Replace a config-time define with a compile time condition
define (compatible with clang and gcc) that must be declared prior to
its usage. This avoids having a global configure time define, but also
prevents from bad usage, if the config header wasn't included before.
This can help to make some code independent from qemu too.
gcc supports __BYTE_ORDER__ from about 4.6 and clang from 3.2.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
[ For the s390x parts I'm involved in ]
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220323155743.1585078-7-marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the following instructions to decodetree:
vextsb2w: Vector Extend Sign Byte To Word
vextsh2w: Vector Extend Sign Halfword To Word
vextsb2d: Vector Extend Sign Byte To Doubleword
vextsh2d: Vector Extend Sign Halfword To Doubleword
vextsw2d: Vector Extend Sign Word To Doubleword
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Lucas Coutinho <lucas.coutinho@eldorado.org.br>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20220225210936.1749575-8-matheus.ferst@eldorado.org.br>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Changed vmulhuw, vmulhud, vmulhsw, vmulhsd to not
use helpers.
Signed-off-by: Lucas Mateus Castro (alqotel) <lucas.araujo@eldorado.org.br>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220225210936.1749575-5-matheus.ferst@eldorado.org.br>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The PowerPC 601 processor is the first generation of processors to
implement the PowerPC architecture. It was designed as a bridge
processor and also could execute most of the instructions of the
previous POWER architecture. It was found on the first Macs and IBM
RS/6000 workstations.
There is not much interest in keeping the CPU model of this
POWER-PowerPC bridge processor. We have the 603 and 604 CPU models of
the 60x family which implement the complete PowerPC instruction set.
Cc: "Hervé Poussineau" <hpoussin@reactos.org>
Cc: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20220203142756.1302515-1-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The 602 was derived from the PowerPC 603, for the gaming market it
seems. It was hardly used and no firmware supporting the CPU could be
found. Drop support.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Implement the following PowerISA v3.1 instructions:
vextdubvlx: Vector Extract Double Unsigned Byte to VSR using
GPR-specified Left-Index
vextduhvlx: Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Left-Index
vextduwvlx: Vector Extract Double Unsigned Word to VSR using
GPR-specified Left-Index
vextddvlx: Vector Extract Double Doubleword to VSR using
GPR-specified Left-Index
vextdubvrx: Vector Extract Double Unsigned Byte to VSR using
GPR-specified Right-Index
vextduhvrx: Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Right-Index
vextduwvrx: Vector Extract Double Unsigned Word to VSR using
GPR-specified Right-Index
vextddvrx: Vector Extract Double Doubleword to VSR using
GPR-specified Right-Index
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-10-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Implements the following PowerISA v3.1 instructions:
vinsblx: Vector Insert Byte from GPR using GPR-specified Left-Index
vinshlx: Vector Insert Halfword from GPR using GPR-specified Left-Index
vinswlx: Vector Insert Word from GPR using GPR-specified Left-Index
vinsdlx: Vector Insert Doubleword from GPR using GPR-specified
Left-Index
vinsbrx: Vector Insert Byte from GPR using GPR-specified Right-Index
vinshrx: Vector Insert Halfword from GPR using GPR-specified
Right-Index
vinswrx: Vector Insert Word from GPR using GPR-specified Right-Index
vinsdrx: Vector Insert Doubleword from GPR using GPR-specified
Right-Index
The helpers and do_vinsx receive i64 to allow code sharing with the
future implementation of Vector Insert from VSR using GPR Index.
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-6-matheus.ferst@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
pdepd and pextd helpers are moved out of #ifdef (TARGET_PPC64) to allow
them to be reused as GVecGen3.fni8.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-4-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
There's no reason to keep vector-impl.c.inc separate from
vmx-impl.c.inc. Additionally, let GVec handle the multiple calls to
helper_cfuged for us.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211104123719.323713-2-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
These will be used to implement new decimal floating point
instructions from Power ISA 3.1.
The remainder is now returned directly by divu128/divs128,
freeing up phigh to receive the high 64 bits of the quotient.
Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211025191154.350831-4-luis.pires@eldorado.org.br>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
In preparation for changing the divu128/divs128 implementations
to allow for quotients larger than 64 bits, move the div-by-zero
and overflow checks to the callers.
Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211025191154.350831-2-luis.pires@eldorado.org.br>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
According to the ISA, CR should be set based on the source value, and
not on the packed decimal result.
The way this was implemented would cause GT, LT and EQ to be set
incorrectly when the source value was too large and the 31 least
significant digits of the packed decimal result ended up being all zero.
This would happen for source values of +/-10^31, +/-10^32, etc.
The new implementation fixes this and also skips the result calculation
altogether in case of src overflow.
Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Message-Id: <20210823150235.35759-1-luis.pires@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
These helpers shouldn't depend on the host endianness, as they only use
shifts, ands, and int128_* methods.
Fixes: 60caf2216b ("target-ppc: add vextu[bhw][lr]x instructions")
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20210826141446.2488609-3-matheus.ferst@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Some functions unrelated to TCG use helper_m{t,f}vscr, so generic versions
of those functions were added to cpu.c, in preparation for compilation
without TCG
Signed-off-by: Bruno Larsen (billionai) <bruno.larsen@eldorado.org.br>
Message-Id: <20210512140813.112884-2-bruno.larsen@eldorado.org.br>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Move the functions to a new file, helper_regs.c.
Note int_helper.c was relying on helper_regs.h to
indirectly include qemu/log.h.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20210315184615.1985590-2-richard.henderson@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The commit d03b174a83 (target/ppc: simplify bcdadd/sub functions)
meant to simplify some of the code but it inadvertently altered the
way the CR6 field is set after the operation has overflowed.
The CR6 bits are set based on the *unbounded* result of the operation,
so we need to look at the result before returning from bcd_add_mag,
otherwise we will look at 0 when it overflows.
Consider the following subtraction:
v0 = 0x9999999999999999999999999999999c (maximum positive BCD value)
v1 = 0x0000000000000000000000000000001d (negative one BCD value)
bcdsub. v0,v0,v1,0
The Power ISA 2.07B says:
If the unbounded result is greater than zero, do the following.
If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.
If the operation overflows, CR field 6 is set to 0b0101. Otherwise,
CR field 6 is set to 0b0100.
POWER9 hardware:
vr0 = 0x0000000000000000000000000000000c (positive zero BCD value)
cr6 = 0b0101 (0x5) (positive, overflow)
QEMU:
vr0 = 0x0000000000000000000000000000000c (positive zero BCD value)
cr6 = 0b0011 (0x3) (zero, overflow) <--- wrong
This patch reverts the part of d03b174a83 that introduced the
problem and adds a test-case to avoid further regressions:
before:
$ make run-tcg-tests-ppc64le-linux-user
(...)
TEST bcdsub on ppc64le
bcdsub: qemu/tests/tcg/ppc64le/bcdsub.c:58: test_bcdsub_gt:
Assertion `(cr >> 4) == ((1 << 2) | (1 << 0))' failed.
Fixes: d03b174a83 (target/ppc: simplify bcdadd/sub functions)
Reported-by: Paul Clarke <pc@us.ibm.com>
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20210222194035.2723056-1-farosas@linux.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
There is no "version 2" of the "Lesser" General Public License.
It is either "GPL version 2.0" or "Lesser GPL version 2.1".
This patch replaces all occurrences of "Lesser GPL version 2" with
"Lesser GPL version 2.1" in comment section.
Signed-off-by: Chetan Pant <chetan4windows@gmail.com>
Message-Id: <20201019061126.3102-1-chetan4windows@gmail.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Here's my first pull request for qemu-5.2, which has quite a few
accumulated things. Highlights are:
* Preliminary support for POWER10 (Power ISA 3.1) instruction emulation
* Add documentation on the (very confusing) pseries NUMA configuration
* Fix some bugs handling edge cases with XICS, XIVE and kernel_irqchip
* Fix icount for a number of POWER registers
* Many cleanups to error handling in XIVE code
* Validate size of -prom-env data
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAl87VpwACgkQbDjKyiDZ
s5LjIxAAs8YAQe3uDRz1Wb9GftoMmEHdq7JQoO0FbXDQIVXzpTAXmFLSBtCWKl6p
O1MEIy/o48b5ORXJqSDSA5LgxbHxYfHdIPEY5Tbn/TGvTvKyCukx9n11milUG8In
JxRrOTQBnQAAHkLoyuZyrWKOauC0N1scNrnX9Geuid13GcmqHg1d2alXAUu8jEeC
HSiVmtMqqyyqTx2xA4vfhaGuuwTthnKNfbGdg9ksVqBsCW+etn6ZKGImt8hBe3qO
5iqbQZvFbkpzgbjkhDzUDM6tmUAFN55y/Y+y7I8Tz4/IX7d3WbdqpplwrXXVWkpq
2gcBBjQ/9a1hPTBRVN9jn4CvHfhILBfeHIElUiLpSTQZQQALymTnnI2pLCgKoEFX
LcchXbjiX+pZ2OJnAijpwBcknjgT2U/ZNyiqHJfSQ6jzlYx1YtUf4xGUsgloSiK8
9QDK8o2k0Cm8Be+lPMBMmTctoi8bq+8SN5UUF710WQL235J58o9+z1vuGO2HVk3x
flBtv/+B890wcCDpGU80DPs/LSzR0xTTbA5JsWft2fvO569mda0MoWkJH5w6jvSc
ZLYqljCzFCVW+tKiGHzaBalJaMwn0+QMDTsxzP3yTt5LmmEeRXpBELgvrW64IobD
xBeryH3nG4SwxFSJq+4ATfvUzjy/Eo58lTTl6c53Ji8/D3aFwsA=
=L9Wi
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-5.2-20200818' into staging
ppc patch queue 2020-08-18
Here's my first pull request for qemu-5.2, which has quite a few
accumulated things. Highlights are:
* Preliminary support for POWER10 (Power ISA 3.1) instruction emulation
* Add documentation on the (very confusing) pseries NUMA configuration
* Fix some bugs handling edge cases with XICS, XIVE and kernel_irqchip
* Fix icount for a number of POWER registers
* Many cleanups to error handling in XIVE code
* Validate size of -prom-env data
# gpg: Signature made Tue 18 Aug 2020 05:18:36 BST
# gpg: using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full]
# gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full]
# gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full]
# gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown]
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392
* remotes/dgibson/tags/ppc-for-5.2-20200818: (40 commits)
spapr/xive: Use xive_source_esb_len()
nvram: Exit QEMU if NVRAM cannot contain all -prom-env data
spapr/xive: Simplify error handling of kvmppc_xive_cpu_synchronize_state()
ppc/xive: Simplify error handling in xive_tctx_realize()
spapr/xive: Simplify error handling in kvmppc_xive_connect()
ppc/xive: Fix error handling in vmstate_xive_tctx_*() callbacks
spapr/xive: Fix error handling in kvmppc_xive_post_load()
spapr/kvm: Fix error handling in kvmppc_xive_pre_save()
spapr/xive: Rework error handling of kvmppc_xive_set_source_config()
spapr/xive: Rework error handling in kvmppc_xive_get_queues()
spapr/xive: Rework error handling of kvmppc_xive_[gs]et_queue_config()
spapr/xive: Rework error handling of kvmppc_xive_cpu_[gs]et_state()
spapr/xive: Rework error handling of kvmppc_xive_mmap()
spapr/xive: Rework error handling of kvmppc_xive_source_reset()
spapr/xive: Rework error handling of kvmppc_xive_cpu_connect()
spapr: Simplify error handling in spapr_phb_realize()
spapr/xive: Convert KVM device fd checks to assert()
ppc/xive: Introduce dedicated kvm_irqchip_in_kernel() wrappers
ppc/xive: Rework setup of XiveSource::esb_mmio
target/ppc: Integrate icount to purr, vtb, and tbu40
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
With Makefiles that have automatically generated dependencies, you
generated includes are set as dependencies of the Makefile, so that they
are built before everything else and they are available when first
building the .c files.
Alternatively you can use a fine-grained dependency, e.g.
target/arm/translate.o: target/arm/decode-neon-shared.inc.c
With Meson you have only one choice and it is a third option, namely
"build at the beginning of the corresponding target"; the way you
express it is to list the includes in the sources of that target.
The problem is that Meson decides if something is a source vs. a
generated include by looking at the extension: '.c', '.cc', '.m', '.C'
are sources, while everything else is considered an include---including
'.inc.c'.
Use '.c.inc' to avoid this, as it is consistent with our other convention
of using '.rst.inc' for included reStructuredText files. The editorconfig
file is adjusted.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmulhsd: Vector Multiply High Signed Doubleword
vmulhud: Vector Multiply High Unsigned Doubleword
Signed-off-by: Lijun Pan <ljp@linux.ibm.com>
Message-Id: <20200724045845.89976-5-ljp@linux.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
vmulhsw: Vector Multiply High Signed Word
vmulhuw: Vector Multiply High Unsigned Word
Signed-off-by: Lijun Pan <ljp@linux.ibm.com>
Message-Id: <20200724045845.89976-4-ljp@linux.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Convert the original implementation of vmuluwm to the more generic
tcg_gen_gvec_mul.
Signed-off-by: Lijun Pan <ljp@linux.ibm.com>
Message-Id: <20200701234344.91843-5-ljp@linux.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Give the previously unnamed enum a typedef name. Use it in the
prototypes of compare functions. Use it to hold the results
of the compare functions.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This allows us to remove more endian-specific defines from int_helper.c.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Message-Id: <20190926204453.31837-1-mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Optimize Altivec instruction vclzw (Vector Count Leading Zeros Word).
This instruction counts the number of leading zeros of each word element
in source register and places result in the appropriate word element of
destination register.
Counting is to be performed in four iterations of for loop(one for each
word elemnt of source register vB). Every iteration consists of loading
appropriate word element from source register, counting leading zeros
with tcg_gen_clzi_i32, and saving the result in appropriate word element
of destination register.
Signed-off-by: Stefan Brankovic <stefan.brankovic@rt-rk.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <1563200574-11098-7-git-send-email-stefan.brankovic@rt-rk.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Optimize Altivec instruction vclzd (Vector Count Leading Zeros Doubleword).
This instruction counts the number of leading zeros of each doubleword element
in source register and places result in the appropriate doubleword element of
destination register.
Using tcg-s count leading zeros instruction two times(once for each
doubleword element of source register vB) and placing result in
appropriate doubleword element of destination register vD.
Signed-off-by: Stefan Brankovic <stefan.brankovic@rt-rk.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <1563200574-11098-6-git-send-email-stefan.brankovic@rt-rk.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Optimize altivec instruction vgbbd (Vector Gather Bits by Bytes by Doubleword)
All ith bits (i in range 1 to 8) of each byte of doubleword element in
source register are concatenated and placed into ith byte of appropriate
doubleword element in destination register.
Following solution is done for both doubleword elements of source register
in parallel, in order to reduce the number of instructions needed(that's why
arrays are used):
First, both doubleword elements of source register vB are placed in
appropriate element of array avr. Bits are gathered in 2x8 iterations(2 for
loops). In first iteration bit 1 of byte 1, bit 2 of byte 2,... bit 8 of
byte 8 are in their final spots so avr[i], i={0,1} can be and-ed with
tcg_mask. For every following iteration, both avr[i] and tcg_mask variables
have to be shifted right for 7 and 8 places, respectively, in order to get
bit 1 of byte 2, bit 2 of byte 3.. bit 7 of byte 8 in their final spots so
shifted avr values(saved in tmp) can be and-ed with new value of tcg_mask...
After first 8 iteration(first loop), all the first bits are in their final
places, all second bits but second bit from eight byte are in their places...
only 1 eight bit from eight byte is in it's place). In second loop we do all
operations symmetrically, in order to get other half of bits in their final
spots. Results for first and second doubleword elements are saved in
result[0] and result[1] respectively. In the end those results are saved in
appropriate doubleword element of destination register vD.
Signed-off-by: Stefan Brankovic <stefan.brankovic@rt-rk.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <1563200574-11098-5-git-send-email-stefan.brankovic@rt-rk.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Optimization of altivec instructions vsl and vsr(Vector Shift Left/Rigt).
Perform shift operation (left and right respectively) on 128 bit value of
register vA by value specified in bits 125-127 of register vB. Lowest 3
bits in each byte element of register vB must be identical or result is
undefined.
For vsl instruction, the first step is bits 125-127 of register vB have
to be saved in variable sh. Then, the highest sh bits of the lower
doubleword element of register vA are saved in variable shifted,
in order not to lose those bits when shift operation is performed on
the lower doubleword element of register vA, which is the next
step. After shifting the lower doubleword element shift operation
is performed on higher doubleword element of vA, with replacement of
the lowest sh bits(that are now 0) with bits saved in shifted.
For vsr instruction, firstly, the bits 125-127 of register vB have
to be saved in variable sh. Then, the lowest sh bits of the higher
doubleword element of register vA are saved in variable shifted,
in odred not to lose those bits when the shift operation is
performed on the higher doubleword element of register vA, which is
the next step. After shifting higher doubleword element, shift operation
is performed on lower doubleword element of vA, with replacement of
highest sh bits(that are now 0) with bits saved in shifted.
Signed-off-by: Stefan Brankovic <stefan.brankovic@rt-rk.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <1563200574-11098-3-git-send-email-stefan.brankovic@rt-rk.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Adding simple macro that is calling tcg implementation of appropriate
instruction if altivec support is active.
Optimization of altivec instruction lvsl (Load Vector for Shift Left).
Place bytes sh:sh+15 of value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F
in destination register. Sh is calculated by adding 2 source registers and
getting bits 60-63 of result.
First, the bits [28-31] are placed from EA to variable sh. After that,
the bytes are created in the following way:
sh:(sh+7) of X(from description) by multiplying sh with 0x0101010101010101
followed by addition of the result with 0x0001020304050607. Value obtained
is placed in higher doubleword element of vD.
(sh+8):(sh+15) by adding the result of previous multiplication with
0x08090a0b0c0d0e0f. Value obtained is placed in lower doubleword element
of vD.
Optimization of altivec instruction lvsr (Load Vector for Shift Right).
Place bytes 16-sh:31-sh of value 0x00 || 0x01 || 0x02 || ... || 0x1E ||
0x1F in destination register. Sh is calculated by adding 2 source
registers and getting bits 60-63 of result.
First, the bits [28-31] are placed from EA to variable sh. After that,
the bytes are created in the following way:
sh:(sh+7) of X(from description) by multiplying sh with 0x0101010101010101
followed by substraction of the result from 0x1011121314151617. Value
obtained is placed in higher doubleword element of vD.
(sh+8):(sh+15) by substracting the result of previous multiplication from
0x18191a1b1c1d1e1f. Value obtained is placed in lower doubleword element
of vD.
Signed-off-by: Stefan Brankovic <stefan.brankovic@rt-rk.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <1563200574-11098-2-git-send-email-stefan.brankovic@rt-rk.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In my "build everything" tree, changing qemu/main-loop.h triggers a
recompile of some 5600 out of 6600 objects (not counting tests and
objects that don't depend on qemu/osdep.h). It includes block/aio.h,
which in turn includes qemu/event_notifier.h, qemu/notify.h,
qemu/processor.h, qemu/qsp.h, qemu/queue.h, qemu/thread-posix.h,
qemu/thread.h, qemu/timer.h, and a few more.
Include qemu/main-loop.h only where it's needed. Touching it now
recompiles only some 1700 objects. For block/aio.h and
qemu/event_notifier.h, these numbers drop from 5600 to 2800. For the
others, they shrink only slightly.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190812052359.30071-21-armbru@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190616123751.781-15-mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Since commit 8a14d31b00 "target/ppc: switch fpr/vsrl registers so all VSX
registers are in host endian order" functions getVSR() and putVSR() which used
to convert the VSR registers into host endian order are no longer required.
Now that there are now no more users of getVSR()/putVSR() these functions can
be completely removed.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190616123751.781-4-mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The gvec expanders take care of masking the shift amount
against the element width.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190518191430.21686-2-richard.henderson@linaro.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>