* Improve the cleanup of the QEMU binary in case of failing qtests
* Update the Windows support statement
* Remove the capstone submodule (and rely on Capstone of the distros instead)
-----BEGIN PGP SIGNATURE-----
iQJFBAABCAAvFiEEJ7iIR+7gJQEY8+q5LtnXdP5wLbUFAmKEovQRHHRodXRoQHJl
ZGhhdC5jb20ACgkQLtnXdP5wLbXXtxAAsjL2M/kUcr1KBSfkaMhTa0D3OKPQ+p/e
Bac/9+l7UhZZLLffzg53lSsCmlj9cSr5cVUkooT7IFS03wauH7ZJ/wuefIS8IYED
jREmeMWXmVTTfQo4QQZ+6T+XknG2DWjzXQ3sNat71LH4RbHXO5um3zYIdDUaujP+
v4sAKKH+F/FUsEXMP1rFmZpkaWOcvsuSwP/H4kEfhlovebAZINPow26eYYRrTM2t
Ifs7HelO12TlmqlBFn0UzHj8bV8MZkqcjj0efocVzuYMQ8DVcxE7IPc3tft2PuUu
Ia+Czh1hLsLA1zYiO/nN9bVIIewFGOErASzjlYWUlQwNRc1nLik+m+p4Cl9WOEhL
JpkN/yY3pTI5uC6a4KgxDQGTeFUR4D5la6Hg7yQjQbTBMEeGFCV50iOdkItdnRBx
ByReVctXS3oIhsDqHMb8qydlBkPp5pUrAXdj43IBCUb3UsrHmCxH+z8U5BhHvv4D
OleykLKyMcuff6HcEpC1fBQNIFJX5uS69EtAXYtyo2kb5zAJWezCv65UPldAZJCT
kRT4beueQ+d5t+4LZn1qNePdoyeFArdCLlOqg/3Fx08kM5eEv22pSQhOtWclE7U3
tgorikFybClvKJ+YnXBAxD7oFKe+h9L+RYCFOgoTebrbMX54IjjJfeo2DydhHTt7
IaJnsI+vvAA=
=z6e9
-----END PGP SIGNATURE-----
Merge tag 'pull-request-2022-05-18' of https://gitlab.com/thuth/qemu into staging
* Remove Ubuntu 18.04 containers (not supported anymore)
* Improve the cleanup of the QEMU binary in case of failing qtests
* Update the Windows support statement
* Remove the capstone submodule (and rely on Capstone of the distros instead)
# -----BEGIN PGP SIGNATURE-----
#
# iQJFBAABCAAvFiEEJ7iIR+7gJQEY8+q5LtnXdP5wLbUFAmKEovQRHHRodXRoQHJl
# ZGhhdC5jb20ACgkQLtnXdP5wLbXXtxAAsjL2M/kUcr1KBSfkaMhTa0D3OKPQ+p/e
# Bac/9+l7UhZZLLffzg53lSsCmlj9cSr5cVUkooT7IFS03wauH7ZJ/wuefIS8IYED
# jREmeMWXmVTTfQo4QQZ+6T+XknG2DWjzXQ3sNat71LH4RbHXO5um3zYIdDUaujP+
# v4sAKKH+F/FUsEXMP1rFmZpkaWOcvsuSwP/H4kEfhlovebAZINPow26eYYRrTM2t
# Ifs7HelO12TlmqlBFn0UzHj8bV8MZkqcjj0efocVzuYMQ8DVcxE7IPc3tft2PuUu
# Ia+Czh1hLsLA1zYiO/nN9bVIIewFGOErASzjlYWUlQwNRc1nLik+m+p4Cl9WOEhL
# JpkN/yY3pTI5uC6a4KgxDQGTeFUR4D5la6Hg7yQjQbTBMEeGFCV50iOdkItdnRBx
# ByReVctXS3oIhsDqHMb8qydlBkPp5pUrAXdj43IBCUb3UsrHmCxH+z8U5BhHvv4D
# OleykLKyMcuff6HcEpC1fBQNIFJX5uS69EtAXYtyo2kb5zAJWezCv65UPldAZJCT
# kRT4beueQ+d5t+4LZn1qNePdoyeFArdCLlOqg/3Fx08kM5eEv22pSQhOtWclE7U3
# tgorikFybClvKJ+YnXBAxD7oFKe+h9L+RYCFOgoTebrbMX54IjjJfeo2DydhHTt7
# IaJnsI+vvAA=
# =z6e9
# -----END PGP SIGNATURE-----
# gpg: Signature made Wed 18 May 2022 12:40:36 AM PDT
# gpg: using RSA key 27B88847EEE0250118F3EAB92ED9D774FE702DB5
# gpg: issuer "thuth@redhat.com"
# gpg: Good signature from "Thomas Huth <th.huth@gmx.de>" [undefined]
# gpg: aka "Thomas Huth <thuth@redhat.com>" [undefined]
# gpg: aka "Thomas Huth <th.huth@posteo.de>" [unknown]
# gpg: aka "Thomas Huth <huth@tuxfamily.org>" [undefined]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg: There is no indication that the signature belongs to the owner.
# Primary key fingerprint: 27B8 8847 EEE0 2501 18F3 EAB9 2ED9 D774 FE70 2DB5
* tag 'pull-request-2022-05-18' of https://gitlab.com/thuth/qemu:
capstone: Remove the capstone submodule
capstone: Allow version 3.0.5 again
tests/vm: Add capstone to the NetBSD and OpenBSD VMs
docs/about: Update the support statement for Windows
tests/qtest: use prctl(PR_SET_PDEATHSIG) as fallback to kill QEMU
tests/qtest: fix registration of ABRT handler for QEMU cleanup
Remove Ubuntu 18.04 container support from the repository
gitlab-ci: Switch the container of the 'check-patch' & 'check-dco' jobs
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
The traditional ptimer behaviour includes a collection of weird edge
case behaviours. In 2016 we improved the ptimer implementation to
fix these and generally make the behaviour more flexible, with
ptimers opting in to the new behaviour by passing an appropriate set
of policy flags to ptimer_init(). For backwards-compatibility, we
defined PTIMER_POLICY_DEFAULT (which sets no flags) to give the old
weird behaviour.
This turns out to be a poor choice of name, because people writing
new devices which use ptimers are misled into thinking that the
default is probably a sensible choice of flags, when in fact it is
almost always not what you want. Rename PTIMER_POLICY_DEFAULT to
PTIMER_POLICY_LEGACY and beef up the comment to more clearly say that
new devices should not be using it.
The code-change part of this commit was produced by
sed -i -e 's/PTIMER_POLICY_DEFAULT/PTIMER_POLICY_LEGACY/g' $(git grep -l PTIMER_POLICY_DEFAULT)
with the exception of a test name string change in
tests/unit/ptimer-test.c which was added manually.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Francisco Iglesias <francisco.iglesias@amd.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220516103058.162280-1-peter.maydell@linaro.org
Except hw/core/irq.c which implements the forward-declared opaque
qemu_irq structure, hw/adc/zynq-xadc.{c,h} are the only files not
using the typedef. Fix this single exception.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Bernhard Beschow <shentey@gmail.com>
Message-id: 20220509202035.50335-1-philippe.mathieu.daude@gmail.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Make the GICv3 set its number of bits of physical priority from the
implementation-specific value provided in the CPU state struct, in
the same way we already do for virtual priority bits. Because this
would be a migration compatibility break, we provide a property
force-8-bit-prio which is enabled for 7.0 and earlier versioned board
models to retain the legacy "always use 8 bits" behaviour.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220512151457.3899052-6-peter.maydell@linaro.org
Message-id: 20220506162129.2896966-5-peter.maydell@linaro.org
The GICv3 code has always supported a configurable number of virtual
priority and preemption bits, but our implementation currently
hardcodes the number of physical priority bits at 8. This is not
what most hardware implementations provide; for instance the
Cortex-A53 provides only 5 bits of physical priority.
Make the number of physical priority/preemption bits driven by fields
in the GICv3CPUState, the way that we already do for virtual
priority/preemption bits. We set cs->pribits to 8, so there is no
behavioural change in this commit. A following commit will add the
machinery for CPUs to set this to the correct value for their
implementation.
Note that changing the number of priority bits would be a migration
compatibility break, because the semantics of the icc_apr[][] array
changes.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220512151457.3899052-5-peter.maydell@linaro.org
Message-id: 20220506162129.2896966-4-peter.maydell@linaro.org
Our support statement for Windows currently talks about "Vista / Server
2008" - which is related to the API of Windows, and this is not easy
to understand for the non-technical users. Additionally, glib sets the
_WIN32_WINNT macro to 0x0601 already, which indicates the Windows 7 API,
so QEMU effectively depends on the Windows 7 API, too.
Thus let's bump the _WIN32_WINNT setting in QEMU to the same level as
glib uses and adjust our support statement in the documentation to
something similar that we're using for Linux and the *BSD systems
(i.e. only the two most recent versions), which should hopefully be
easier to understand for the users now.
And since we're nowadays also compile-testing QEMU with MSYS2 on Windows
itself, I think we could mention this build environment here, too.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/880
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Stefan Weil <sw@weilnetz.de>
Message-Id: <20220513063958.1181443-1-thuth@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
most of CXL support
fixes, cleanups all over the place
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEXQn9CHHI+FuUyooNKB8NuNKNVGkFAmKCuLIPHG1zdEByZWRo
YXQuY29tAAoJECgfDbjSjVRpdDUH/12SmWaAo+0+SdIHgWFFxsmg3t/EdcO38fgi
MV+GpYdbp6TlU3jdQhrMZYmFdkVVydBdxk93ujCLbFS0ixTsKj31j0IbZMfdcGgv
SLqnV+E3JdHqnGP39q9a9rdwYWyqhkgHoldxilIFW76ngOSapaZVvnwnOMAMkf77
1LieL4/Xq7N9Ho86Zrs3IczQcf0czdJRDaFaSIu8GaHl8ELyuPhlSm6CSqqrEEWR
PA/COQsLDbLOMxbfCi5v88r5aaxmGNZcGbXQbiH9qVHw65nlHyLH9UkNTdJn1du1
f2GYwwa7eekfw/LCvvVwxO1znJrj02sfFai7aAtQYbXPvjvQiqA=
=xdSk
-----END PGP SIGNATURE-----
Merge tag 'for_upstream' of git://git.kernel.org/pub/scm/virt/kvm/mst/qemu into staging
virtio,pc,pci: fixes,cleanups,features
most of CXL support
fixes, cleanups all over the place
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
# -----BEGIN PGP SIGNATURE-----
#
# iQFDBAABCAAtFiEEXQn9CHHI+FuUyooNKB8NuNKNVGkFAmKCuLIPHG1zdEByZWRo
# YXQuY29tAAoJECgfDbjSjVRpdDUH/12SmWaAo+0+SdIHgWFFxsmg3t/EdcO38fgi
# MV+GpYdbp6TlU3jdQhrMZYmFdkVVydBdxk93ujCLbFS0ixTsKj31j0IbZMfdcGgv
# SLqnV+E3JdHqnGP39q9a9rdwYWyqhkgHoldxilIFW76ngOSapaZVvnwnOMAMkf77
# 1LieL4/Xq7N9Ho86Zrs3IczQcf0czdJRDaFaSIu8GaHl8ELyuPhlSm6CSqqrEEWR
# PA/COQsLDbLOMxbfCi5v88r5aaxmGNZcGbXQbiH9qVHw65nlHyLH9UkNTdJn1du1
# f2GYwwa7eekfw/LCvvVwxO1znJrj02sfFai7aAtQYbXPvjvQiqA=
# =xdSk
# -----END PGP SIGNATURE-----
# gpg: Signature made Mon 16 May 2022 01:48:50 PM PDT
# gpg: using RSA key 5D09FD0871C8F85B94CA8A0D281F0DB8D28D5469
# gpg: issuer "mst@redhat.com"
# gpg: Good signature from "Michael S. Tsirkin <mst@kernel.org>" [undefined]
# gpg: aka "Michael S. Tsirkin <mst@redhat.com>" [undefined]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg: There is no indication that the signature belongs to the owner.
# Primary key fingerprint: 0270 606B 6F3C DF3D 0B17 0970 C350 3912 AFBE 8E67
# Subkey fingerprint: 5D09 FD08 71C8 F85B 94CA 8A0D 281F 0DB8 D28D 5469
* tag 'for_upstream' of git://git.kernel.org/pub/scm/virt/kvm/mst/qemu: (86 commits)
vhost-user-scsi: avoid unlink(NULL) with fd passing
virtio-net: don't handle mq request in userspace handler for vhost-vdpa
vhost-vdpa: change name and polarity for vhost_vdpa_one_time_request()
vhost-vdpa: backend feature should set only once
vhost-net: fix improper cleanup in vhost_net_start
vhost-vdpa: fix improper cleanup in net_init_vhost_vdpa
virtio-net: align ctrl_vq index for non-mq guest for vhost_vdpa
virtio-net: setup vhost_dev and notifiers for cvq only when feature is negotiated
hw/i386/amd_iommu: Fix IOMMU event log encoding errors
hw/i386: Make pic a property of common x86 base machine type
hw/i386: Make pit a property of common x86 base machine type
include/hw/pci/pcie_host: Correct PCIE_MMCFG_SIZE_MAX
include/hw/pci/pcie_host: Correct PCIE_MMCFG_BUS_MASK
docs/vhost-user: Clarifications for VHOST_USER_ADD/REM_MEM_REG
vhost-user: more master/slave things
virtio: add vhost support for virtio devices
virtio: drop name parameter for virtio_init()
virtio/vhost-user: dynamically assign VhostUserHostNotifiers
hw/virtio/vhost-user: don't suppress F_CONFIG when supported
include/hw: start documenting the vhost API
...
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
* misc qga-vss fixes
* remove the deprecated CPU model 'Icelake-Client'
* support for x86 architectural LBR
* remove deprecated properties
* replace deprecated -soundhw with -audio
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJ/hZ4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroN2Igf/bFs+yluOikt0eFNmXYnshrGBWPXr
oam0iumPox34vTzZnjpSjF6tJGxHWOgi+wbgIvbwOYHA/ONxx8akW580j+1VhEWa
X29VyUzjZBffgFtmlF4fM74/ELYm7s4c1a1/D9TpVP6Dr0fSWbMujbx4dfeVstvf
sONN+A8sVxaNdV9QKPE6BvqfMlPLoCiigrOetf6iY1KuUtkQDF8xDB0MdzdutqAQ
szAtQ0rrzjxDx9EuGN1SECFM1/riDUbtOOoA9g2C7gGKrx3/iUc6pzrkIcAfWLFK
xXbH7+6Wynia0cbUxnrvRdY4daMIxm4N3wUvN7szXgF9kxYxeQcsdgGsNA==
=n4lu
-----END PGP SIGNATURE-----
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
* fix WHPX debugging
* misc qga-vss fixes
* remove the deprecated CPU model 'Icelake-Client'
* support for x86 architectural LBR
* remove deprecated properties
* replace deprecated -soundhw with -audio
# -----BEGIN PGP SIGNATURE-----
#
# iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJ/hZ4UHHBib256aW5p
# QHJlZGhhdC5jb20ACgkQv/vSX3jHroN2Igf/bFs+yluOikt0eFNmXYnshrGBWPXr
# oam0iumPox34vTzZnjpSjF6tJGxHWOgi+wbgIvbwOYHA/ONxx8akW580j+1VhEWa
# X29VyUzjZBffgFtmlF4fM74/ELYm7s4c1a1/D9TpVP6Dr0fSWbMujbx4dfeVstvf
# sONN+A8sVxaNdV9QKPE6BvqfMlPLoCiigrOetf6iY1KuUtkQDF8xDB0MdzdutqAQ
# szAtQ0rrzjxDx9EuGN1SECFM1/riDUbtOOoA9g2C7gGKrx3/iUc6pzrkIcAfWLFK
# xXbH7+6Wynia0cbUxnrvRdY4daMIxm4N3wUvN7szXgF9kxYxeQcsdgGsNA==
# =n4lu
# -----END PGP SIGNATURE-----
# gpg: Signature made Sat 14 May 2022 03:34:06 AM PDT
# gpg: using RSA key F13338574B662389866C7682BFFBD25F78C7AE83
# gpg: issuer "pbonzini@redhat.com"
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>" [undefined]
# gpg: aka "Paolo Bonzini <pbonzini@redhat.com>" [undefined]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg: There is no indication that the signature belongs to the owner.
# Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4 E2F7 7E15 100C CD36 69B1
# Subkey fingerprint: F133 3857 4B66 2389 866C 7682 BFFB D25F 78C7 AE83
* tag 'for-upstream' of https://gitlab.com/bonzini/qemu: (23 commits)
configure: remove duplicate help messages
configure: remove another dead variable
build: remove useless dependency
introduce -audio as a replacement for -soundhw
soundhw: move help handling to vl.c
soundhw: unify initialization for ISA and PCI soundhw
soundhw: extract soundhw help to a separate function
soundhw: remove ability to create multiple soundcards
rng: make opened property read-only
crypto: make loaded property read-only
target/i386: Support Arch LBR in CPUID enumeration
target/i386: introduce helper to access supported CPUID
target/i386: Enable Arch LBR migration states in vmstate
target/i386: Add MSR access interface for Arch LBR
target/i386: Add XSAVES support for Arch LBR
target/i386: Enable support for XSAVES based features
target/i386: Add kvm_get_one_msr helper
target/i386: Add lbr-fmt vPMU option to support guest LBR
qdev-properties: Add a new macro with bitmask check for uint64_t property
i386/cpu: Remove the deprecated cpu model 'Icelake-Client'
...
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Legacy PIC (8259) cannot be supported for TDX guests since TDX module
doesn't allow directly interrupt injection. Using posted interrupts
for the PIC is not a viable option as the guest BIOS/kernel will not
do EOI for PIC IRQs, i.e. will leave the vIRR bit set.
Make PIC the property of common x86 machine type. Hence all x86
machines, including microvm, can disable it.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Sergio Lopez <slp@redhat.com>
Message-Id: <20220310122811.807794-3-xiaoyao.li@intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Both pc and microvm have pit property individually. Let's just make it
the property of common x86 base machine type.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Sergio Lopez <slp@redhat.com>
Message-Id: <20220310122811.807794-2-xiaoyao.li@intel.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
According to 7.2.2 in [1] bit 27 is the last bit that can be part of the
bus number, this makes the ECAM max size equal to '1 << 28'. This patch
restores back this value into the PCIE_MMCFG_SIZE_MAX define (which was
changed in commit 58d5b22bbd ("ppc4xx: Add device models found in PPC440
core SoCs")).
[1] PCI Express® Base Specification Revision 5.0 Version 1.0
Signed-off-by: Francisco Iglesias <frasse.iglesias@gmail.com>
Message-Id: <20220411221836.17699-3-frasse.iglesias@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
According to [1] address bits 27 - 20 are mapped to the bus number (the
TLPs bus number field is 8 bits). Below is the formula taken from Table
7-1 in [1].
"
Memory Address | PCI Express Configuration Space
A[(20+n-1):20] | Bus Number, 1 ≤ n ≤ 8
"
[1] PCI Express® Base Specification Revision 5.0 Version 1.0
Signed-off-by: Francisco Iglesias <frasse.iglesias@gmail.com>
Message-Id: <20220411221836.17699-2-frasse.iglesias@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
For CONFIG_LINUX, implement the new zero copy flag and the optional callback
io_flush on QIOChannelSocket, but enables it only when MSG_ZEROCOPY
feature is available in the host kernel, which is checked on
qio_channel_socket_connect_sync()
qio_channel_socket_flush() was implemented by counting how many times
sendmsg(...,MSG_ZEROCOPY) was successfully called, and then reading the
socket's error queue, in order to find how many of them finished sending.
Flush will loop until those counters are the same, or until some error occurs.
Notes on using writev() with QIO_CHANNEL_WRITE_FLAG_ZERO_COPY:
1: Buffer
- As MSG_ZEROCOPY tells the kernel to use the same user buffer to avoid copying,
some caution is necessary to avoid overwriting any buffer before it's sent.
If something like this happen, a newer version of the buffer may be sent instead.
- If this is a problem, it's recommended to call qio_channel_flush() before freeing
or re-using the buffer.
2: Locked memory
- When using MSG_ZERCOCOPY, the buffer memory will be locked after queued, and
unlocked after it's sent.
- Depending on the size of each buffer, and how often it's sent, it may require
a larger amount of locked memory than usually available to non-root user.
- If the required amount of locked memory is not available, writev_zero_copy
will return an error, which can abort an operation like migration,
- Because of this, when an user code wants to add zero copy as a feature, it
requires a mechanism to disable it, so it can still be accessible to less
privileged users.
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20220513062836.965425-4-leobras@redhat.com>
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Add flags to io_writev and introduce io_flush as optional callback to
QIOChannelClass, allowing the implementation of zero copy writes by
subclasses.
How to use them:
- Write data using qio_channel_writev*(...,QIO_CHANNEL_WRITE_FLAG_ZERO_COPY),
- Wait write completion with qio_channel_flush().
Notes:
As some zero copy write implementations work asynchronously, it's
recommended to keep the write buffer untouched until the return of
qio_channel_flush(), to avoid the risk of sending an updated buffer
instead of the buffer state during write.
As io_flush callback is optional, if a subclass does not implement it, then:
- io_flush will return 0 without changing anything.
Also, some functions like qio_channel_writev_full_all() were adapted to
receive a flag parameter. That allows shared code between zero copy and
non-zero copy writev, and also an easier implementation on new flags.
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20220513062836.965425-3-leobras@redhat.com>
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
This patch adds a get_vhost() callback function for VirtIODevices that
returns the device's corresponding vhost_dev structure, if the vhost
device is running. This patch also adds a vhost_started flag for
VirtIODevices.
Previously, a VirtIODevice wouldn't be able to tell if its corresponding
vhost device was active or not.
Signed-off-by: Jonah Palmer <jonah.palmer@oracle.com>
Message-Id: <1648819405-25696-3-git-send-email-jonah.palmer@oracle.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This patch drops the name parameter for the virtio_init function.
The pair between the numeric device ID and the string device ID
(name) of a virtio device already exists, but not in a way that
lets us map between them.
This patch lets us do this and removes the need for the name
parameter in the virtio_init function.
Signed-off-by: Jonah Palmer <jonah.palmer@oracle.com>
Message-Id: <1648819405-25696-2-git-send-email-jonah.palmer@oracle.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
At a couple of hundred bytes per notifier allocating one for every
potential queue is very wasteful as most devices only have a few
queues. Instead of having this handled statically dynamically assign
them and track in a GPtrArray.
[AJB: it's hard to trigger the vhost notifiers code, I assume as it
requires a KVM guest with appropriate backend]
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220321153037.3622127-14-alex.bennee@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Previously we would silently suppress VHOST_USER_PROTOCOL_F_CONFIG
during the protocol negotiation if the QEMU stub hadn't implemented
the vhost_dev_config_notifier. However this isn't the only way we can
handle config messages, the existing vdc->get/set_config can do this
as well.
Lightly re-factor the code to check for both potential methods and
instead of silently squashing the feature error out. It is unlikely
that a vhost-user backend expecting to handle CONFIG messages will
behave correctly if they never get sent.
Fixes: 1c3e5a2617 ("vhost-user: back SET/GET_CONFIG requests with a protocol feature")
Cc: Maxime Coquelin <maxime.coquelin@redhat.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220321153037.3622127-13-alex.bennee@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
While trying to get my head around the nest of interactions for vhost
devices I though I could start by documenting the key API functions.
This patch documents the main API hooks for creating and starting a
vhost device as well as how the configuration changes are handled.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Stefan Hajnoczi <stefanha@redhat.com>
Cc: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20220321153037.3622127-11-alex.bennee@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This allows other device classes that will be exposed via PCI to be
able to do so in the appropriate hw/ directory. I resisted the
temptation to re-order headers to be more aesthetically pleasing.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20200925125147.26943-4-alex.bennee@linaro.org>
Message-Id: <20220321153037.3622127-2-alex.bennee@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
By setting none of the SAGAW bits we can indicate to a guest that DMA
translation isn't supported. Tested by booting Windows 10, as well as
Linux guests with the fix at https://git.kernel.org/torvalds/c/c40aaaac10
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Message-Id: <20220314142544.150555-2-dwmw2@infradead.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-audio is used like "-audio pa,model=sb16". It is almost as simple as
-soundhw, but it reuses the -audiodev parsing machinery and attaches an
audiodev to the newly-created device. The main 'feature' is that
it knows about adding the codec device for model=intel-hda, and adding
the audiodev to the codec device.
In the future, it could be extended to support default models or
builtin devices, just like -nic, or even a default backend. For now,
keep it simple.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The DEFINE_PROP_UINT64_CHECKMASK maro applies certain mask check agaist
user-supplied property value, reject the value if it violates the bitmask.
Co-developed-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Message-Id: <20220215195258.29149-2-weijiang.yang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update to c5eb0a61238d ("Linux 5.18-rc6"). Mechanical search and
replace of vfio defines with white space massaging.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
These memops perform interleave decoding, walking down the
CXL topology from CFMWS described host interleave
decoder via CXL host bridge HDM decoders, through the CXL
root ports and finally call CXL type 3 specific read and write
functions.
Note that, whilst functional the current implementation does
not support:
* switches
* multiple HDM decoders at a given level.
* unaligned accesses across the interleave boundaries
Signed-off-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Message-Id: <20220429144110.25167-34-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Once a read or write reaches a CXL type 3 device, the HDM decoders
on the device are used to establish the Device Physical Address
which should be accessed. These functions peform the required maths
and then use a device specific address space to access the
hostmem->mr to fullfil the actual operation. Note that failed writes
are silent, but failed reads return poison. Note this is based
loosely on:
https://lore.kernel.org/qemu-devel/20200817161853.593247-6-f4bug@amsat.org/
[RFC PATCH 0/9] hw/misc: Add support for interleaved memory accesses
Only lightly tested so far. More complex test cases yet to be written.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220429144110.25167-33-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Accessor to get hold of the cxl state for a CXL host bridge
without exposing the internals of the implementation.
Signed-off-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-32-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Simple function to search a PCIBus to find a port by
it's port number.
CXL interleave decoding uses the port number as a target
so it is necessary to locate the port when doing interleave
decoding.
Signed-off-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-31-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The concept of these is introduced in [1] in terms of the
description the CEDT ACPI table. The principal is more general.
Unlike once traffic hits the CXL root bridges, the host system
memory address routing is implementation defined and effectively
static once observable by standard / generic system software.
Each CXL Fixed Memory Windows (CFMW) is a region of PA space
which has fixed system dependent routing configured so that
accesses can be routed to the CXL devices below a set of target
root bridges. The accesses may be interleaved across multiple
root bridges.
For QEMU we could have fully specified these regions in terms
of a base PA + size, but as the absolute address does not matter
it is simpler to let individual platforms place the memory regions.
ExampleS:
-cxl-fixed-memory-window targets.0=cxl.0,size=128G
-cxl-fixed-memory-window targets.0=cxl.1,size=128G
-cxl-fixed-memory-window targets.0=cxl0,targets.1=cxl.1,size=256G,interleave-granularity=2k
Specifies
* 2x 128G regions not interleaved across root bridges, one for each of
the root bridges with ids cxl.0 and cxl.1
* 256G region interleaved across root bridges with ids cxl.0 and cxl.1
with a 2k interleave granularity.
When system software enumerates the devices below a given root bridge
it can then decide which CFMW to use. If non interleave is desired
(or possible) it can use the appropriate CFMW for the root bridge in
question. If there are suitable devices to interleave across the
two root bridges then it may use the 3rd CFMS.
A number of other designs were considered but the following constraints
made it hard to adapt existing QEMU approaches to this particular problem.
1) The size must be known before a specific architecture / board brings
up it's PA memory map. We need to set up an appropriate region.
2) Using links to the host bridges provides a clean command line interface
but these links cannot be established until command line devices have
been added.
Hence the two step process used here of first establishing the size,
interleave-ways and granularity + caching the ids of the host bridges
and then, once available finding the actual host bridges so they can
be used later to support interleave decoding.
[1] CXL 2.0 ECN: CEDT CFMWS & QTG DSM (computeexpresslink.org / specifications)
Signed-off-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Acked-by: Markus Armbruster <armbru@redhat.com> # QAPI Schema
Message-Id: <20220429144110.25167-28-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Both registers and the CFMWS entries in CDAT use simple encodings
for the number of interleave ways and the interleave granularity.
Introduce simple conversion functions to/from the unencoded
number / size. So far the iw decode has not been needed so is
it not implemented.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-27-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The CXL Early Discovery Table is defined in the CXL 2.0 specification as
a way for the OS to get CXL specific information from the system
firmware.
CXL 2.0 specification adds an _HID, ACPI0016, for CXL capable host
bridges, with a _CID of PNP0A08 (PCIe host bridge). CXL aware software
is able to use this initiate the proper _OSC method, and get the _UID
which is referenced by the CEDT. Therefore the existence of an ACPI0016
device allows a CXL aware driver perform the necessary actions. For a
CXL capable OS, this works. For a CXL unaware OS, this works.
CEDT awaremess requires more. The motivation for ACPI0017 is to provide
the possibility of having a Linux CXL module that can work on a legacy
Linux kernel. Linux core PCI/ACPI which won't be built as a module,
will see the _CID of PNP0A08 and bind a driver to it. If we later loaded
a driver for ACPI0016, Linux won't be able to bind it to the hardware
because it has already bound the PNP0A08 driver. The ACPI0017 device is
an opportunity to have an object to bind a driver will be used by a
Linux driver to walk the CXL topology and do everything that we would
have preferred to do with ACPI0016.
There is another motivation for an ACPI0017 device which isn't
implemented here. An operating system needs an attach point for a
non-volatile region provider that understands cross-hostbridge
interleaving. Since QEMU emulation doesn't support interleaving yet,
this is more important on the OS side, for now.
As of CXL 2.0 spec, only 1 sub structure is defined, the CXL Host Bridge
Structure (CHBS) which is primarily useful for telling the OS exactly
where the MMIO for the host bridge is.
Link: https://lore.kernel.org/linux-cxl/20210115034911.nkgpzc756d6qmjpl@intel.com/T/#t
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-26-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
CXL host bridges themselves may have MMIO. Since host bridges don't have
a BAR they are treated as special for MMIO. This patch includes
i386/pc support.
Also hook up the device reset now that we have have the MMIO
space in which the results are visible.
Note that we duplicate the PCI express case for the aml_build but
the implementations will diverge when the CXL specific _OSC is
introduced.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Co-developed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-24-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Implement get and set handlers for the Label Storage Area
used to hold data describing persistent memory configuration
so that it can be ensured it is seen in the same configuration
after reboot.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220429144110.25167-22-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This should introduce no change. Subsequent work will make use of this
new class member.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220429144110.25167-21-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A CXL memory device (AKA Type 3) is a CXL component that contains some
combination of volatile and persistent memory. It also implements the
previously defined mailbox interface as well as the memory device
firmware interface.
Although the memory device is configured like a normal PCIe device, the
memory traffic is on an entirely separate bus conceptually (using the
same physical wires as PCIe, but different protocol).
Once the CXL topology is fully configure and address decoders committed,
the guest physical address for the memory device is part of a larger
window which is owned by the platform. The creation of these windows
is later in this series.
The following example will create a 256M device in a 512M window:
-object "memory-backend-file,id=cxl-mem1,share,mem-path=cxl-type3,size=512M"
-device "cxl-type3,bus=rp0,memdev=cxl-mem1,id=cxl-pmem0"
Note: Dropped PCDIMM info interfaces for now. They can be added if
appropriate at a later date.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220429144110.25167-18-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This works like adding a typical pxb device, except the name is
'pxb-cxl' instead of 'pxb-pcie'. An example command line would be as
follows:
-device pxb-cxl,id=cxl.0,bus="pcie.0",bus_nr=1
A CXL PXB is backward compatible with PCIe. What this means in practice
is that an operating system that is unaware of CXL should still be able
to enumerate this topology as if it were PCIe.
One can create multiple CXL PXB host bridges, but a host bridge can only
be connected to the main root bus. Host bridges cannot appear elsewhere
in the topology.
Note that as of this patch, the ACPI tables needed for the host bridge
(specifically, an ACPI object in _SB named ACPI0016 and the CEDT) aren't
created. So while this patch internally creates it, it cannot be
properly used by an operating system or other system software.
Also necessary is to add an exception to scripts/device-crash-test
similar to that for exiting pxb as both must created on a PCIexpress
host bus.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan.Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-15-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
There are going to be some potential overheads to CXL enablement,
for example the host bridge region reserved in memory maps.
Add a machine level control so that CXL is disabled by default.
Signed-off-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-14-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The easiest way to differentiate a CXL bus, and a PCIE bus is using a
flag. A CXL bus, in hardware, is backward compatible with PCIE, and
therefore the code tries pretty hard to keep them in sync as much as
possible.
The other way to implement this would be to try to cast the bus to the
correct type. This is less code and useful for debugging via simply
looking at the flags.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-13-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Errata F4 to CXL 2.0 clarified the meaning of the timer as the
sum of the value set with the timestamp set command and the number
of nano seconds since it was last set.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-10-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Memory devices implement extra capabilities on top of CXL devices. This
adds support for that.
A large part of memory devices is the mailbox/command interface. All of
the mailbox handling is done in the mailbox-utils library. Longer term,
new CXL devices that are being emulated may want to handle commands
differently, and therefore would need a mechanism to opt in/out of the
specific generic handlers. As such, this is considered sufficient for
now, but may need more depth in the future.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-8-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This is the beginning of implementing mailbox support for CXL 2.0
devices. The implementation recognizes when the doorbell is rung,
handles the command/payload, clears the doorbell while returning error
codes and data.
Generally the mailbox mechanism is designed to permit communication
between the host OS and the firmware running on the device. For our
purposes, we emulate both the firmware, implemented primarily in
cxl-mailbox-utils.c, and the hardware.
No commands are implemented yet.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-7-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This implements all device MMIO up to the first capability. That
includes the CXL Device Capabilities Array Register, as well as all of
the CXL Device Capability Header Registers. The latter are filled in as
they are implemented in the following patches.
Endianness and alignment are managed by softmmu memory core.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-6-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A CXL device is a type of CXL component. Conceptually, a CXL device
would be a leaf node in a CXL topology. From an emulation perspective,
CXL devices are the most complex and so the actual implementation is
reserved for discrete commits.
This new device type is specifically catered towards the eventual
implementation of a Type3 CXL.mem device, 8.2.8.5 in the CXL 2.0
specification.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Message-Id: <20220429144110.25167-5-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A CXL 2.0 component is any entity in the CXL topology. All components
have a analogous function in PCIe. Except for the CXL host bridge, all
have a PCIe config space that is accessible via the common PCIe
mechanisms. CXL components are enumerated via DVSEC fields in the
extended PCIe header space. CXL components will minimally implement some
subset of CXL.mem and CXL.cache registers defined in 8.2.5 of the CXL
2.0 specification. Two headers and a utility library are introduced to
support the minimum functionality needed to enumerate components.
The cxl_pci header manages bits associated with PCI, specifically the
DVSEC and related fields. The cxl_component.h variant has data
structures and APIs that are useful for drivers implementing any of the
CXL 2.0 components. The library takes care of making use of the DVSEC
bits and the CXL.[mem|cache] registers. Per spec, the registers are
little endian.
None of the mechanisms required to enumerate a CXL capable hostbridge
are introduced at this point.
Note that the CXL.mem and CXL.cache registers used are always 4B wide.
It's possible in the future that this constraint will not hold.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Message-Id: <20220429144110.25167-3-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A CXL component is a hardware entity that implements CXL component
registers from the CXL 2.0 spec (8.2.3). Currently these represent 3
general types.
1. Host Bridge
2. Ports (root, upstream, downstream)
3. Devices (memory, other)
A CXL component can be conceptually thought of as a PCIe device with
extra functionality when enumerated and enabled. For this reason, CXL
does here, and will continue to add on to existing PCI code paths.
Host bridges will typically need to be handled specially and so they can
implement this newly introduced interface or not. All other components
should implement this interface. Implementing this interface allows the
core PCI code to treat these devices as special where appropriate.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Adam Manzanares <a.manzanares@samsung.com>
Message-Id: <20220429144110.25167-2-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
According to the NBD spec, a server that advertises
NBD_FLAG_CAN_MULTI_CONN promises that multiple client connections will
not see any cache inconsistencies: when properly separated by a single
flush, actions performed by one client will be visible to another
client, regardless of which client did the flush.
We always satisfy these conditions in qemu - even when we support
multiple clients, ALL clients go through a single point of reference
into the block layer, with no local caching. The effect of one client
is instantly visible to the next client. Even if our backend were a
network device, we argue that any multi-path caching effects that
would cause inconsistencies in back-to-back actions not seeing the
effect of previous actions would be a bug in that backend, and not the
fault of caching in qemu. As such, it is safe to unconditionally
advertise CAN_MULTI_CONN for any qemu NBD server situation that
supports parallel clients.
Note, however, that we don't want to advertise CAN_MULTI_CONN when we
know that a second client cannot connect (for historical reasons,
qemu-nbd defaults to a single connection while nbd-server-add and QMP
commands default to unlimited connections; but we already have
existing means to let either style of NBD server creation alter those
defaults). This is visible by no longer advertising MULTI_CONN for
'qemu-nbd -r' without -e, as in the iotest nbd-qemu-allocation.
The harder part of this patch is setting up an iotest to demonstrate
behavior of multiple NBD clients to a single server. It might be
possible with parallel qemu-io processes, but I found it easier to do
in python with the help of libnbd, and help from Nir and Vladimir in
writing the test.
Signed-off-by: Eric Blake <eblake@redhat.com>
Suggested-by: Nir Soffer <nsoffer@redhat.com>
Suggested-by: Vladimir Sementsov-Ogievskiy <v.sementsov-og@mail.ru>
Message-Id: <20220512004924.417153-3-eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
The next patch wants to adjust whether the NBD server code advertises
MULTI_CONN based on whether it is known if the server limits to
exactly one client. For a server started by QMP, this information is
obtained through nbd_server_start (which can support more than one
export); but for qemu-nbd (which supports exactly one export), it is
controlled only by the command-line option -e/--shared. Since we
already have a hook function used by qemu-nbd, it's easiest to just
alter its signature to fit our needs.
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20220512004924.417153-2-eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>