The GICD_CTLR distributor register has enable bits which control
whether the different interrupt groups (Group 0, Non-secure Group 1
and Secure Group 1) are forwarded to the CPU. We get this right for
traditional interrupts, but forgot to account for it when adding
LPIs. LPIs are always Group 1 NS and if the EnableGrp1NS bit is not
set we must not forward them to the CPU.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220122182444.724087-7-peter.maydell@linaro.org
The TYPE_ARM_GICV3 device is an emulated one. When using
KVM, it is recommended to use the TYPE_KVM_ARM_GICV3 device
(which uses in-kernel support).
When using --with-devices-FOO, it is possible to build a
binary with a specific set of devices. When this binary is
restricted to KVM accelerator, the TYPE_ARM_GICV3 device is
irrelevant, and it is desirable to remove it from the binary.
Therefore introduce the CONFIG_ARM_GIC_TCG Kconfig selector
which select the files required to have the TYPE_ARM_GICV3
device, but also allowing to de-select this device.
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20211115223619.2599282-3-philmd@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The logic of gicv3_redist_update() is as follows:
* it must be called in any code path that changes the state of
(only) redistributor interrupts
* if it finds a redistributor interrupt that is (now) higher
priority than the previous highest-priority pending interrupt,
then this must be the new highest-priority pending interrupt
* if it does *not* find a better redistributor interrupt, then:
- if the previous state was "no interrupts pending" then
the new state is still "no interrupts pending"
- if the previous best interrupt was not a redistributor
interrupt then that remains the best interrupt
- if the previous best interrupt *was* a redistributor interrupt,
then the new best interrupt must be some non-redistributor
interrupt, but we don't know which so must do a full scan
In commit 17fb5e36aa we effectively added the LPI interrupts
as a kind of "redistributor interrupt" for this purpose, by adding
cs->hpplpi to the set of things that gicv3_redist_update() considers
before it gives up and decides to do a full scan of distributor
interrupts. However we didn't quite get this right:
* the condition check for "was the previous best interrupt a
redistributor interrupt" must be updated to include LPIs
in what it considers to be redistributor interrupts
* every code path which updates the LPI state which
gicv3_redist_update() checks must also call gicv3_redist_update():
this is cs->hpplpi and the GICR_CTLR ENABLE_LPIS bit
This commit fixes this by:
* correcting the test on cs->hppi.irq in gicv3_redist_update()
* making gicv3_redist_update_lpi() always call gicv3_redist_update()
* introducing a new gicv3_redist_update_lpi_only() for the one
callsite (the post-load hook) which must not call
gicv3_redist_update()
* making gicv3_redist_lpi_pending() always call gicv3_redist_update(),
either directly or via gicv3_redist_update_lpi()
* removing a couple of now-unnecessary calls to gicv3_redist_update()
from some callers of those two functions
* calling gicv3_redist_update() when the GICR_CTLR ENABLE_LPIS
bit is cleared
(This means that the not-file-local gicv3_redist_* LPI related
functions now all take care of the updates of internally cached
GICv3 information, in the same way the older functions
gicv3_redist_set_irq() and gicv3_redist_send_sgi() do.)
The visible effect of this bug was that when the guest acknowledged
an LPI by reading ICC_IAR1_EL1, we marked it as not pending in the
LPI data structure but still left it in cs->hppi so we would offer it
to the guest again. In particular for setups using an emulated GICv3
and ITS and using devices which use LPIs (ie PCI devices) a Linux
guest would complain "irq 54: nobody cared" and then hang. (The hang
was intermittent, presumably depending on the timing between
different interrupts arriving and being completed.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20211124202005.989935-1-peter.maydell@linaro.org
Our GICv3 QOM interface includes an array property
redist-region-count which allows board models to specify that the
registributor registers are not in a single contiguous range, but
split into multiple pieces. We implemented this for KVM, but
currently the TCG GICv3 model insists that there is only one region.
You can see the limit being hit with a setup like:
qemu-system-aarch64 -machine virt,gic-version=3 -smp 124
Add support for split regions to the TCG GICv3. To do this we switch
from allocating a simple array of MemoryRegions to an array of
GICv3RedistRegion structs so that we can use the GICv3RedistRegion as
the opaque pointer in the MemoryRegion read/write callbacks. Each
GICv3RedistRegion contains the MemoryRegion, a backpointer allowing
the read/write callback to get hold of the GICv3State, and an index
which allows us to calculate which CPU's redistributor is being
accessed.
Note that arm_gicv3_kvm always passes in NULL as the ops argument
to gicv3_init_irqs_and_mmio(), so the only MemoryRegion read/write
callbacks we need to update to handle this new scheme are the
gicv3_redist_read/write functions used by the emulated GICv3.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
The GICv3 devices have an array property redist-region-count.
Currently we check this for errors (bad values) in
gicv3_init_irqs_and_mmio(), just before we use it. Move this error
checking to the arm_gicv3_common_realize() function, where we
sanity-check all of the other base-class properties. (This will
always be before gicv3_init_irqs_and_mmio() is called, because
that function is called in the subclass realize methods, after
they have called the parent-class realize.)
The motivation for this refactor is:
* we would like to use the redist_region_count[] values in
arm_gicv3_common_realize() in a subsequent patch, so we need
to have already done the sanity-checking first
* this removes the only use of the Error** argument to
gicv3_init_irqs_and_mmio(), so we can remove some error-handling
boilerplate
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Implemented lpi processing at redistributor to get lpi config info
from lpi configuration table,determine priority,set pending state in
lpi pending table and forward the lpi to cpuif.Added logic to invoke
redistributor lpi processing with translated LPI which set/clear LPI
from ITS device as part of ITS INT,CLEAR,DISCARD command and
GITS_TRANSLATER processing.
Signed-off-by: Shashi Mallela <shashi.mallela@linaro.org>
Tested-by: Neil Armstrong <narmstrong@baylibre.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20210910143951.92242-7-shashi.mallela@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Many files include hw/sysbus.h without needing it. Remove the superfluous
include statements.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20210327082804.2259480-1-thuth@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
To prepare for multiple redistributor regions, we introduce
an array of uint32_t properties that stores the redistributor
count of each redistributor region.
Non accelerated VGICv3 only supports a single redistributor region.
The capacity of all redist regions is checked against the number of
vcpus.
Machvirt is updated to set those properties, ie. a single
redistributor region with count set to the number of vcpus
capped by 123.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-id: 1529072910-16156-4-git-send-email-eric.auger@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The GICv3 requires that we only signal Pending interrupts to
the CPU. This category does not include Pending+Active interrupts,
which means we need to check whether the interrupt is Active in
the gicr_int_pending() and gicd_int_pending() functions.
Interrupts are rarely in the Active+Pending state, but KVM
uses this as part of its handling of the virtual timer, so
this bug was causing KVM to go into an infinite loop of
taking the vtimer interrupt when the guest first triggered it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Implement the CPU interface registers for the GICv3; these are
CPU system registers, not MMIO registers.
This commit implements all the registers which are simple
accessors for GIC state, but not those which act as interfaces
for acknowledging, dismissing or generating interrupts. (Those
will be added in a later commit.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Shannon Zhao <shannon.zhao@linaro.org>
Tested-by: Shannon Zhao <shannon.zhao@linaro.org>
Message-id: 1465915112-29272-16-git-send-email-peter.maydell@linaro.org
Implement the code which updates the GIC state when an interrupt
input into the GIC is asserted.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Shannon Zhao <shannon.zhao@linaro.org>
Tested-by: Shannon Zhao <shannon.zhao@linaro.org>
Message-id: 1465915112-29272-15-git-send-email-peter.maydell@linaro.org
Wire up the MMIO functions exposed by the distributor and the
redistributor into MMIO regions exposed by the GICv3 device.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Shannon Zhao <shannon.zhao@linaro.org>
Tested-by: Shannon Zhao <shannon.zhao@linaro.org>
Message-id: 1465915112-29272-14-git-send-email-peter.maydell@linaro.org
Implement the GICv3 logic to recalculate the highest priority pending
interrupt for each CPU after some part of the GIC state has changed.
We avoid unnecessary full recalculation where possible.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Shannon Zhao <shannon.zhao@linaro.org>
Tested-by: Shannon Zhao <shannon.zhao@linaro.org>
Message-id: 1465915112-29272-11-git-send-email-peter.maydell@linaro.org
This patch includes the device class itself, some ID register
value functions which will be needed by both distributor
and redistributor, and some skeleton functions for handling
interrupts coming in and going out, which will be filled in
in a subsequent patch.
Signed-off-by: Shlomo Pongratz <shlomo.pongratz@huawei.com>
Reviewed-by: Shannon Zhao <shannon.zhao@linaro.org>
Tested-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1465915112-29272-10-git-send-email-peter.maydell@linaro.org
[PMM: pulled this patch earlier in the sequence, and left
some code out of it for a later patch]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Shannon Zhao <shannon.zhao@linaro.org>