Commit Graph

238 Commits

Author SHA1 Message Date
Greg Kurz
a4e3a7c02b spapr: Improve spapr_reallocate_hpt() error reporting
spapr_reallocate_hpt() has three users, two of which pass &error_fatal
and the third one, htab_load(), passes &local_err, uses it to detect
failures and simply propagates -EINVAL up to vmstate_load(), which will
cause QEMU to exit. It is thus confusing that spapr_reallocate_hpt()
doesn't return right away when an error is detected in some cases. Also,
the comment suggesting that the caller is welcome to try to carry on
seems like a remnant in this respect.

This can be improved:
- change spapr_reallocate_hpt() to always report a negative errno on
  failure, either as reported by KVM or -ENOSPC if the HPT is smaller
  than what was asked,
- use that to detect failures in htab_load() which is preferred over
  checking &local_err,
- propagate this negative errno to vmstate_load() because it is more
  accurate than propagating -EINVAL for all possible errors.

[dwg: Fix compile error due to omitted prelim patch]
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <160371605460.305923.5890143959901241157.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-28 01:08:53 +11:00
Daniel Henrique Barboza
29bfe52a52 spapr: add spapr_machine_using_legacy_numa() helper
The changes to come to NUMA support are all guest visible. In
theory we could just create a new 5_1 class option flag to
avoid the changes to cascade to 5.1 and under. The reality is that
these changes are only relevant if the machine has more than one
NUMA node. There is no need to change guest behavior that has
been around for years needlesly.

This new helper will be used by the next patches to determine
whether we should retain the (soon to be) legacy NUMA behavior
in the pSeries machine. The new behavior will only be exposed
if:

- machine is pseries-5.2 and newer;
- more than one NUMA node is declared in NUMA state.

Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20201007172849.302240-2-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-09 10:52:09 +11:00
Greg Kurz
35dce34fbc spapr: Add a return value to spapr_check_pagesize()
As recommended in "qapi/error.h", return true on success and false on
failure. This allows to reduce error propagation overhead in the callers.

Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <20200914123505.612812-14-groug@kaod.org>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-09 10:15:06 +11:00
Greg Kurz
cfdc527473 spapr: Add a return value to spapr_set_vcpu_id()
As recommended in "qapi/error.h", return true on success and false on
failure. This allows to reduce error propagation overhead in the callers.

Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <20200914123505.612812-11-groug@kaod.org>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-09 10:15:06 +11:00
Eduardo Habkost
8063396bf3 Use OBJECT_DECLARE_SIMPLE_TYPE when possible
This converts existing DECLARE_INSTANCE_CHECKER usage to
OBJECT_DECLARE_SIMPLE_TYPE when possible.

$ ./scripts/codeconverter/converter.py -i \
  --pattern=AddObjectDeclareSimpleType $(git grep -l '' -- '*.[ch]')

Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Acked-by: Paul Durrant <paul@xen.org>
Message-Id: <20200916182519.415636-6-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2020-09-18 14:12:32 -04:00
Eduardo Habkost
a489d1951c Use OBJECT_DECLARE_TYPE when possible
This converts existing DECLARE_OBJ_CHECKERS usage to
OBJECT_DECLARE_TYPE when possible.

 $ ./scripts/codeconverter/converter.py -i \
   --pattern=AddObjectDeclareType $(git grep -l '' -- '*.[ch]')

Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Paul Durrant <paul@xen.org>
Message-Id: <20200916182519.415636-5-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2020-09-18 14:12:32 -04:00
Eduardo Habkost
8110fa1d94 Use DECLARE_*CHECKER* macros
Generated using:

 $ ./scripts/codeconverter/converter.py -i \
   --pattern=TypeCheckMacro $(git grep -l '' -- '*.[ch]')

Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20200831210740.126168-12-ehabkost@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20200831210740.126168-13-ehabkost@redhat.com>
Message-Id: <20200831210740.126168-14-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2020-09-09 09:27:09 -04:00
Eduardo Habkost
db1015e92e Move QOM typedefs and add missing includes
Some typedefs and macros are defined after the type check macros.
This makes it difficult to automatically replace their
definitions with OBJECT_DECLARE_TYPE.

Patch generated using:

 $ ./scripts/codeconverter/converter.py -i \
   --pattern=QOMStructTypedefSplit $(git grep -l '' -- '*.[ch]')

which will split "typdef struct { ... } TypedefName"
declarations.

Followed by:

 $ ./scripts/codeconverter/converter.py -i --pattern=MoveSymbols \
    $(git grep -l '' -- '*.[ch]')

which will:
- move the typedefs and #defines above the type check macros
- add missing #include "qom/object.h" lines if necessary

Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20200831210740.126168-9-ehabkost@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Message-Id: <20200831210740.126168-10-ehabkost@redhat.com>
Message-Id: <20200831210740.126168-11-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2020-09-09 09:26:43 -04:00
Daniel Henrique Barboza
d370f9cf0a spapr_numa: create a vcpu associativity helper
The work to be done in h_home_node_associativity() intersects
with what is already done in spapr_numa_fixup_cpu_dt(). This
patch creates a new helper, spapr_numa_get_vcpu_assoc(), to
be used for both spapr_numa_fixup_cpu_dt() and
h_home_node_associativity().

While we're at it, use memcpy() instead of loop assignment
to created the returned array.

Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20200904172422.617460-3-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-09-08 11:34:18 +10:00
Daniel Henrique Barboza
f1aa45fffe spapr: introduce SpaprMachineState::numa_assoc_array
The next step to centralize all NUMA/associativity handling in
the spapr machine is to create a 'one stop place' for all
things ibm,associativity.

This patch introduces numa_assoc_array, a 2 dimensional array
that will store all ibm,associativity arrays of all NUMA nodes.
This array is initialized in a new spapr_numa_associativity_init()
function, called in spapr_machine_init(). It is being initialized
with the same values used in other ibm,associativity properties
around spapr files (i.e. all zeros, last value is node_id).
The idea is to remove all hardcoded definitions and FDT writes
of ibm,associativity arrays, doing instead a call to the new
helper spapr_numa_write_associativity_dt() helper, that will
be able to write the DT with the correct values.

We'll start small, handling the trivial cases first. The
remaining instances of ibm,associativity will be handled
next.

Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20200903220639.563090-2-danielhb413@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-09-08 10:08:43 +10:00
Eduardo Habkost
82d1e74f1b spapr: Move typedef SpaprMachineState to spapr.h
Move the typedef from spapr_irq.h to spapr.h, and use "struct
SpaprMachineState" in the spapr_*.h headers (to avoid circular
header dependencies).

This will make future conversion to OBJECT_DECLARE* easier.

Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Tested-By: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200825192110.3528606-28-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2020-08-27 14:04:54 -04:00
Reza Arbab
a6030d7e0b spapr: Add a new level of NUMA for GPUs
NUMA nodes corresponding to GPU memory currently have the same
affinity/distance as normal memory nodes. Add a third NUMA associativity
reference point enabling us to give GPU nodes more distance.

This is guest visible information, which shouldn't change under a
running guest across migration between different qemu versions, so make
the change effective only in new (pseries > 5.0) machine types.

Before, `numactl -H` output in a guest with 4 GPUs (nodes 2-5):

node distances:
node   0   1   2   3   4   5
  0:  10  40  40  40  40  40
  1:  40  10  40  40  40  40
  2:  40  40  10  40  40  40
  3:  40  40  40  10  40  40
  4:  40  40  40  40  10  40
  5:  40  40  40  40  40  10

After:

node distances:
node   0   1   2   3   4   5
  0:  10  40  80  80  80  80
  1:  40  10  80  80  80  80
  2:  80  80  10  80  80  80
  3:  80  80  80  10  80  80
  4:  80  80  80  80  10  80
  5:  80  80  80  80  80  10

These are the same distances as on the host, mirroring the change made
to host firmware in skiboot commit f845a648b8cb ("numa/associativity:
Add a new level of NUMA for GPU's").

Signed-off-by: Reza Arbab <arbab@linux.ibm.com>
Message-Id: <20200716225655.24289-1-arbab@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-07-20 09:21:39 +10:00
Leonardo Bras
0911a60c76 ppc/spapr: Add hotremovable flag on DIMM LMBs on drmem_v2
On reboot, all memory that was previously added using object_add and
device_add is placed in this DIMM area.

The new SPAPR_LMB_FLAGS_HOTREMOVABLE flag helps Linux to put this memory in
the correct memory zone, so no unmovable allocations are made there,
allowing the object to be easily hot-removed by device_del and
object_del.

This new flag was accepted in Power Architecture documentation.

Signed-off-by: Leonardo Bras <leobras.c@gmail.com>
Reviewed-by: Bharata B Rao <bharata@linux.ibm.com>
Message-Id: <20200511200201.58537-1-leobras.c@gmail.com>
[dwg: Fixed syntax error spotted by Cédric Le Goater]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-05-27 15:29:36 +10:00
Markus Armbruster
40c2281cc3 Drop more @errp parameters after previous commit
Several functions can't fail anymore: ich9_pm_add_properties(),
device_add_bootindex_property(), ppc_compat_add_property(),
spapr_caps_add_properties(), PropertyInfo.create().  Drop their @errp
parameter.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-16-armbru@redhat.com>
2020-05-15 07:08:14 +02:00
Greg Kurz
087820e37f spapr: Drop CAS reboot flag
The CAS reboot flag is false by default and all the locations that
could set it to true have been dropped. This means that all code
blocks depending on the flag being set is dead code and the other
code blocks should be executed always.

Just do that and drop the now uneeded CAS reboot flag. Fix a
comment on the way to make checkpatch happy.

Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <158514994893.478799.11772512888322840990.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-05-07 11:10:50 +10:00
Alexey Kardashevskiy
91067db1ab spapr/cas: Separate CAS handling from rebuilding the FDT
At the moment "ibm,client-architecture-support" ("CAS") is implemented
in SLOF and QEMU assists via the custom H_CAS hypercall which copies
an updated flatten device tree (FDT) blob to the SLOF memory which
it then uses to update its internal tree.

When we enable the OpenFirmware client interface in QEMU, we won't need
to copy the FDT to the guest as the client is expected to fetch
the device tree using the client interface.

This moves FDT rebuild out to a separate helper which is going to be
called from the "ibm,client-architecture-support" handler and leaves
writing FDT to the guest in the H_CAS handler.

This should not cause any behavioral change.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20200310050733.29805-3-aik@ozlabs.ru>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <158514994229.478799.2178881312094922324.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-05-07 11:10:50 +10:00
Nicholas Piggin
edfdbf9c6b ppc/spapr: Add FWNMI System Reset state
The FWNMI option must deliver system reset interrupts to their
registered address, and there are a few constraints on the handler
addresses specified in PAPR. Add the system reset address state and
checks.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20200316142613.121089-4-npiggin@gmail.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviwed-by: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-03-17 17:00:22 +11:00
Nicholas Piggin
8af7e1fe6f ppc/spapr: Change FWNMI names
The option is called "FWNMI", and it involves more than just machine
checks, also machine checks can be delivered without the FWNMI option,
so re-name various things to reflect that.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20200316142613.121089-3-npiggin@gmail.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-03-17 17:00:22 +11:00
Alexey Kardashevskiy
4dba872219 spapr/rtas: Reserve space for RTAS blob and log
At the moment SLOF reserves space for RTAS and instantiates the RTAS blob
which is 20 bytes binary blob calling an hypercall. The rest of the RTAS
area is a log which SLOF has no idea about but QEMU does.

This moves RTAS sizing to QEMU and this overrides the size from SLOF.
The only remaining problem is that SLOF copies the number of bytes it
reserved (2KB for now) so QEMU needs to reserve at least this much;
SLOF will be fixed separately to check that rtas-size from QEMU is
enough for those 20 bytes for the H_RTAS hcall.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20200316011841.99970-1-aik@ozlabs.ru>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-03-17 15:08:50 +11:00
David Gibson
1052ab67f4 spapr: Don't clamp RMA to 16GiB on new machine types
In spapr_machine_init() we clamp the size of the RMA to 16GiB and the
comment saying why doesn't make a whole lot of sense.  In fact, this was
done because the real mode handling code elsewhere limited the RMA in TCG
mode to the maximum value configurable in LPCR[RMLS], 16GiB.

But,
 * Actually LPCR[RMLS] has been able to encode a 256GiB size for a very
   long time, we just didn't implement it properly in the softmmu
 * LPCR[RMLS] shouldn't really be relevant anyway, it only was because we
   used to abuse the RMOR based translation mode in order to handle the
   fact that we're not modelling the hypervisor parts of the cpu

We've now removed those limitations in the modelling so the 16GiB clamp no
longer serves a function.  However, we can't just remove the limit
universally: that would break migration to earlier qemu versions, where
the 16GiB RMLS limit still applies, no matter how bad the reasons for it
are.

So, we replace the 16GiB clamp, with a clamp to a limit defined in the
machine type class.  We set it to 16 GiB for machine types 4.2 and earlier,
but set it to 0 meaning unlimited for the new 5.0 machine type.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2020-03-17 09:41:15 +11:00
David Gibson
8897ea5a9f spapr: Don't attempt to clamp RMA to VRMA constraint
The Real Mode Area (RMA) is the part of memory which a guest can access
when in real (MMU off) mode.  Of course, for a guest under KVM, the MMU
isn't really turned off, it's just in a special translation mode - Virtual
Real Mode Area (VRMA) - which looks like real mode in guest mode.

The mechanics of how this works when using the hash MMU (HPT) put a
constraint on the size of the RMA, which depends on the size of the
HPT.  So, the latter part of spapr_setup_hpt_and_vrma() clamps the RMA
we advertise to the guest based on this VRMA limit.

There are several things wrong with this:
 1) spapr_setup_hpt_and_vrma() doesn't actually clamp, it takes the minimum
    of Node 0 memory size and the VRMA limit.  That will *often* work the
    same as clamping, but there can be other constraints on RMA size which
    supersede Node 0 memory size.  We have real bugs caused by this
    (currently worked around in the guest kernel)
 2) Some callers of spapr_setup_hpt_and_vrma() are in a situation where
    we're past the point that we can actually advertise an RMA limit to the
    guest
 3) But most fundamentally, the VRMA limit depends on host configuration
    (page size) which shouldn't be visible to the guest, but this partially
    exposes it.  This can cause problems with migration in certain edge
    cases, although we will mostly get away with it.

In practice, this clamping is almost never applied anyway.  With 64kiB
pages and the normal rules for sizing of the HPT, the theoretical VRMA
limit will be 4x(guest memory size) and so never hit.  It will hit with
4kiB pages, where it will be (guest memory size)/4.  However all mainstream
distro kernels for POWER have used a 64kiB page size for at least 10 years.

So, simply replace this logic with a check that the RMA we've calculated
based only on guest visible configuration will fit within the host implied
VRMA limit.  This can break if running HPT guests on a host kernel with
4kiB page size.  As noted that's very rare.  There also exist several
possible workarounds:
  * Change the host kernel to use 64kiB pages
  * Use radix MMU (RPT) guests instead of HPT
  * Use 64kiB hugepages on the host to back guest memory
  * Increase the guest memory size so that the RMA hits one of the fixed
    limits before the RMA limit.  This is relatively easy on POWER8 which
    has a 16GiB limit, harder on POWER9 which has a 1TiB limit.
  * Use a guest NUMA configuration which artificially constrains the RMA
    within the VRMA limit (the RMA must always fit within Node 0).

Previously, on KVM, we also temporarily reduced the rma_size to 256M so
that the we'd load the kernel and initrd safely, regardless of the VRMA
limit.  This was a) confusing, b) could significantly limit the size of
images we could load and c) introduced a behavioural difference between
KVM and TCG.  So we remove that as well.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Greg Kurz <groug@kaod.org>
2020-03-17 09:41:15 +11:00
Greg Kurz
ad334d89a6 spapr: Handle pending hot plug/unplug requests at CAS
If a hot plug or unplug request is pending at CAS, we currently trigger
a CAS reboot, which severely increases the guest boot time. This is
because SLOF doesn't handle hot plug events and we had no way to fix
the FDT that gets presented to the guest.

We can do better thanks to recent changes in QEMU and SLOF:

- we now return a full FDT to SLOF during CAS

- SLOF was fixed to correctly detect any device that was either added or
  removed since boot time and to update its internal DT accordingly.

The right solution is to process all pending hot plug/unplug requests
during CAS: convert hot plugged devices to cold plugged devices and
remove the hot unplugged ones, which is exactly what spapr_drc_reset()
does. Also clear all hot plug events that are currently queued since
they're no longer relevant.

Note that SLOF cannot currently populate hot plugged PCI bridges or PHBs
at CAS. Until this limitation is lifted, SLOF will reset the machine when
this scenario occurs : this will allow the FDT to be fully processed when
SLOF is started again (ie. the same effect as the CAS reboot that would
occur anyway without this patch).

Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <158257222352.4102917.8984214333937947307.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-03-17 09:41:14 +11:00
Alexey Kardashevskiy
87262806cb spapr: Allow changing offset for -kernel image
This allows moving the kernel in the guest memory. The option is useful
for step debugging (as Linux is linked at 0x0); it also allows loading
grub which is normally linked to run at 0x20000.

This uses the existing kernel address by default.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20200203032943.121178-6-aik@ozlabs.ru>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-02-21 09:15:04 +11:00
Shivaprasad G Bhat
b5fca656f7 spapr: Add Hcalls to support PAPR NVDIMM device
This patch implements few of the necessary hcalls for the nvdimm support.

PAPR semantics is such that each NVDIMM device is comprising of multiple
SCM(Storage Class Memory) blocks. The guest requests the hypervisor to
bind each of the SCM blocks of the NVDIMM device using hcalls. There can
be SCM block unbind requests in case of driver errors or unplug(not
supported now) use cases. The NVDIMM label read/writes are done through
hcalls.

Since each virtual NVDIMM device is divided into multiple SCM blocks,
the bind, unbind, and queries using hcalls on those blocks can come
independently. This doesn't fit well into the qemu device semantics,
where the map/unmap are done at the (whole)device/object level granularity.
The patch doesnt actually bind/unbind on hcalls but let it happen at the
device_add/del phase itself instead.

The guest kernel makes bind/unbind requests for the virtual NVDIMM device
at the region level granularity. Without interleaving, each virtual NVDIMM
device is presented as a separate guest physical address range. So, there
is no way a partial bind/unbind request can come for the vNVDIMM in a
hcall for a subset of SCM blocks of a virtual NVDIMM. Hence it is safe to
do bind/unbind everything during the device_add/del.

Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Message-Id: <158131059899.2897.11515211602702956854.stgit@lep8c.aus.stglabs.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-02-21 09:15:04 +11:00
Aravinda Prasad
2500fb423a migration: Include migration support for machine check handling
This patch includes migration support for machine check
handling. Especially this patch blocks VM migration
requests until the machine check error handling is
complete as these errors are specific to the source
hardware and is irrelevant on the target hardware.

Signed-off-by: Aravinda Prasad <arawinda.p@gmail.com>
[Do not set FWNMI cap in post_load, now its done in .apply hook]
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Message-Id: <20200130184423.20519-7-ganeshgr@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-02-03 11:33:11 +11:00
Aravinda Prasad
f03496bc12 ppc: spapr: Handle "ibm,nmi-register" and "ibm,nmi-interlock" RTAS calls
This patch adds support in QEMU to handle "ibm,nmi-register"
and "ibm,nmi-interlock" RTAS calls.

The machine check notification address is saved when the
OS issues "ibm,nmi-register" RTAS call.

This patch also handles the case when multiple processors
experience machine check at or about the same time by
handling "ibm,nmi-interlock" call. In such cases, as per
PAPR, subsequent processors serialize waiting for the first
processor to issue the "ibm,nmi-interlock" call. The second
processor that also received a machine check error waits
till the first processor is done reading the error log.
The first processor issues "ibm,nmi-interlock" call
when the error log is consumed.

Signed-off-by: Aravinda Prasad <arawinda.p@gmail.com>
[Register fwnmi RTAS calls in core_rtas_register_types()
 where other RTAS calls are registered]
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Message-Id: <20200130184423.20519-6-ganeshgr@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-02-03 11:33:11 +11:00
Aravinda Prasad
81fe70e443 target/ppc: Build rtas error log upon an MCE
Upon a machine check exception (MCE) in a guest address space,
KVM causes a guest exit to enable QEMU to build and pass the
error to the guest in the PAPR defined rtas error log format.

This patch builds the rtas error log, copies it to the rtas_addr
and then invokes the guest registered machine check handler. The
handler in the guest takes suitable action(s) depending on the type
and criticality of the error. For example, if an error is
unrecoverable memory corruption in an application inside the
guest, then the guest kernel sends a SIGBUS to the application.
For recoverable errors, the guest performs recovery actions and
logs the error.

Signed-off-by: Aravinda Prasad <arawinda.p@gmail.com>
[Assume SLOF has allocated enough room for rtas error log]
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20200130184423.20519-5-ganeshgr@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-02-03 11:33:10 +11:00
Aravinda Prasad
9ac703ac5f target/ppc: Handle NMI guest exit
Memory error such as bit flips that cannot be corrected
by hardware are passed on to the kernel for handling.
If the memory address in error belongs to guest then
the guest kernel is responsible for taking suitable action.
Patch [1] enhances KVM to exit guest with exit reason
set to KVM_EXIT_NMI in such cases. This patch handles
KVM_EXIT_NMI exit.

[1] https://www.spinics.net/lists/kvm-ppc/msg12637.html
    (e20bbd3d and related commits)

Signed-off-by: Aravinda Prasad <arawinda.p@gmail.com>
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Message-Id: <20200130184423.20519-4-ganeshgr@linux.ibm.com>
[dwg: #ifdefs to fix compile for 32-bit target]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-02-03 11:33:10 +11:00
Aravinda Prasad
9d953ce447 ppc: spapr: Introduce FWNMI capability
Introduce fwnmi an spapr capability and add a helper function
which tries to enable it, which would be used by following patch
of the series. This patch by itself does not change the existing
behavior.

Signed-off-by: Aravinda Prasad <arawinda.p@gmail.com>
[eliminate cap_ppc_fwnmi, add fwnmi cap to migration state
 and reprhase the commit message]
Signed-off-by: Ganesh Goudar <ganeshgr@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20200130184423.20519-3-ganeshgr@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-02-03 11:33:10 +11:00
David Gibson
0c21e07354 spapr: Fold h_cas_compose_response() into h_client_architecture_support()
spapr_h_cas_compose_response() handles the last piece of the PAPR feature
negotiation process invoked via the ibm,client-architecture-support OF
call.  Its only caller is h_client_architecture_support() which handles
most of the rest of that process.

I believe it was placed in a separate file originally to handle some
fiddly dependencies between functions, but mostly it's just confusing
to have the CAS process split into two pieces like this.  Now that
compose response is simplified (by just generating the whole device
tree anew), it's cleaner to just fold it into
h_client_architecture_support().

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cedric Le Goater <clg@fr.ibm.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
2019-12-17 10:39:48 +11:00
David Gibson
54255c1f65 spapr: Move SpaprIrq::nr_xirqs to SpaprMachineClass
For the benefit of peripheral device allocation, the number of available
irqs really wants to be the same on a given machine type version,
regardless of what irq backends we are using.  That's the case now, but
only because we make sure the different SpaprIrq instances have the same
value except for the special legacy one.

Since this really only depends on machine type version, move the value to
SpaprMachineClass instead of SpaprIrq.  This also puts the code to set it
to the lower value on old machine types right next to setting
legacy_irq_allocation, which needs to go hand in hand.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
2019-10-24 09:36:55 +11:00
David Gibson
81106ddd1a spapr: Formalize notion of active interrupt controller
spapr now has the mechanism of constructing both XICS and XIVE instances of
the SpaprInterruptController interface.  However, only one of the interrupt
controllers will actually be active at any given time, depending on feature
negotiation with the guest.  This is handled in the current code via
spapr_irq_current() which checks the OV5 vector from feature negotiation to
determine the current backend.

Determining the active controller at the point we need it like this
can be pretty confusing, because it makes it very non obvious at what
points the active controller can change.  This can make it difficult
to reason about the code and where a change of active controller could
appear in sequence with other events.

Make this mechanism more explicit by adding an 'active_intc' pointer
and an explicit spapr_irq_update_active_intc() function to update it
from the CAS state.  We also add hooks on the intc backend which will
get called when it is activated or deactivated.

For now we just introduce the switch and hooks, later patches will
actually start using them.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
2019-10-24 09:36:55 +11:00
Greg Kurz
29cb418749 spapr: Set VSMT to smp_threads by default
Support for setting VSMT is available in KVM since linux-4.13. Most distros
that support KVM on POWER already have it. It thus seem reasonable enough
to have the default machine to set VSMT to smp_threads.

This brings contiguous VCPU ids and thus brings their upper bound down to
the machine's max_cpus. This is especially useful for XIVE KVM devices,
which may thus allocate only one VP descriptor per VCPU.

Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <157010411885.246126.12610015369068227139.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-10-24 09:36:55 +11:00
Alexey Kardashevskiy
744a928cce spapr: Stop providing RTAS blob
SLOF implements one itself so let's remove it from QEMU. It is one less
image and simpler setup as the RTAS blob never stays in its initial place
anyway as the guest OS always decides where to put it.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-10-04 10:25:23 +10:00
David Gibson
daa36379ce spapr: Simplify handling of pre ISA 3.0 guest workaround handling
Certain old guest versions don't understand the radix MMU introduced with
POWER ISA 3.0, but incorrectly select it if presented with the option at
CAS time.  We workaround this in qemu by explicitly excluding the radix
(and other ISA 3.0 linked) options if the guest doesn't explicitly note
support for ISA 3.0.

This is handled by the 'cas_legacy_guest_workaround' flag, which is pretty
vague.  Rename it to 'cas_pre_isa3_guest' to be clearer about what it's for.

In addition, we unnecessarily call spapr_populate_pa_features() with
different options when initially constructing the device tree and when
adjusting it at CAS time.  At the initial construct time cas_pre_isa3_guest
is already false, so we can still use the flag, rather than explicitly
overriding it to be false at the callsite.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
2019-10-04 10:25:23 +10:00
Alexey Kardashevskiy
6c3829a265 spapr_pci: Advertise BAR reallocation capability
The pseries guests do not normally allocate PCI resources and rely on
the system firmware doing so. Furthermore at least at some point in
the past the pseries guests won't even allowed to change BARs, probably
it is still the case for phyp. So since the initial commit we have [1]
which prevents resource reallocation.

This is not a problem until we want specific BAR alignments, for example,
PAGE_SIZE==64k to make sure we can still map MMIO BARs directly. For
the boot time devices we handle this in SLOF [2] but since QEMU's RTAS
does not allocate BARs, the guest does this instead and does not align
BARs even if Linux is given pci=resource_alignment=16@pci:0:0 as
PCI_PROBE_ONLY makes Linux ignore alignment requests.

ARM folks added a dial to control PCI_PROBE_ONLY via the device tree [3].
This makes use of the dial to advertise to the guest that we can handle
BAR reassignments. This limits the change to the latest pseries machine
to avoid old guests explosion.

We do not remove the flag from [1] as pseries guests are still supported
under phyp so having that removed may cause problems.

[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/powerpc/platforms/pseries/setup.c?h=v5.1#n773
[2] https://git.qemu.org/?p=SLOF.git;a=blob;f=board-qemu/slof/pci-phb.fs;h=06729bcf77a0d4e900c527adcd9befe2a269f65d;hb=HEAD#l338
[3] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f81c11af
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20190719043734.108462-1-aik@ozlabs.ru>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-08-29 09:46:07 +10:00
Nicholas Piggin
93eac7b8f4 spapr: Implement ibm,suspend-me
This has been useful to modify and test the Linux pseries suspend
code but it requires modification to the guest to call it (due to
being gated by other unimplemented features). It is not otherwise
used by Linux yet, but work is slowly progressing there.

This allows a (lightly modified) guest kernel to suspend with
`echo mem > /sys/power/state` and be resumed with system_wakeup
monitor command.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20190722061752.22114-2-npiggin@gmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-08-21 17:17:39 +10:00
Michael Roth
0fb6bd0732 spapr: initial implementation for H_TPM_COMM/spapr-tpm-proxy
This implements the H_TPM_COMM hypercall, which is used by an
Ultravisor to pass TPM commands directly to the host's TPM device, or
a TPM Resource Manager associated with the device.

This also introduces a new virtual device, spapr-tpm-proxy, which
is used to configure the host TPM path to be used to service
requests sent by H_TPM_COMM hcalls, for example:

  -device spapr-tpm-proxy,id=tpmp0,host-path=/dev/tpmrm0

By default, no spapr-tpm-proxy will be created, and hcalls will return
H_FUNCTION.

The full specification for this hypercall can be found in
docs/specs/ppc-spapr-uv-hcalls.txt

Since SVM-related hcalls like H_TPM_COMM use a reserved range of
0xEF00-0xEF80, we introduce a separate hcall table here to handle
them.

Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com
Message-Id: <20190717205842.17827-3-mdroth@linux.vnet.ibm.com>
[dwg: Corrected #include for upstream change]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-08-21 17:17:12 +10:00
Nicholas Piggin
03ef074c04 spapr: Implement dispatch tracking for tcg
Implement cpu_exec_enter/exit on ppc which calls into new methods of
the same name in PPCVirtualHypervisorClass. These are used by spapr
to implement the splpar VPA dispatch counter initially.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20190718034214.14948-2-npiggin@gmail.com>
[dwg: Removed unnecessary CONFIG_USER_ONLY checks as suggested by gkurz]
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-08-21 17:17:11 +10:00
Greg Kurz
d9293c4843 xics/spapr: Register RTAS/hypercalls once at machine init
QEMU may crash when running a spapr machine in 'dual' interrupt controller
mode on some older (but not that old, eg. ubuntu 18.04.2) KVMs with partial
XIVE support:

qemu-system-ppc64: hw/ppc/spapr_rtas.c:411: spapr_rtas_register:
 Assertion `!name || !rtas_table[token].name' failed.

XICS is controlled by the guest thanks to a set of RTAS calls. Depending
on whether KVM XICS is used or not, the RTAS calls are handled by KVM or
QEMU. In both cases, QEMU needs to expose the RTAS calls to the guest
through the "rtas" node of the device tree.

The spapr_rtas_register() helper takes care of all of that: it adds the
RTAS call token to the "rtas" node and registers a QEMU callback to be
invoked when the guest issues the RTAS call. In the KVM XICS case, QEMU
registers a dummy callback that just prints an error since it isn't
supposed to be invoked, ever.

Historically, the XICS controller was setup during machine init and
released during final teardown. This changed when the 'dual' interrupt
controller mode was added to the spapr machine: in this case we need
to tear the XICS down and set it up again during machine reset. The
crash happens because we indeed have an incompatibility with older
KVMs that forces QEMU to fallback on emulated XICS, which tries to
re-registers the same RTAS calls.

This could be fixed by adding proper rollback that would unregister
RTAS calls on error. But since the emulated RTAS calls in QEMU can
now detect when they are mistakenly called while KVM XICS is in
use, it seems simpler to register them once and for all at machine
init. This fixes the crash and allows to remove some now useless
lines of code.

Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156044429963.125694.13710679451927268758.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-07-02 09:43:58 +10:00
Greg Kurz
3725ef1a94 spapr: Don't migrate the hpt_maxpagesize cap to older machine types
Commit 0b8c89be7f7b added the hpt_maxpagesize capability to the migration
stream. This is okay for new machine types but it breaks backward migration
to older QEMUs, which don't expect the extra subsection.

Add a compatibility boolean flag to the sPAPR machine class and use it to
skip migration of the capability for machine types 4.0 and older. This
fixes migration to an older QEMU. Note that the destination will emit a
warning:

qemu-system-ppc64: warning: cap-hpt-max-page-size lower level (16) in incoming stream than on destination (24)

This is expected and harmless though. It is okay to migrate from a lower
HPT maximum page size (64k) to a greater one (16M).

Fixes: 0b8c89be7f7b "spapr: Add forgotten capability to migration stream"
Based-on: <20190522074016.10521-3-clg@kaod.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155853262675.1158324.17301777846476373459.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-05-29 11:39:47 +10:00
David Gibson
64d4a53431 spapr: Add forgotten capability to migration stream
spapr machine capabilities are supposed to be sent in the migration stream
so that we can sanity check the source and destination have compatible
configuration.  Unfortunately, when we added the hpt-max-page-size
capability, we forgot to add it to the migration state.  This means that we
can generate spurious warnings when both ends are configured for large
pages, or potentially fail to warn if the source is configured for huge
pages, but the destination is not.

Fixes: 2309832afd "spapr: Maximum (HPT) pagesize property"

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
2019-05-29 11:39:45 +10:00
Benjamin Herrenschmidt
a2dd4e83e7 ppc/hash64: Rework R and C bit updates
With MT-TCG, we are now running translation in a racy way, thus
we need to mimic hardware when it comes to updating the R and
C bits, by doing byte stores.

The current "store_hpte" abstraction is ill suited for this, we
replace it with two separate callbacks for setting R and C.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190411080004.8690-4-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-04-26 11:37:57 +10:00
Cédric Le Goater
64db6c70dc spapr/rtas: modify spapr_rtas_register() to remove RTAS handlers
Removing RTAS handlers will become necessary when the new pseries
machine supporting multiple interrupt mode is introduced.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190321144914.19934-9-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-04-26 10:41:23 +10:00
Alexey Kardashevskiy
ec132efaa8 spapr: Support NVIDIA V100 GPU with NVLink2
NVIDIA V100 GPUs have on-board RAM which is mapped into the host memory
space and accessible as normal RAM via an NVLink bus. The VFIO-PCI driver
implements special regions for such GPUs and emulates an NVLink bridge.
NVLink2-enabled POWER9 CPUs also provide address translation services
which includes an ATS shootdown (ATSD) register exported via the NVLink
bridge device.

This adds a quirk to VFIO to map the GPU memory and create an MR;
the new MR is stored in a PCI device as a QOM link. The sPAPR PCI uses
this to get the MR and map it to the system address space.
Another quirk does the same for ATSD.

This adds additional steps to sPAPR PHB setup:

1. Search for specific GPUs and NPUs, collect findings in
sPAPRPHBState::nvgpus, manage system address space mappings;

2. Add device-specific properties such as "ibm,npu", "ibm,gpu",
"memory-block", "link-speed" to advertise the NVLink2 function to
the guest;

3. Add "mmio-atsd" to vPHB to advertise the ATSD capability;

4. Add new memory blocks (with extra "linux,memory-usable" to prevent
the guest OS from accessing the new memory until it is onlined) and
npuphb# nodes representing an NPU unit for every vPHB as the GPU driver
uses it for link discovery.

This allocates space for GPU RAM and ATSD like we do for MMIOs by
adding 2 new parameters to the phb_placement() hook. Older machine types
set these to zero.

This puts new memory nodes in a separate NUMA node to as the GPU RAM
needs to be configured equally distant from any other node in the system.
Unlike the host setup which assigns numa ids from 255 downwards, this
adds new NUMA nodes after the user configures nodes or from 1 if none
were configured.

This adds requirement similar to EEH - one IOMMU group per vPHB.
The reason for this is that ATSD registers belong to a physical NPU
so they cannot invalidate translations on GPUs attached to another NPU.
It is guaranteed by the host platform as it does not mix NVLink bridges
or GPUs from different NPU in the same IOMMU group. If more than one
IOMMU group is detected on a vPHB, this disables ATSD support for that
vPHB and prints a warning.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for vfio portions]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Message-Id: <20190312082103.130561-1-aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-04-26 10:41:23 +10:00
David Gibson
0a794529bd spapr: Simplify handling of host-serial and host-model values
27461d69a0 "ppc: add host-serial and host-model machine attributes
(CVE-2019-8934)" introduced 'host-serial' and 'host-model' machine
properties for spapr to explicitly control the values advertised to the
guest in device tree properties with the same names.

The previous behaviour on KVM was to unconditionally populate the device
tree with the real host serial number and model, which leaks possibly
sensitive information about the host to the guest.

To maintain compatibility for old machine types, we allowed those props
to be set to "passthrough" to take the value from the host as before.  Or
they could be set to "none" to explicitly omit the device tree items.

Special casing specific values on what's otherwise a user supplied string
is very ugly.  So, this patch simplifies things by implementing the
backwards compatibility in a different way: we have a machine class flag
set for the older machines, and we only load the host values into the
device tree if A) they're not set by the user and B) we have that flag set.

This does mean that the "passthrough" functionality is no longer available
with the current machine type.  That's ok though: if a user or management
layer really wants the information passed through they can read it
themselves (OpenStack Nova already does something similar for x86).

It also means the user can't explicitly ask for the values to be omitted
on the old machine types.  I think that's an acceptable trade-off: if you
care enough about not leaking the host information you can either move to
the new machine type, or use a dummy value for the properties.

For the new machine type, this also removes an odd inconsistency
between running on a POWER and non-POWER (or non-Linux) hosts: if the
host information couldn't be read from where we expect (in the host's
device tree as exposed by Linux), we'd fallback to omitting the guest
device tree items.

While we're there, improve some poorly worded comments, and the help text
for the properties.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
2019-03-29 10:25:50 +11:00
David Gibson
ce2918cbc3 spapr: Use CamelCase properly
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of.  There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".

That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.

In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words".  So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.

In addition to case changes, we also make some other identifier renames:
  VIOsPAPR* -> SpaprVio*
    The reverse word ordering was only ever used to mitigate the capital
    cluster, so revert to the natural ordering.
  VIOsPAPRVTYDevice -> SpaprVioVty
  VIOsPAPRVLANDevice -> SpaprVioVlan
    Brevity, since the "Device" didn't add useful information
  sPAPRDRConnector -> SpaprDrc
  sPAPRDRConnectorClass -> SpaprDrcClass
    Brevity, and makes it clearer this is the same thing as a "DRC"
    mentioned in many other places in the code

This is 100% a mechanical search-and-replace patch.  It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-12 14:33:05 +11:00
Alexey Kardashevskiy
5f36666722 spapr_iommu: Do not replay mappings from just created DMA window
On sPAPR vfio_listener_region_add() is called in 2 situations:
1. a new listener is registered from vfio_connect_container();
2. a new IOMMU Memory Region is added from rtas_ibm_create_pe_dma_window().

In both cases vfio_listener_region_add() calls
memory_region_iommu_replay() to notify newly registered IOMMU notifiers
about existing mappings which is totally desirable for case 1.

However for case 2 it is nothing but noop as the window has just been
created and has no valid mappings so replaying those does not do anything.
It is barely noticeable with usual guests but if the window happens to be
really big, such no-op replay might take minutes and trigger RCU stall
warnings in the guest.

For example, a upcoming GPU RAM memory region mapped at 64TiB (right
after SPAPR_PCI_LIMIT) causes a 64bit DMA window to be at least 128TiB
which is (128<<40)/0x10000=2.147.483.648 TCEs to replay.

This mitigates the problem by adding an "skipping_replay" flag to
sPAPRTCETable and defining sPAPR own IOMMU MR replay() hook which does
exactly the same thing as the generic one except it returns early if
@skipping_replay==true.

Another way of fixing this would be delaying replay till the very first
H_PUT_TCE but this does not work if in-kernel H_PUT_TCE handler is
enabled (a likely case).

When "ibm,create-pe-dma-window" is complete, the guest will map only
required regions of the huge DMA window.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Message-Id: <20190307050518.64968-2-aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-12 14:33:04 +11:00
David Gibson
e075623aa5 spapr: Force SPAPR_MEMORY_BLOCK_SIZE to be a hwaddr (64-bit)
SPAPR_MEMORY_BLOCK_SIZE is logically a difference in memory addresses, and
hence of type hwaddr which is 64-bit.  Previously it wasn't marked as such
which means that it could be treated as 32-bit.  That will work in some
circumstances but if multiplied by another 32-bit value it could lead to
a 32-bit overflow and an incorrect result.

One specific instance of this in spapr_lmb_dt_populate() was spotted by
Coverity (CID 1399145).

Reported-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-12 14:33:04 +11:00
Suraj Jitindar Singh
8ff43ee404 target/ppc/spapr: Add SPAPR_CAP_CCF_ASSIST
Introduce a new spapr_cap SPAPR_CAP_CCF_ASSIST to be used to indicate
the requirement for a hw-assisted version of the count cache flush
workaround.

The count cache flush workaround is a software workaround which can be
used to flush the count cache on context switch. Some revisions of
hardware may have a hardware accelerated flush, in which case the
software flush can be shortened. This cap is used to set the
availability of such hardware acceleration for the count cache flush
routine.

The availability of such hardware acceleration is indicated by the
H_CPU_CHAR_BCCTR_FLUSH_ASSIST flag being set in the characteristics
returned from the KVM_PPC_GET_CPU_CHAR ioctl.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Message-Id: <20190301031912.28809-2-sjitindarsingh@gmail.com>
[dwg: Small style fixes]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-03-12 12:07:49 +11:00