, args2);
+ var = fun(args, errp, args2);
... when != err
if (
(
var
|
!var
|
var op c1
)
)
{
... when != err
when != lbl:
when strict
- error_propagate(errp, err);
... when != err
(
return;
|
return c2;
|
return false;
|
return var;
)
}
@depends on rule1 || rule2@
identifier err;
@@
- Error *err = NULL;
... when != err
Not exactly elegant, I'm afraid.
The "when != lbl:" is necessary to avoid transforming
if (fun(args, &err)) {
goto out
}
...
out:
error_propagate(errp, err);
even though other paths to label out still need the error_propagate().
For an actual example, see sclp_realize().
Without the "when strict", Coccinelle transforms vfio_msix_setup(),
incorrectly. I don't know what exactly "when strict" does, only that
it helps here.
The match of return is narrower than what I want, but I can't figure
out how to express "return where the operand doesn't use @err". For
an example where it's too narrow, see vfio_intx_enable().
Silently fails to convert hw/arm/armsse.c, because Coccinelle gets
confused by ARMSSE being used both as typedef and function-like macro
there. Converted manually.
Line breaks tidied up manually. One nested declaration of @local_err
deleted manually. Preexisting unwanted blank line dropped in
hw/riscv/sifive_e.c.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200707160613.848843-35-armbru@redhat.com>
The object_property_set_FOO() setters take property name and value in
an unusual order:
void object_property_set_FOO(Object *obj, FOO_TYPE value,
const char *name, Error **errp)
Having to pass value before name feels grating. Swap them.
Same for object_property_set(), object_property_get(), and
object_property_parse().
Convert callers with this Coccinelle script:
@@
identifier fun = {
object_property_get, object_property_parse, object_property_set_str,
object_property_set_link, object_property_set_bool,
object_property_set_int, object_property_set_uint, object_property_set,
object_property_set_qobject
};
expression obj, v, name, errp;
@@
- fun(obj, v, name, errp)
+ fun(obj, name, v, errp)
Chokes on hw/arm/musicpal.c's lcd_refresh() with the unhelpful error
message "no position information". Convert that one manually.
Fails to convert hw/arm/armsse.c, because Coccinelle gets confused by
ARMSSE being used both as typedef and function-like macro there.
Convert manually.
Fails to convert hw/rx/rx-gdbsim.c, because Coccinelle gets confused
by RXCPU being used both as typedef and function-like macro there.
Convert manually. The other files using RXCPU that way don't need
conversion.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20200707160613.848843-27-armbru@redhat.com>
[Straightforwad conflict with commit 2336172d9b "audio: set default
value for pcspk.iobase property" resolved]
Convert
foo(..., &err);
if (err) {
...
}
to
if (!foo(..., &err)) {
...
}
for qdev_realize(), qdev_realize_and_unref(), qbus_realize() and their
wrappers isa_realize_and_unref(), pci_realize_and_unref(),
sysbus_realize(), sysbus_realize_and_unref(), usb_realize_and_unref().
Coccinelle script:
@@
identifier fun = {
isa_realize_and_unref, pci_realize_and_unref, qbus_realize,
qdev_realize, qdev_realize_and_unref, sysbus_realize,
sysbus_realize_and_unref, usb_realize_and_unref
};
expression list args, args2;
typedef Error;
Error *err;
@@
- fun(args, &err, args2);
- if (err)
+ if (!fun(args, &err, args2))
{
...
}
Chokes on hw/arm/musicpal.c's lcd_refresh() with the unhelpful error
message "no position information". Nothing to convert there; skipped.
Fails to convert hw/arm/armsse.c, because Coccinelle gets confused by
ARMSSE being used both as typedef and function-like macro there.
Converted manually.
A few line breaks tidied up manually.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Message-Id: <20200707160613.848843-5-armbru@redhat.com>
All remaining conversions to qdev_realize() are for bus-less devices.
Coccinelle script:
// only correct for bus-less @dev!
@@
expression errp;
expression dev;
@@
- qdev_init_nofail(dev);
+ qdev_realize(dev, NULL, &error_fatal);
@ depends on !(file in "hw/core/qdev.c") && !(file in "hw/core/bus.c")@
expression errp;
expression dev;
symbol true;
@@
- object_property_set_bool(OBJECT(dev), true, "realized", errp);
+ qdev_realize(DEVICE(dev), NULL, errp);
@ depends on !(file in "hw/core/qdev.c") && !(file in "hw/core/bus.c")@
expression errp;
expression dev;
symbol true;
@@
- object_property_set_bool(dev, true, "realized", errp);
+ qdev_realize(DEVICE(dev), NULL, errp);
Note that Coccinelle chokes on ARMSSE typedef vs. macro in
hw/arm/armsse.c. Worked around by temporarily renaming the macro for
the spatch run.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200610053247.1583243-57-armbru@redhat.com>
This is the transformation explained in the commit before previous.
Takes care of just one pattern that needs conversion. More to come in
this series.
Coccinelle script:
@ depends on !(file in "hw/arm/highbank.c")@
expression bus, type_name, dev, expr;
@@
- dev = qdev_create(bus, type_name);
+ dev = qdev_new(type_name);
... when != dev = expr
- qdev_init_nofail(dev);
+ qdev_realize_and_unref(dev, bus, &error_fatal);
@@
expression bus, type_name, dev, expr;
identifier DOWN;
@@
- dev = DOWN(qdev_create(bus, type_name));
+ dev = DOWN(qdev_new(type_name));
... when != dev = expr
- qdev_init_nofail(DEVICE(dev));
+ qdev_realize_and_unref(DEVICE(dev), bus, &error_fatal);
@@
expression bus, type_name, expr;
identifier dev;
@@
- DeviceState *dev = qdev_create(bus, type_name);
+ DeviceState *dev = qdev_new(type_name);
... when != dev = expr
- qdev_init_nofail(dev);
+ qdev_realize_and_unref(dev, bus, &error_fatal);
@@
expression bus, type_name, dev, expr, errp;
symbol true;
@@
- dev = qdev_create(bus, type_name);
+ dev = qdev_new(type_name);
... when != dev = expr
- object_property_set_bool(OBJECT(dev), true, "realized", errp);
+ qdev_realize_and_unref(dev, bus, errp);
@@
expression bus, type_name, expr, errp;
identifier dev;
symbol true;
@@
- DeviceState *dev = qdev_create(bus, type_name);
+ DeviceState *dev = qdev_new(type_name);
... when != dev = expr
- object_property_set_bool(OBJECT(dev), true, "realized", errp);
+ qdev_realize_and_unref(dev, bus, errp);
The first rule exempts hw/arm/highbank.c, because it matches along two
control flow paths there, with different @type_name. Covered by the
next commit's manual conversions.
Missing #include "qapi/error.h" added manually.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200610053247.1583243-10-armbru@redhat.com>
[Conflicts in hw/misc/empty_slot.c and hw/sparc/leon3.c resolved]
The only way object_property_add() can fail is when a property with
the same name already exists. Since our property names are all
hardcoded, failure is a programming error, and the appropriate way to
handle it is passing &error_abort.
Same for its variants, except for object_property_add_child(), which
additionally fails when the child already has a parent. Parentage is
also under program control, so this is a programming error, too.
We have a bit over 500 callers. Almost half of them pass
&error_abort, slightly fewer ignore errors, one test case handles
errors, and the remaining few callers pass them to their own callers.
The previous few commits demonstrated once again that ignoring
programming errors is a bad idea.
Of the few ones that pass on errors, several violate the Error API.
The Error ** argument must be NULL, &error_abort, &error_fatal, or a
pointer to a variable containing NULL. Passing an argument of the
latter kind twice without clearing it in between is wrong: if the
first call sets an error, it no longer points to NULL for the second
call. ich9_pm_add_properties(), sparc32_ledma_realize(),
sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize()
are wrong that way.
When the one appropriate choice of argument is &error_abort, letting
users pick the argument is a bad idea.
Drop parameter @errp and assert the preconditions instead.
There's one exception to "duplicate property name is a programming
error": the way object_property_add() implements the magic (and
undocumented) "automatic arrayification". Don't drop @errp there.
Instead, rename object_property_add() to object_property_try_add(),
and add the obvious wrapper object_property_add().
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-15-armbru@redhat.com>
[Two semantic rebase conflicts resolved]
In order to get rid of qdev_get_machine(), first add a pointer to the
XIVE fabric under the XIVE router and make it configurable through a
QOM link property.
Configure it in the spapr and pnv machine. In the case of pnv, the XIVE
routers are under the chip, so this is done with a QOM alias property of
the POWER9 pnv chip.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20200106145645.4539-5-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The KVMState struct is opaque, so provide accessors for the fields
that will be moved from current_machine to the accelerator. For now
they just forward to the machine object, but this will change.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The XIVE and XICS-on-XIVE KVM devices on POWER9 hosts can greatly reduce
their consumption of some scarce HW resources, namely Virtual Presenter
identifiers, if they know the maximum number of vCPUs that may run in the
VM.
Prepare ground for this by passing the value down to xics_kvm_connect()
and kvmppc_xive_connect(). This is purely mechanical, no functional
change.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157478678301.67101.2717368060417156338.stgit@bahia.tlslab.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Failing to set any of the ICS property should really never happen:
- object_property_add_child() always succeed unless the child object
already has a parent, which isn't the case here obviously since the
ICS has just been created with object_new()
- the ICS has an "nr-irqs" property than can be set as long as the ICS
isn't realized
In both cases, an error indicates there is a bug in QEMU. Propagating the
error, ie. exiting QEMU since spapr_irq_init() is called with &error_fatal
doesn't make much sense. Abort instead. This is consistent with what is
done with XIVE : both qdev_create() and qdev_prop_set_uint32() abort QEMU
on error.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157403285265.409804.8683093665795248192.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The ICS object has both a pointer and an ICS_PROP_XICS property pointing
to the XICS fabric. Confusing bugs could arise if these ever go out of
sync.
Change the property definition so that it explicitely sets the pointer.
The property isn't optional : not being able to set the link is a bug
and QEMU should rather abort than exit in this case.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157403283596.409804.17347207690271971987.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Traditional PCI INTx for vfio devices can only perform well if using
an in-kernel irqchip. Therefore, vfio_intx_update() issues a warning
if an in kernel irqchip is not available.
We usually do have an in-kernel irqchip available for pseries machines
on POWER hosts. However, because the platform allows feature
negotiation of what interrupt controller model to use, we don't
currently initialize it until machine reset. vfio_intx_update() is
called (first) from vfio_realize() before that, so it can issue a
spurious warning, even if we will have an in kernel irqchip by the
time we need it.
To workaround this, make a call to spapr_irq_update_active_intc() from
spapr_irq_init() which is called at machine realize time, before the
vfio realize. This call will be pretty much obsoleted by the later
call at reset time, but it serves to suppress the spurious warning
from VFIO.
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
pseries machine type can have one of two different interrupt controllers in
use depending on feature negotiation with the guest. Usually this is
invisible to devices, because they route to a common set of qemu_irqs which
in turn dispatch to the correct back end.
VFIO passthrough devices, however, wire themselves up directly to the KVM
irqchip for performance, which means they are affected by this change in
interrupt controller. To get them to adjust correctly for the change in
irqchip, we need to fire the kvm irqchip change notifier.
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
SpaprInterruptControllerClass and PnvChipClass have an intc_create() method
that calls the appropriate routine, ie. icp_create() or xive_tctx_create(),
to establish the link between the VCPU and the presenter component of the
interrupt controller during realize.
There aren't any symmetrical call to be called when the VCPU gets unrealized
though. It is assumed that object_unparent() is the only thing to do.
This is questionable because the parenting logic around the CPU and
presenter objects is really an implementation detail of the interrupt
controller. It shouldn't be open-coded in the machine code.
Fix this by adding an intc_destroy() method that undoes what was done in
intc_create(). Also NULLify the presenter pointers to avoid having
stale pointers around. This will allow to reliably check if a vCPU has
a valid presenter.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157192724208.3146912.7254684777515287626.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
On the sPAPR machine and PowerNV machine, the interrupt presenters are
created by a machine handler at the core level and are reset
independently. This is not consistent and it raises issues when it
comes to handle hot-plugged CPUs. In that case, the presenters are not
reset. This is less of an issue in XICS, although a zero MFFR could
be a concern, but in XIVE, the OS CAM line is not set and this breaks
the presenting algorithm. The current code has workarounds which need
a global cleanup.
Extend the sPAPR IRQ backend and the PowerNV Chip class with a new
cpu_intc_reset() handler called by the CPU reset handler and remove
the XiveTCTX reset handler which is now redundant.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20191022163812.330-6-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
For the benefit of peripheral device allocation, the number of available
irqs really wants to be the same on a given machine type version,
regardless of what irq backends we are using. That's the case now, but
only because we make sure the different SpaprIrq instances have the same
value except for the special legacy one.
Since this really only depends on machine type version, move the value to
SpaprMachineClass instead of SpaprIrq. This also puts the code to set it
to the lower value on old machine types right next to setting
legacy_irq_allocation, which needs to go hand in hand.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
The nr_msis value we use here has to line up with whether we're using
legacy or modern irq allocation. Therefore it's safer to derive it based
on legacy_irq_allocation rather than having SpaprIrq contain a canned
value.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
The remaining logic in the post_load hook really belongs to the interrupt
controller backends, and just needs to be called on the active controller
(after the active controller is set to the right thing based on the
incoming migration in the generic spapr_irq_post_load() logic).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
It turns out that all the logic in the SpaprIrq::reset hooks (and some in
the SpaprIrq::post_load hooks) isn't really related to resetting the irq
backend (that's handled by the backends' own reset routines). Rather its
about getting the backend ready to be the active interrupt controller or
stopping being the active interrupt controller - reset (and post_load) is
just the only time that changes at present.
To make this flow clearer, move the logic into the explicit backend
activate and deactivate hooks.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
This hook is a bit odd. The only caller is spapr_irq_init_kvm(), but
it explicitly takes an SpaprIrq *, so it's never really called through the
current SpaprIrq. Essentially this is just a way of passing through a
function pointer so that spapr_irq_init_kvm() can handle some
configuration and error handling logic without duplicating it between the
xics and xive reset paths.
So, make it just take that function pointer. Because of earlier reworks
to the KVM connect/disconnect code in the xics and xive backends we can
also eliminate some wrapper functions and streamline error handling a bit.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Both XICS and XIVE have routines to connect and disconnect KVM with
similar but not identical signatures. This adjusts them to match
exactly, which will be useful for further cleanups later.
While we're there, we add an explicit return value to the connect path
to streamline error reporting in the callers. We remove error
reporting the disconnect path. In the XICS case this wasn't used at
all. In the XIVE case the only error case was if the KVM device was
set up, but KVM didn't have the capability to do so which is pretty
obviously impossible.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
This method depends only on the active irq controller. Now that we've
formalized the notion of active controller we can dispatch directly
through that, rather than dispatching via SpaprIrq with the dual
version having to do a second conditional dispatch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
This method depends only on the active irq controller. Now that we've
formalized the notion of active controller we can dispatch directly
through that, rather than dispatching via SpaprIrq with the dual
version having to do a second conditional dispatch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
This method depends only on the active irq controller. Now that we've
formalized the notion of active controller we can dispatch directly through
that, rather than dispatching via SpaprIrq with the dual version having
to do a second conditional dispatch.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
spapr now has the mechanism of constructing both XICS and XIVE instances of
the SpaprInterruptController interface. However, only one of the interrupt
controllers will actually be active at any given time, depending on feature
negotiation with the guest. This is handled in the current code via
spapr_irq_current() which checks the OV5 vector from feature negotiation to
determine the current backend.
Determining the active controller at the point we need it like this
can be pretty confusing, because it makes it very non obvious at what
points the active controller can change. This can make it difficult
to reason about the code and where a change of active controller could
appear in sequence with other events.
Make this mechanism more explicit by adding an 'active_intc' pointer
and an explicit spapr_irq_update_active_intc() function to update it
from the CAS state. We also add hooks on the intc backend which will
get called when it is activated or deactivated.
For now we just introduce the switch and hooks, later patches will
actually start using them.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
These methods, like cpu_intc_create, really belong to the interrupt
controller, but need to be called on all possible intcs.
Like cpu_intc_create, therefore, make them methods on the intc and
always call it for all existing intcs.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
This method essentially represents code which belongs to the interrupt
controller, but needs to be called on all possible intcs, rather than
just the currently active one. The "dual" version therefore calls
into the xics and xive versions confusingly.
Handle this more directly, by making it instead a method on the intc
backend, and always calling it on every backend that exists.
While we're there, streamline the error reporting a bit.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
The SpaprIrq structure is used to represent ths spapr machine's irq
backend. Except that it kind of conflates two concepts: one is the
backend proper - a specific interrupt controller that we might or
might not be using, the other is the irq configuration which covers
the layout of irq space and which interrupt controllers are allowed.
This leads to some pretty confusing code paths for the "dual"
configuration where its hooks redirect to other SpaprIrq structures
depending on the currently active irq controller.
To clean this up, we start by introducing a new
SpaprInterruptController QOM interface to represent strictly an
interrupt controller backend, not counting anything configuration
related. We implement this interface in the XICs and XIVE interrupt
controllers, and in future we'll move relevant methods from SpaprIrq
into it.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
This method is used to set up the interrupt backends for the current
configuration. However, this means some confusing redirection between
the "dual" mode init and the init hooks for xics only and xive only modes.
Since we now have simple flags indicating whether XICS and/or XIVE are
supported, it's easier to just open code each initialization directly in
spapr_irq_init(). This will also make some future cleanups simpler.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Explicitly return success or failure, rather than just relying on the
Error ** parameter. This makes handling it less verbose in the caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
SpaprIrq::ov5 stores the value for a particular byte in PAPR option vector
5 which indicates whether XICS, XIVE or both interrupt controllers are
available. As usual for PAPR, the encoding is kind of overly complicated
and confusing (though to be fair there are some backwards compat things it
has to handle).
But to make our internal code clearer, have SpaprIrq encode more directly
which backends are available as two booleans, and derive the OV5 value from
that at the point we need it.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
spapr_xive_irq_claim() returns a bool to indicate if it succeeded.
But most of the callers and one callee use int return values and/or an
Error * with more information instead. In any case, ints are a more
common idiom for success/failure states than bools (one never knows
what sense they'll be in).
So instead change to an int return value to indicate presence of error
+ an Error * to describe the details through that call chain.
It also didn't actually check if the irq was already claimed, which is
one of the primary purposes of the claim path, so do that.
spapr_xive_irq_free() also returned a bool... which no callers checked
and was always true, so just drop it.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
The irq claim and free paths for both XICS and XIVE check for some
validity conditions. Some of these represent genuine runtime failures,
however others - particularly checking that the basic irq number is in a
sane range - could only fail in the case of bugs in the callin code.
Therefore use assert()s instead of runtime failures for those.
In addition the non backend-specific part of the claim/free paths should
only be used for PAPR external irqs, that is in the range SPAPR_XIRQ_BASE
to the maximum irq number. Put assert()s for that into the top level
dispatchers as well.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
spapr_irq_free() can be used to free multiple irqs at once. That's useful
for its callers, but there's no need to make the individual backend hooks
handle this. We can loop across the irqs in spapr_irq_free() itself and
have the hooks just do one at time.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
These traces contain some useless information (the always-0 source#) and
have no equivalents for XIVE mode. For now just remove them, and we can
put back something more sensible if and when we need it.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
This method is used to determine the name of the irq backend's node in the
device tree, so that we can find its phandle (after SLOF may have modified
it from the phandle we initially gave it).
But, in the two cases the only difference between the node name is the
presence of a unit address. Searching for a node name without considering
unit address is standard practice for the device tree, and
fdt_subnode_offset() will do exactly that, making this method unecessary.
While we're there, remove the XICS_NODENAME define. The name
"interrupt-controller" is required by PAPR (and IEEE1275), and a bunch of
places assume it already.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Currently spapr_qirq(), whic is used to find the qemu_irq for an spapr
global irq number, redirects through the SpaprIrq::qirq method. But
the array of qemu_irqs is allocated in the PAPR layer, not the
backends, and so the method implementations all return the same thing,
just differing in the preliminary checks they make.
So, we can remove the method, and just implement spapr_qirq() directly,
including all the relevant checks in one place. We change all those
checks into assert()s as well, since a failure here indicates an error in
the calling code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
spapr global irq numbers are different from the source numbers on the ICS
when using XICS - they're offset by XICS_IRQ_BASE (0x1000). But
spapr_irq_set_irq_xics() was passing through the global irq number to
the ICS code unmodified.
We only got away with this because of a counteracting bug - we were
incorrectly adjusting the qemu_irq we returned for a requested global irq
number.
That approach mostly worked but is very confusing, incorrectly relies on
the way the qemu_irq array is allocated, and undermines the intention of
having the global array of qemu_irqs for spapr have a consistent meaning
regardless of irq backend.
So, fix both set_irq and qemu_irq indexing. We rename some parameters at
the same time to make it clear that they are referring to spapr global
irq numbers.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
The only reason this parameter was needed was to work around the
inconsistent meaning of nr_irqs between xics and xive. Now that we've
fixed that, we can consistently use the number directly in the SpaprIrq
configuration.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Both the XICS and XIVE interrupt backends have a "nr-irqs" property, but
it means slightly different things. For XICS (or, strictly, the ICS) it
indicates the number of "real" external IRQs. Those start at XICS_IRQ_BASE
(0x1000) and don't include the special IPI vector. For XIVE, however, it
includes the whole IRQ space, including XIVE's many IPI vectors.
The spapr code currently doesn't handle this sensibly, with the
nr_irqs value in SpaprIrq having different meanings depending on the
backend. We fix this by renaming nr_irqs to nr_xirqs and making it
always indicate just the number of external irqs, adjusting the value
we pass to XIVE accordingly. We also move to using common constants
in most of the irq configurations, to make it clearer that the IRQ
space looks the same to the guest (and emulated devices), even if the
backend is different.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
We create a subtype of TYPE_ICS specifically for sPAPR. For now all this
does is move the setup of the PAPR specific hcalls and RTAS calls to
the realize() function for this, rather than requiring the PAPR code to
explicitly call xics_spapr_init(). In future it will have some more
function.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
TYPE_ICS_SIMPLE is the only subtype of TYPE_ICS_BASE that's ever
instantiated. The existence of different classes is mostly a hang
over from when we (misguidedly) had separate subtypes for the KVM and
non-KVM version of the device.
There could be some call for an abstract base type for ICS variants
that use a different representation of their state (PowerNV PHB3 might
want this). The current split isn't really in the right place for
that though. If we need this in future, we can re-implement it more
in line with what we actually need.
So, collapse the two classes together into just TYPE_ICS.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
There are a number of ics_simple_*() functions that aren't actually
specific to TYPE_XICS_SIMPLE at all, and are equally valid on
TYPE_XICS_BASE. Rename them to ics_*() accordingly.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
It will help us to discard interrupt numbers which have not been
claimed in the next patch.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190911133937.2716-2-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PHBs already take care of clearing the MSIs from the bitmap during reset
or unplug. No need to do this globally from the machine code. Rather add
an assert to ensure that PHBs have acted as expected.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156415228966.1064338.190189424190233355.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix crash in qtest case where spapr->irq_map can be NULL at the
new assert()]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>