Adds support for writing a completion notification byte in memory
whenever a cache flush or queue sync inject operation is requested by
software. QEMU does not cache any of the XIVE data that is in memory and
therefore it simply writes the completion notification byte at the time
that the operation is requested.
Co-authored-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Signed-off-by: Michael Kowal <kowal@linux.vnet.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Recent POWER CPUs can operate in "LPAR per core" or "LPAR per thread"
modes. In per-core mode, some SPRs and IPI doorbells are shared between
threads in a core. In per-thread mode, supervisor and user state is
not shared between threads.
OpenPOWER systems after POWER8 use LPAR per thread mode, and it is
required for KVM. Enterprise systems use LPAR per core mode, as they
partition the machine by core.
Implement a lpar-per-core machine option for powernv machines. This
is fixed true for POWER8 machines, and defaults off for P9 and P10.
With this change, powernv8 SMT now works sufficiently to run Linux,
with a single socket. Multi-threaded KVM guests still have problems,
as does multi-socket Linux boot.
Reviewed-by: Cédric Le Goater <clg@redhat.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
POWER9 and POWER10 machines come in two variants, big-core and
small-core. Big-core machines are SMT8 from software's point of view,
but the low level platform topology ("xscom registers and pervasive
addressing"), these look more like a pair of small cores ganged
together.
Presently the way this is modelled is to create one SMT8 PnvCore and add
special cases to xscom and pervasive for big-core mode that tries to
split this into two small cores, but this is becoming too complicated to
manage.
A better approach is to create 2 core structures and ganging them
together to look like an SMT8 core in TCG. Then the xscom and pervasive
models mostly do not need to differentiate big and small core modes.
This change adds initial mode bits and QEMU topology handling to
split SMT8 cores into 2xSMT4 cores.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
The chip_pir chip class method allows the platform to set the PIR
processor identification register. Extend this to a more general
ID function which also allows the TIR to be set. This is in
preparation for "big core", which is a more complicated topology
of cores and threads.
Reviewed-by: Cédric Le Goater <clg@redhat.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
This implements a framework for an ADU unit model.
The ADU unit actually implements XSCOM, which is the bridge between MMIO
and PIB. However it also includes control and status registers and other
functions that are exposed as PIB (xscom) registers.
To keep things simple, pnv_xscom.c remains the XSCOM bridge
implementation, and pnv_adu.c implements the ADU registers and other
functions.
So far, just the ADU no-op registers in the pnv_xscom.c default handler
are moved over to the adu model.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Big (SMT8) cores have a complicated function to map the core, thread ID
to pervasive topology (PIR). Fix this for power8, power9, and power10.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Caleb Schlossin <calebs@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Wire the ChipTOD model to powernv9 and powernv10 machines.
Suggested-by-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
This part of the patchset connects the nest1 chiplet model to p10 chip.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Power9 is supposed to have 4 PIB-connected I2C engines with the
following number of ports on each engine:
0: 2
1: 13
2: 2
3: 2
Power10 also has 4 engines but has the following number of ports
on each engine:
0: 14
1: 14
2: 2
3: 16
Current code assumes that they all have the same (maximum) number.
This can be a problem if software expects to see a certain number
of ports present (Power Hypervisor seems to care).
Fixed this by adding separate tables for power9 and power10 that
map the I2C controller number to the number of I2C buses that should
be attached for that engine.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Message-ID: <20231025152714.956664-1-milesg@linux.vnet.ibm.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Wires up four I2C controller instances to the powernv10 chip
XSCOM address space.
Each controller instance is wired up to two I2C buses of
its own. No other I2C devices are connected to the buses
at this time.
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-ID: <20231017221434.810363-1-milesg@linux.vnet.ibm.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Wires up three I2C controller instances to the powernv9 chip
XSCOM address space.
Each controller instance is wired up to a single I2C bus of
its own. No other I2C devices are connected to the buses
at this time.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[milesg: Split wiring from addition of model itself]
[milesg: Added new commit message]
[milesg: Moved hardcoded attributes into PnvChipClass]
[milesg: Removed TODO comment for I2C]
Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com>
Acked-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-ID: <20231016222013.3739530-3-milesg@linux.vnet.ibm.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
PnvChipClass, PnvChip, Pnv8Chip, Pnv9Chip, and Pnv10Chip are defined
in pnv.h. Many users of the header don't actually need them. One
instance is this inclusion loop: hw/ppc/pnv_homer.h includes
hw/ppc/pnv.h for typedef PnvChip, and vice versa for struct PnvHomer.
Similar structs live in their own headers: PnvHomerClass and PnvHomer
in pnv_homer.h, PnvLpcClass and PnvLpcController in pci_lpc.h,
PnvPsiClass, PnvPsi, Pnv8Psi, Pnv9Psi, Pnv10Psi in pnv_psi.h, ...
Move PnvChipClass, PnvChip, Pnv8Chip, Pnv9Chip, and Pnv10Chip to new
pnv_chip.h, and adjust include directives. This breaks the inclusion
loop mentioned above.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20221222104628.659681-2-armbru@redhat.com>