Mark up the cpreginfo structs to indicate offsets for system
registers from VNCR_EL2, as defined in table D8-66 in rule R_CSRPQ in
the Arm ARM. This commit covers offsets 0x168 to 0x1f8.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
Mark up the cpreginfo structs to indicate offsets for system
registers from VNCR_EL2, as defined in table D8-66 in rule R_CSRPQ in
the Arm ARM. This commit covers offsets 0x100 to 0x160.
Many (but not all) of the registers in this range have _EL12 aliases,
and the slot in memory is shared between the _EL12 version of the
register and the _EL1 version. Where we programmatically generate
the regdef for the _EL12 register, arrange that its
nv2_redirect_offset is set up correctly to do this.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
Mark up the cpreginfo structs to indicate offsets for system
registers from VNCR_EL2, as defined in table D8-66 in rule R_CSRPQ in
the Arm ARM. This commit covers offsets below 0x100; all of these
registers are redirected to memory regardless of the value of
HCR_EL2.NV1.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
If FEAT_NV2 redirects a system register access to a memory offset
from VNCR_EL2, that access might fault. In this case we need to
report the correct syndrome information:
* Data Abort, from same-EL
* no ISS information
* the VNCR bit (bit 13) is set
and the exception must be taken to EL2.
Save an appropriate syndrome template when generating code; we can
then use that to:
* select the right target EL
* reconstitute a correct final syndrome for the data abort
* report the right syndrome if we take a FEAT_RME granule protection
fault on the VNCR-based write
Note that because VNCR is bit 13, we must start keeping bit 13 in
template syndromes, by adjusting ARM_INSN_START_WORD2_SHIFT.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
FEAT_NV2 requires that when HCR_EL2.{NV,NV2} == 0b11 then accesses by
EL1 to certain system registers are redirected to RAM. The full list
of affected registers is in the table in rule R_CSRPQ in the Arm ARM.
The registers may be normally accessible at EL1 (like ACTLR_EL1), or
normally UNDEF at EL1 (like HCR_EL2). Some registers redirect to RAM
only when HCR_EL2.NV1 is 0, and some only when HCR_EL2.NV1 is 1;
others trap in both cases.
Add the infrastructure for identifying which registers should be
redirected and turning them into memory accesses.
This code does not set the correct syndrome or arrange for the
exception to be taken to the correct target EL if the access via
VNCR_EL2 faults; we will do that in the next commit.
Subsequent commits will mark up the relevant regdefs to set their
nv2_redirect_offset, and if relevant one of the two flags which
indicates that the redirect happens only for a particular value of
HCR_EL2.NV1.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Under FEAT_NV2, when HCR_EL2.{NV,NV2} == 0b11 at EL1, accesses to the
registers SPSR_EL2, ELR_EL2, ESR_EL2, FAR_EL2 and TFSR_EL2 (which
would UNDEF without FEAT_NV or FEAT_NV2) should instead access the
equivalent EL1 registers SPSR_EL1, ELR_EL1, ESR_EL1, FAR_EL1 and
TFSR_EL1.
Because there are only five registers involved and the encoding for
the EL1 register is identical to that of the EL2 register except
that opc1 is 0, we handle this by finding the EL1 register in the
hash table and using it instead.
Note that traps that apply to direct accesses to the EL1 register,
such as active fine-grained traps or other trap bits, do not trigger
when it is accessed via the EL2 encoding in this way. However, some
traps that are defined by the EL2 register may apply. We therefore
call the EL2 register's accessfn first. The only one of the five
which has such traps is TFSR_EL2: make sure its accessfn correctly
handles both FEAT_NV (where we trap to EL2 without checking ATA bits)
and FEAT_NV2 (where we check ATA bits and then redirect to TFSR_EL1).
(We don't need the NV1 tbflag bit until the next patch, but we
introduce it here to avoid putting the NV, NV1, NV2 bits in an
odd order.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
With FEAT_NV2, the condition for when SPSR_EL1.M should report that
an exception was taken from EL2 changes.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
For FEAT_NV2, a new system register VNCR_EL2 holds the base
address of the memory which nested-guest system register
accesses are redirected to. Implement this register.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
FEAT_NV2 defines another new bit in HCR_EL2: NV2. When the
feature is enabled, allow this bit to be written in HCR_EL2.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
Enable FEAT_NV on the 'max' CPU, and stop filtering it out for the
Neoverse N2 and Neoverse V1 CPUs. We continue to downgrade FEAT_NV2
support to FEAT_NV for the latter two CPU types.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
FEAT_NV requires that when HCR_EL2.{NV,NV1} == {1,1} the handling
of some of the page table attribute bits changes for the EL1&0
translation regime:
* for block and page descriptors:
- bit [54] holds PXN, not UXN
- bit [53] is RES0, and the effective value of UXN is 0
- bit [6], AP[1], is treated as 0
* for table descriptors, when hierarchical permissions are enabled:
- bit [60] holds PXNTable, not UXNTable
- bit [59] is RES0
- bit [61], APTable[0] is treated as 0
Implement these changes to the page table attribute handling.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
FEAT_NV requires (per I_JKLJK) that when HCR_EL2.{NV,NV1} is {1,1} the
unprivileged-access instructions LDTR, STTR etc behave as normal
loads and stores. Implement the check that handles this.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
For FEAT_NV, when HCR_EL2.{NV,NV1} is {1,1} PAN is always disabled
even when the PSTATE.PAN bit is set. Implement this by having
arm_pan_enabled() return false in this situation.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
Currently the code in target/arm/helper.c mostly checks the PAN bits
in env->pstate or env->uncached_cpsr directly when it wants to know
if PAN is enabled, because in most callsites we know whether we are
in AArch64 or AArch32. We do have an arm_pan_enabled() function, but
we only use it in a few places where the code might run in either an
AArch32 or AArch64 context.
For FEAT_NV, when HCR_EL2.{NV,NV1} is {1,1} PAN is always disabled
even when the PSTATE.PAN bit is set, the "is PAN enabled" test
becomes more complicated. Make all places that check for PAN use
arm_pan_enabled(), so we have a place to put the FEAT_NV test.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
When HCR_EL2.{NV,NV1} is {1,1} we must trap five extra registers to
EL2: VBAR_EL1, ELR_EL1, SPSR_EL1, SCXTNUM_EL1 and TFSR_EL1.
Implement these traps.
This trap does not apply when FEAT_NV2 is implemented and enabled;
include the check that HCR_EL2.NV2 is 0 here, to save us having
to come back and add it later.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
FEAT_NV requires that when HCR_EL2.{NV,NV1} == {1,0} and an exception
is taken from EL1 to EL1 then the reported EL in SPSR_EL1.M should be
EL2, not EL1. Implement this behaviour.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
FEAT_NV requires that when HCR_EL2.NV is set reads of the CurrentEL
register from EL1 always report EL2 rather than the real EL.
Implement this.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
For FEAT_NV, accesses to system registers and instructions from EL1
which would normally UNDEF there but which work in EL2 need to
instead be trapped to EL2. Detect this both for "we know this will
UNDEF at translate time" and "we found this UNDEFs at runtime", and
make the affected registers trap to EL2 instead.
The Arm ARM defines the set of registers that should trap in terms
of their names; for our implementation this would be both awkward
and inefficent as a test, so we instead trap based on the opc1
field of the sysreg. The regularity of the architectural choice
of encodings for sysregs means that in practice this captures
exactly the correct set of registers.
Regardless of how we try to define the registers this trapping
applies to, there's going to be a certain possibility of breakage
if new architectural features introduce new registers that don't
follow the current rules (FEAT_MEC is one example already visible
in the released sysreg XML, though not yet in the Arm ARM). This
approach seems to me to be straightforward and likely to require
a minimum of manual overrides.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
In handle_sys() we don't do the check for whether the register is
marked as needing an FPU/SVE/SME access check until after we've
handled the special cases covered by ARM_CP_SPECIAL_MASK. This is
conceptually the wrong way around, because if for example we happen
to implement an FPU-access-checked register as ARM_CP_NOP, we should
do the access check first.
Move the access checks up so they are with all the other access
checks, not sandwiched between the special-case read/write handling
and the normal-case read/write handling. This doesn't change
behaviour at the moment, because we happen not to define any
cpregs with both ARM_CPU_{FPU,SVE,SME} and one of the cases
dealt with by ARM_CP_SPECIAL_MASK.
Moving this code also means we have the correct place to put the
FEAT_NV/FEAT_NV2 access handling, which should come after the access
checks and before we try to do any read/write action.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
FEAT_NV and FEAT_NV2 will allow EL1 to attempt to access cpregs that
only exist at EL2. This means we're going to want to run their
accessfns when the CPU is at EL1. In almost all cases, the behaviour
we want is "the accessfn returns OK if at EL1".
Mostly the accessfn already does the right thing; in a few cases we
need to explicitly check that the EL is not 1 before applying various
trap controls, or split out an accessfn used both for an _EL1 and an
_EL2 register into two so we can handle the FEAT_NV case correctly
for the _EL2 register.
There are two registers where we want the accessfn to trap for
a FEAT_NV EL1 access: VSTTBR_EL2 and VSTCR_EL2 should UNDEF
an access from NonSecure EL1, not trap to EL2 under FEAT_NV.
The way we have written sel2_access() already results in this
behaviour.
We can identify the registers we care about here because they
all have opc1 == 4 or 5.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
The alias registers like SCTLR_EL12 only exist when HCR_EL2.E2H
is 1; they should UNDEF otherwise. We weren't implementing this.
Add an intercept of the accessfn for these aliases, and implement
the UNDEF check.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
For FEAT_VHE, we define a set of register aliases, so that for instance:
* the SCTLR_EL1 either accesses the real SCTLR_EL1, or (if E2H is 1)
SCTLR_EL2
* a new SCTLR_EL12 register accesses SCTLR_EL1 if E2H is 1
However when we create the 'new_reg' cpreg struct for the SCTLR_EL12
register, we duplicate the information in the SCTLR_EL1 cpreg, which
means the opcode fields are those of SCTLR_EL1, not SCTLR_EL12. This
is a problem for code which looks at the cpreg opcode fields to
determine behaviour (e.g. in access_check_cp_reg()). In practice
the current checks we do there don't intersect with the *_EL12
registers, but for FEAT_NV this will become a problem.
Write the correct values from the encoding into the new_reg struct.
This restores the invariant that the cpreg that you get back
from the hashtable has opcode fields that match the key you used
to retrieve it.
When we call the readfn or writefn for the target register, we
pass it the cpreg struct for that target register, not the one
for the alias, in case the readfn/writefn want to look at the
opcode fields to determine behaviour. This means we need to
interpose custom read/writefns for the e12 aliases.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
The TBFLAG_A64 TB flag bits go in flags2, which for AArch64 guests
we know is 64 bits. However at the moment we use FIELD_EX32() and
FIELD_DP32() to read and write these bits, which only works for
bits 0 to 31. Since we're about to add a flag that uses bit 32,
switch to FIELD_EX64() and FIELD_DP64() so that this will work.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
The HCR_EL2.TSC trap for trapping EL1 execution of SMC instructions
has a behaviour change for FEAT_NV when EL3 is not implemented:
* in older architecture versions TSC was required to have no
effect (i.e. the SMC insn UNDEFs)
* with FEAT_NV, when HCR_EL2.NV == 1 the trap must apply
(i.e. SMC traps to EL2, as it already does in all cases when
EL3 is implemented)
* in newer architecture versions, the behaviour either without
FEAT_NV or with FEAT_NV and HCR_EL2.NV == 0 is relaxed to
an IMPDEF choice between UNDEF and trap-to-EL2 (i.e. it is
permitted to always honour HCR_EL2.TSC) for AArch64 only
Add the condition to honour the trap bit when HCR_EL2.NV == 1. We
leave the HCR_EL2.NV == 0 case with the existing (UNDEF) behaviour,
as our IMPDEF choice (both because it avoids a behaviour change
for older CPU models and because we'd have to distinguish AArch32
from AArch64 if we opted to trap to EL2).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
When FEAT_NV is turned on via the HCR_EL2.NV bit, ERET instructions
are trapped, with the same syndrome information as for the existing
FEAT_FGT fine-grained trap (in the pseudocode this is handled in
AArch64.CheckForEretTrap()).
Rename the DisasContext and tbflag bits to reflect that they are
no longer exclusively for FGT traps, and set the tbflag bit when
FEAT_NV is enabled as well as when the FGT is enabled.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
The FEAT_NV HCR_EL2.AT bit enables trapping of some address
translation instructions from EL1 to EL2. Implement this behaviour.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
FEAT_NV defines three new bits in HCR_EL2: NV, NV1 and AT. When the
feature is enabled, allow these bits to be written, and flush the
TLBs for the bits which affect page table interpretation.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
The hypervisor can deliver (virtual) LPIs to a guest by setting up a
list register to have an intid which is an LPI. The GIC has to treat
these a little differently to standard interrupt IDs, because LPIs
have no Active state, and so the guest will only EOI them, it will
not also deactivate them. So icv_eoir_write() must do two things:
* if the LPI ID is not in any list register, we drop the
priority but do not increment the EOI count
* if the LPI ID is in a list register, we immediately deactivate
it, regardless of the split-drop-and-deactivate control
This can be seen in the VirtualWriteEOIR0() and VirtualWriteEOIR1()
pseudocode in the GICv3 architecture specification.
Without this fix, potentially a hypervisor guest might stall because
LPIs get stuck in a bogus Active+Pending state.
Cc: qemu-stable@nongnu.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
The CTR_EL0 register has some bits which allow the implementation to
tell the guest that it does not need to do cache maintenance for
data-to-instruction coherence and instruction-to-data coherence.
QEMU doesn't emulate caches and so our cache maintenance insns are
all NOPs.
We already have some models of specific CPUs where we set these bits
(e.g. the Neoverse V1), but the 'max' CPU still uses the settings it
inherits from Cortex-A57. Set the bits for 'max' as well, so the
guest doesn't need to do unnecessary work.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
QDev objects created with qdev_new() need to manually add
their parent relationship with object_property_add_child().
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20240104141159.53883-1-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Update the number of priority bits for a number of existing
SoCs according to their technical documentation:
- STM32F100/F205/F405/L4x5: 4 bits
- Stellaris (Sandstorm/Fury): 3 bits
Signed-off-by: Samuel Tardieu <sam@rfc1149.net>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20240106181503.1746200-4-sam@rfc1149.net
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
A SoC will not have a direct access to the NVIC embedded in its ARM
core. By aliasing the "num-prio-bits" property similarly to what is
done for the "num-irq" one, a SoC can easily configure it on its
armv7m instance.
Signed-off-by: Samuel Tardieu <sam@rfc1149.net>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20240106181503.1746200-3-sam@rfc1149.net
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Cortex-M NVIC can have a different number of priority bits.
Cortex-M0/M0+/M1 devices must use 2 or more bits, while devices based
on ARMv7m and up must use 3 or more bits.
This adds a "num-prio-bits" property which will get sensible default
values if unset (2 or 8 depending on the device). Unless a SOC
specifies the number of bits to use, the previous behavior is
maintained for backward compatibility.
Signed-off-by: Samuel Tardieu <sam@rfc1149.net>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20240106181503.1746200-2-sam@rfc1149.net
Suggested-by: Anton Kochkov <anton.kochkov@proton.me>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1122
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit adds a new B-L475E-IOT01A board using the STM32L475VG SoC
as well as a dedicated documentation file.
The implementation is derived from the Netduino Plus 2 machine.
There are no peripherals implemented yet, only memory regions.
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Arnaud Minier <arnaud.minier@telecom-paris.fr>
Signed-off-by: Inès Varhol <ines.varhol@telecom-paris.fr>
Message-id: 20240108135849.351719-3-ines.varhol@telecom-paris.fr
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This patch adds a new STM32L4x5 SoC, it is necessary to add support for
the B-L475E-IOT01A board.
The implementation is derived from the STM32F405 SoC.
The implementation contains no peripherals, only memory regions are
implemented.
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Arnaud Minier <arnaud.minier@telecom-paris.fr>
Signed-off-by: Inès Varhol <ines.varhol@telecom-paris.fr>
Message-id: 20240108135849.351719-2-ines.varhol@telecom-paris.fr
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
- add a 32 bit x86 replay test case
- fix some typos
- use modern snapshot setting for tests
- update replay_dump for current ABI
- remove stale replay variables
- improve kdoc for ReplayState
- introduce common error path for replay
- always fully drain chardevs when in replay
- catch unexpected waitio on playback
- remove flaky tags from replay_kernel tests
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEZoWumedRZ7yvyN81+9DbCVqeKkQFAmWcAJgACgkQ+9DbCVqe
KkS/TQf+PuIPtuX71ENajfRBjz6450IbGqLUJ1HEaPGYGRj+fR6rg5g5u8qaBrT7
TUv9ef9L22NtyL+Gbs1OGpGDWKoqV6RQc+A/MHa8IKFpcS24nUo3k4psIC6NSGRH
6w3++fPC1Q5cDk9Lei3Qt8fXzcnUZz+NTiIK05aC0xh7D6uGfdADvKqHeLav7qi+
X2ztNdBsy/WJWCuWcMVzb/dGwDBtuyyxvqTD4EF+zn+gSYq9od2G8XdF+0o6ZVLM
mXEHwNwB6UjOkLt2cYaay59SXcJFvwxKbEGTDnA7T+kgd3rknuBaWdVBIazoSPQh
+522nPz5qq/3wO1l7+iQXuvd38fWyw==
=nKRx
-----END PGP SIGNATURE-----
Merge tag 'pull-replay-fixes-080124-1' of https://gitlab.com/stsquad/qemu into staging
Record/replay fixes for replay_kernel tests
- add a 32 bit x86 replay test case
- fix some typos
- use modern snapshot setting for tests
- update replay_dump for current ABI
- remove stale replay variables
- improve kdoc for ReplayState
- introduce common error path for replay
- always fully drain chardevs when in replay
- catch unexpected waitio on playback
- remove flaky tags from replay_kernel tests
# -----BEGIN PGP SIGNATURE-----
#
# iQEzBAABCgAdFiEEZoWumedRZ7yvyN81+9DbCVqeKkQFAmWcAJgACgkQ+9DbCVqe
# KkS/TQf+PuIPtuX71ENajfRBjz6450IbGqLUJ1HEaPGYGRj+fR6rg5g5u8qaBrT7
# TUv9ef9L22NtyL+Gbs1OGpGDWKoqV6RQc+A/MHa8IKFpcS24nUo3k4psIC6NSGRH
# 6w3++fPC1Q5cDk9Lei3Qt8fXzcnUZz+NTiIK05aC0xh7D6uGfdADvKqHeLav7qi+
# X2ztNdBsy/WJWCuWcMVzb/dGwDBtuyyxvqTD4EF+zn+gSYq9od2G8XdF+0o6ZVLM
# mXEHwNwB6UjOkLt2cYaay59SXcJFvwxKbEGTDnA7T+kgd3rknuBaWdVBIazoSPQh
# +522nPz5qq/3wO1l7+iQXuvd38fWyw==
# =nKRx
# -----END PGP SIGNATURE-----
# gpg: Signature made Mon 08 Jan 2024 14:03:04 GMT
# gpg: using RSA key 6685AE99E75167BCAFC8DF35FBD0DB095A9E2A44
# gpg: Good signature from "Alex Bennée (Master Work Key) <alex.bennee@linaro.org>" [full]
# Primary key fingerprint: 6685 AE99 E751 67BC AFC8 DF35 FBD0 DB09 5A9E 2A44
* tag 'pull-replay-fixes-080124-1' of https://gitlab.com/stsquad/qemu:
tests/avocado: remove skips from replay_kernel
chardev: force write all when recording replay logs
replay: stop us hanging in rr_wait_io_event
replay/replay-char: use report_sync_error
replay: introduce a central report point for sync errors
replay: make has_unread_data a bool
replay: add proper kdoc for ReplayState
replay: remove host_clock_last
scripts/replay_dump: track total number of instructions
scripts/replay-dump: update to latest format
tests/avocado: modernise the drive args for replay_linux
tests/avocado: fix typo in replay_linux
tests/avocado: add a simple i386 replay kernel test
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The term "QEMU global mutex" is identical to the more widely used Big
QEMU Lock ("BQL"). Update the code comments and documentation to use
"BQL" instead of "QEMU global mutex".
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Message-id: 20240102153529.486531-6-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The term "iothread lock" is obsolete. The APIs use Big QEMU Lock (BQL)
in their names. Update the code comments to use "BQL" instead of
"iothread lock".
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Message-id: 20240102153529.486531-5-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The name "iothread" is overloaded. Use the term Big QEMU Lock (BQL)
instead, it is already widely used and unambiguous.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-4-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The name "iothread" is overloaded. Use the term Big QEMU Lock (BQL)
instead, it is already widely used and unambiguous.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-3-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The Big QEMU Lock (BQL) has many names and they are confusing. The
actual QemuMutex variable is called qemu_global_mutex but it's commonly
referred to as the BQL in discussions and some code comments. The
locking APIs, however, are called qemu_mutex_lock_iothread() and
qemu_mutex_unlock_iothread().
The "iothread" name is historic and comes from when the main thread was
split into into KVM vcpu threads and the "iothread" (now called the main
loop thread). I have contributed to the confusion myself by introducing
a separate --object iothread, a separate concept unrelated to the BQL.
The "iothread" name is no longer appropriate for the BQL. Rename the
locking APIs to:
- void bql_lock(void)
- void bql_unlock(void)
- bool bql_locked(void)
There are more APIs with "iothread" in their names. Subsequent patches
will rename them. There are also comments and documentation that will be
updated in later patches.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Acked-by: Fabiano Rosas <farosas@suse.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Eric Farman <farman@linux.ibm.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Acked-by: Hyman Huang <yong.huang@smartx.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-2-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
aio_context_set_aio_params() doesn't use its undocumented
Error** argument. Remove it to simplify.
Note this removes a use of "unchecked Error**" in
iothread_set_aio_context_params().
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-ID: <20231120171806.19361-1-philmd@linaro.org>
With the latest fixes for #2010 and #2013 these tests look pretty
stable now. Of course the only way to be really sure is to run it in
the CI infrastructure and see what breaks.
Acked-by: Pavel Dovgalyuk <Pavel.Dovgalyuk@ispras.ru>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20231211091346.14616-14-alex.bennee@linaro.org>
This is mostly a problem within avocado as serial generally isn't busy
enough to overfill pipes. However the consequences of recording a
failed write will haunt us on replay when the log will be out of sync
to the playback.
Fixes: https://gitlab.com/qemu-project/qemu/-/issues/2010
Acked-by: Pavel Dovgalyuk <Pavel.Dovgalyuk@ispras.ru>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20231211091346.14616-13-alex.bennee@linaro.org>
A lot of the hang I see are when we end up spinning in
rr_wait_io_event for an event that will never come in playback. As a
new check functions which can see if we are in PLAY mode and kick us
us the wait function so the event can be processed.
This fixes most of the failures in replay_kernel.py
Fixes: https://gitlab.com/qemu-project/qemu/-/issues/2013
Cc: Pavel Dovgalyuk <pavel.dovgaluk@ispras.ru>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20231211091346.14616-12-alex.bennee@linaro.org>
Now we have a centralised report function use it for missing character
events.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20231211091346.14616-11-alex.bennee@linaro.org>