Aspeed SoCs are complex devices that can not be specified on the
command line. Fix that to avoid QEMU aborts.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2227
Fixes: f25c0ae107 ("aspeed/soc: Add AST2600 support")
Reported-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Cédric Le Goater <clg@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20240319150903.413662-1-clg@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
In the previous design of ASPEED SOCs QEMU model, it set the boot
address at "0" which was the hardcode setting for ast10x0, ast2600,
ast2500 and ast2400.
According to the design of ast2700, it has a bootmcu(riscv-32) which
is used for executing SPL and initialize DRAM and copy u-boot image
from SPI/Flash to DRAM at address 0x400000000 at SPL boot stage.
Then, CPUs(cortex-a35) execute u-boot, kernel and rofs.
Currently, qemu not support emulate two CPU architectures
at the same machine. Therefore, qemu will only support
to emulate CPU(cortex-a35) side for ast2700 and the boot
address is "0x4 00000000".
Fixed hardcode boot address "0" for future models using
a different mapping address.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The Aspeed datasheet refers to the UART controllers
as UART1 - UART13 for the ast10x0, ast2600, ast2500
and ast2400 SoCs and the Aspeed ast2700 introduces an UART0
and the UART controllers as UART0 - UART12.
To keep the naming in the QEMU models
in sync with the datasheet, let's introduce a new UART0 device name
and do the required adjustements.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[ clg: - Kept original assert() in aspeed_soc_uart_set_chr()
- Fixed 'i' range in connect_serial_hds_to_uarts() loop ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This patchset introduces IBM's Flexible Service Interface(FSI).
Time for some fun with inter-processor buses. FSI allows a service
processor access to the internal buses of a host POWER processor to
perform configuration or debugging.
FSI has long existed in POWER processes and so comes with some baggage,
including how it has been integrated into the ASPEED SoC.
Working backwards from the POWER processor, the fundamental pieces of
interest for the implementation are:
1. The Common FRU Access Macro (CFAM), an address space containing
various "engines" that drive accesses on buses internal and external
to the POWER chip. Examples include the SBEFIFO and I2C masters. The
engines hang off of an internal Local Bus (LBUS) which is described
by the CFAM configuration block.
2. The FSI slave: The slave is the terminal point of the FSI bus for
FSI symbols addressed to it. Slaves can be cascaded off of one
another. The slave's configuration registers appear in address space
of the CFAM to which it is attached.
3. The FSI master: A controller in the platform service processor (e.g.
BMC) driving CFAM engine accesses into the POWER chip. At the
hardware level FSI is a bit-based protocol supporting synchronous and
DMA-driven accesses of engines in a CFAM.
4. The On-Chip Peripheral Bus (OPB): A low-speed bus typically found in
POWER processors. This now makes an appearance in the ASPEED SoC due
to tight integration of the FSI master IP with the OPB, mainly the
existence of an MMIO-mapping of the CFAM address straight onto a
sub-region of the OPB address space.
5. An APB-to-OPB bridge enabling access to the OPB from the ARM core in
the AST2600. Hardware limitations prevent the OPB from being directly
mapped into APB, so all accesses are indirect through the bridge.
The implementation appears as following in the qemu device tree:
(qemu) info qtree
bus: main-system-bus
type System
...
dev: aspeed.apb2opb, id ""
gpio-out "sysbus-irq" 1
mmio 000000001e79b000/0000000000001000
bus: opb.1
type opb
dev: fsi.master, id ""
bus: fsi.bus.1
type fsi.bus
dev: cfam.config, id ""
dev: cfam, id ""
bus: fsi.lbus.1
type lbus
dev: scratchpad, id ""
address = 0 (0x0)
bus: opb.0
type opb
dev: fsi.master, id ""
bus: fsi.bus.0
type fsi.bus
dev: cfam.config, id ""
dev: cfam, id ""
bus: fsi.lbus.0
type lbus
dev: scratchpad, id ""
address = 0 (0x0)
The LBUS is modelled to maintain the qdev bus hierarchy and to take
advantage of the object model to automatically generate the CFAM
configuration block. The configuration block presents engines in the
order they are attached to the CFAM's LBUS. Engine implementations
should subclass the LBusDevice and set the 'config' member of
LBusDeviceClass to match the engine's type.
CFAM designs offer a lot of flexibility, for instance it is possible for
a CFAM to be simultaneously driven from multiple FSI links. The modeling
is not so complete; it's assumed that each CFAM is attached to a single
FSI slave (as a consequence the CFAM subclasses the FSI slave).
As for FSI, its symbols and wire-protocol are not modelled at all. This
is not necessary to get FSI off the ground thanks to the mapping of the
CFAM address space onto the OPB address space - the models follow this
directly and map the CFAM memory region into the OPB's memory region.
Future work includes supporting more advanced accesses that drive the
FSI master directly rather than indirectly via the CFAM mapping, which
will require implementing the FSI state machine and methods for each of
the FSI symbols on the slave. Further down the track we can also look at
supporting the bitbanged SoftFSI drivers in Linux by extending the FSI
slave model to resolve sequences of GPIO IRQs into FSI symbols, and
calling the associated symbol method on the slave to map the access onto
the CFAM.
Testing:
Tested by reading cfam config address 0 on rainier machine type.
root@p10bmc:~# pdbg -a getcfam 0x0
p0: 0x0 = 0xc0022d15
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Signed-off-by: Ninad Palsule <ninad@linux.ibm.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Aspeed SoCs use a single CPU type (set as AspeedSoCClass::cpu_type).
Convert it to a NULL-terminated array (of a single non-NULL element).
Set MachineClass::valid_cpu_types[] to use the common machine code
to provide hints when the requested CPU is invalid (see commit
e702cbc19e ("machine: Improve is_cpu_type_supported()").
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
In order to alter AspeedSoCClass::cpu_type in the next
commit, introduce the aspeed_soc_cpu_type() helper to
retrieve the per-SoC CPU type from AspeedSoCClass.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The ARM_CPU_IRQ/FIQ definitions are used to index the GPIO
IRQ created calling qdev_init_gpio_in() in ARMCPU instance_init()
handler. To allow non-ARM code to raise interrupt on ARM cores,
move they to 'target/arm/cpu-qom.h' which is non-ARM specific and
can be included by any hw/ file.
File list to include the new header generated using:
$ git grep -wEl 'ARM_CPU_(\w*IRQ|FIQ)'
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20240118200643.29037-18-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The v7-A cluster is specific to the Aspeed 2600 series,
remove it from the common AspeedSoCState.
The ARM cores belong to the MP cluster, but the array
is currently used by TYPE_ASPEED2600_SOC. We'll clean
that soon, but for now keep it in Aspeed2600SoCState.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
TYPE_ASPEED2600_SOC inherits from TYPE_ASPEED_SOC.
In few commits we'll add more fields, but to keep
review process simple, don't add any yet.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Remove superfluous local 'irq' variables and use the one define at the
top of the routine. This fixes warnings in aspeed_soc_ast2600_realize()
such as :
../hw/arm/aspeed_ast2600.c: In function ‘aspeed_soc_ast2600_realize’:
../hw/arm/aspeed_ast2600.c:420:18: warning: declaration of ‘irq’ shadows a previous local [-Wshadow=compatible-local]
420 | qemu_irq irq = aspeed_soc_get_irq(s, ASPEED_DEV_TIMER1 + i);
| ^~~
../hw/arm/aspeed_ast2600.c:312:14: note: shadowed declaration is here
312 | qemu_irq irq;
| ^~~
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-ID: <20230922155924.1172019-3-clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Cortex A7 CPUs with an FPU implementing VFPv4 without NEON support
have 16 64-bit FPU registers and not 32 registers. Let users set the
number of VFP registers with a CPU property.
The primary use case of this property is for the Cortex A7 of the
Aspeed AST2600 SoC.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The default boot address of the Aspeed SoCs is 0x0. For this reason,
the FMC flash device contents are remapped by HW on the first 256MB of
the address space. In QEMU, this is currently done in the machine init
with the setup of a region alias.
Move this code to the SoC and introduce an extra container to prepare
ground for the boot ROM region which will overlap the FMC flash
remapping.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Avoid confusing two different things:
- the WDT I/O region size ('iosize')
- at which offset the SoC map the WDT ('offset')
While it is often the same, we can map smaller region sizes
at larger offsets.
Here we are interested in the I/O region size, so rename as
'iosize'.
Reviewed-by: Peter Delevoryas <peter@pjd.dev>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
[ clg: Introduced temporary wdt_offset variable ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Currently, the CPU features exposed to the AST2600 QEMU machines are :
half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt
vfpd32 lpae evtstrm
But, the features of the Cortex A7 CPU on the Aspeed AST2600 A3 SoC
are :
half thumb fastmult vfp edsp vfpv3 vfpv3d16 tls vfpv4 idiva idivt
lpae evtstrm
Drop NEON support in the Aspeed AST2600 SoC.
Reviewed-by: Joel Stanley <joel@jms.id.au>
Message-Id: <20220928164719.655586-3-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This change moves the code that connects the SoC UART's to serial_hd's
to the machine.
It makes each UART a proper child member of the SoC, and then allows the
machine to selectively initialize the chardev for each UART with a
serial_hd.
This should preserve backwards compatibility, but also allow multi-SoC
boards to completely change the wiring of serial devices from the
command line to specific SoC UART's.
This also removes the uart-default property from the SoC, since the SoC
doesn't need to know what UART is the "default" on the machine anymore.
I tested this using the images and commands from the previous
refactoring, and another test image for the ast1030:
wget https://github.com/facebook/openbmc/releases/download/v2021.49.0/fuji.mtd
wget https://github.com/facebook/openbmc/releases/download/v2021.49.0/wedge100.mtd
wget https://github.com/peterdelevoryas/OpenBIC/releases/download/oby35-cl-2022.13.01/Y35BCL.elf
Fuji uses UART1:
qemu-system-arm -machine fuji-bmc \
-drive file=fuji.mtd,format=raw,if=mtd \
-nographic
ast2600-evb uses uart-default=UART5:
qemu-system-arm -machine ast2600-evb \
-drive file=fuji.mtd,format=raw,if=mtd \
-serial null -serial mon:stdio -display none
Wedge100 uses UART3:
qemu-system-arm -machine palmetto-bmc \
-drive file=wedge100.mtd,format=raw,if=mtd \
-serial null -serial null -serial null \
-serial mon:stdio -display none
AST1030 EVB uses UART5:
qemu-system-arm -machine ast1030-evb \
-kernel Y35BCL.elf -nographic
Fixes: 6827ff20b2 ("hw: aspeed: Init all UART's with serial devices")
Signed-off-by: Peter Delevoryas <peter@pjd.dev>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220705191400.41632-4-peter@pjd.dev>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
To support multiple SoC's running simultaneously, we need a unique name for
each RAM region. DRAM is created by the machine, but SRAM is created by the
SoC, since in hardware it is part of the SoC's internals.
We need a way to uniquely identify each SRAM region though, for VM
migration. Since each of the SoC's CPU's has an index which identifies it
uniquely from other CPU's in the machine, we can use the index of any of the
CPU's in the SoC to uniquely identify differentiate the SRAM name from other
SoC SRAM's. In this change, I just elected to use the index of the first CPU
in each SoC.
Signed-off-by: Peter Delevoryas <peter@pjd.dev>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220705191400.41632-3-peter@pjd.dev>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This introduces a really basic PECI controller that responses to
commands by always setting the response code to success and then raising
an interrupt to indicate the command is done. This helps avoid getting
hit with constant errors if the driver continuously attempts to send a
command and keeps timing out.
The AST2400 and AST2500 only included registers up to 0x5C, not 0xFC.
They supported PECI 1.1, 2.0, and 3.0. The AST2600 and AST1030 support
PECI 4.0, which includes more read/write buffer registers from 0x80 to
0xFC to support 64-byte mode.
This patch doesn't attempt to handle that, or to create a different
version of the controller for the different generations, since it's only
implementing functionality that is common to all generations.
The basic sequence of events is that the firmware will read and write to
various registers and then trigger a command by setting the FIRE bit in
the command register (similar to the I2C controller).
Then the firmware waits for an interrupt from the PECI controller,
expecting the interrupt status register to be filled in with info on
what happened. If the command was transmitted and received successfully,
then response codes from the host CPU will be found in the data buffer
registers.
Signed-off-by: Peter Delevoryas <pdel@fb.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220630045133.32251-12-me@pjd.dev>
[ clg: s/sysbus_mmio_map/aspeed_mmio_map/ ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
sysbus_mmio_map maps devices into "get_system_memory()".
With the new SoC memory attribute, we want to make sure that each device is
mapped into the SoC memory.
In single SoC machines, the SoC memory is the same as "get_system_memory()",
but in multi SoC machines it will be different.
Signed-off-by: Peter Delevoryas <pdel@fb.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220624003701.1363500-4-pdel@fb.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Multi-SoC machines can use this property to specify a memory container
for each SoC. Single SoC machines will just specify get_system_memory().
Signed-off-by: Peter Delevoryas <pdel@fb.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220624003701.1363500-3-pdel@fb.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Currently, the Aspeed machines allocate a ram container region in
which the machine ram region is mapped. See commit ad1a978218
("aspeed: add a RAM memory region container"). An extra region is
mapped after ram in the ram container to catch invalid access done by
FW. That's how FW determines the size of ram. See commit ebe31c0a8e
("aspeed: add a max_ram_size property to the memory controller").
Let's move all the logic under the SoC where it should be. It will
also ease the work on multi SoC support.
Reviewed-by: Peter Delevoryas <pdel@fb.com>
Message-Id: <20220623202123.3972977-1-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
AST2400 and AST2500 have 5 UART's, while the AST2600 and AST1030 have 13.
Signed-off-by: Peter Delevoryas <pdel@fb.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220516062328.298336-3-pdel@fb.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This adds the missing UART memory and IRQ mappings for the AST2400, AST2500,
AST2600, and AST1030.
This also includes the new UART interfaces added in the AST2600 and AST1030
from UART6 to UART13. The addresses and interrupt numbers for these two
later chips are identical.
Signed-off-by: Peter Delevoryas <pdel@fb.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220516062328.298336-2-pdel@fb.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
and make routine aspeed_soc_get_irq() common to all SoCs. This will be
useful to share code.
Cc: Jamin Lin <jamin_lin@aspeedtech.com>
Cc: Peter Delevoryas <pdel@fb.com>
Reviewed-by: Peter Delevoryas <pdel@fb.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220516055620.2380197-1-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Guest code (u-boot) pokes at this on boot. No functionality is required
for guest code to work correctly, but it helps to document the region
being read from.
Signed-off-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20220318092211.723938-1-joel@jms.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
It is not used anymore.
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20220307071856.1410731-4-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Just a stub that indicates the system has booted in secure boot mode.
Used for testing the driver:
https://lore.kernel.org/all/20211019080608.283324-1-joel@jms.id.au/
Signed-off-by: Joel Stanley <joel@jms.id.au>
[ clg: - Fixed typo
- Adjusted Copyright dates ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Address should be 0x1E631000 and not 0x1E641000 as initially introduced.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/838
Fixes: f25c0ae107 ("aspeed/soc: Add AST2600 support")
Suggested-by: Troy Lee <troy_lee@aspeedtech.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20220126083520.4135713-1-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
AST2600 Display Port MCU introduces 0x18000000~0x1803FFFF as it's memory
and io address. If guest machine try to access DPMCU memory, it will
cause a fatal error.
Signed-off-by: Troy Lee <troy_lee@aspeedtech.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-id: 20211210083034.726610-1-troy_lee@aspeedtech.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Peter Delevoryas <pdel@fb.com>
Message-Id: <20211005052604.1674891-3-pdel@fb.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Introduce an AspeedI2CBus SysBusDevice model and attach the associated
memory region and IRQ to the newly instantiated objects.
Before this change, the I2C bus IRQs were all attached to the
SysBusDevice model of the I2C controller. Adapt the AST2600 SoC
realize routine to take into account this change.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The characteristics of the Aspeed controllers are described in a
AspeedSMCController structure which is redundant with the
AspeedSMCClass. Move all attributes under the class and adapt the code
to use class attributes instead.
This is a large change but it is functionally equivalent.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
When you run QEMU with an Aspeed machine and a single serial device
using stdio like this:
qemu -machine ast2600-evb -drive ... -serial stdio
The guest OS can read and write to the UART5 registers at 0x1E784000 and
it will receive from stdin and write to stdout. The Aspeed SoC's have a
lot more UART's though (AST2500 has 5, AST2600 has 13) and depending on
the board design, may be using any of them as the serial console. (See
"stdout-path" in a DTS to check which one is chosen).
Most boards, including all of those currently defined in
hw/arm/aspeed.c, just use UART5, but some use UART1. This change adds
some flexibility for different boards without requiring users to change
their command-line invocation of QEMU.
I tested this doesn't break existing code by booting an AST2500 OpenBMC
image and an AST2600 OpenBMC image, each using UART5 as the console.
Then I tested switching the default to UART1 and booting an AST2600
OpenBMC image that uses UART1, and that worked too.
Signed-off-by: Peter Delevoryas <pdel@fb.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210901153615.2746885-2-pdel@fb.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This is the latest revision of the ASPEED 2600 SoC. As there is no
need to model multiple revisions of the same SoC for the moment,
update the SCU AST2600 to model the A3 revision instead of the A1 and
adapt the AST2600 SoC and machines.
Reset values are taken from v8 of the datasheet.
Signed-off-by: Joel Stanley <joel@jms.id.au>
[ clg: - Introduced an Aspeed "ast2600-a3" SoC class
- Commit log update ]
Message-Id: <20210629142336.750058-3-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEzS913cjjpNwuT1Fz8ww4vT8vvjwFAmCPtbASHGxhdXJlbnRA
dml2aWVyLmV1AAoJEPMMOL0/L748I3wP/Al7yi77BMpts1t3lGMm7EBjKgkppnpr
wZYEM68bJonvvGiEKQjexn1CUfnDcq7f5SZkzcUNLI4oP57pyywb4/gshN0k/Zz8
uCDveMfnhbio2sqlXiMsH9TOhcv/4wtXAek/ghP7EOjkBvyXrAFIQ7eEPEB9cp+X
xxs9DxqfWmrGB6vt7Er78zjfUETSMa+UrheVLwbRMhJcc0Bg8hT2DCn9Lw6IjfOy
usWdrLTGc6qg1zdZzi8QR7jZ+bNx0h+aJLlm8M4cVitXq9v2wb3+6KdsOAeYioAE
AsnClw0m8j/xtMh3g4/hB4oCxMj0jRdZ9GIGs8Didw5ZwkXTRvFM1GK1PHxqX4pF
8xMW6Qq0bSUr4II6bPOukBUMUAnPYdkh+iHXsYSZG0I3u6VZLgMK3AXmKRukAYqe
kQ1lcRe3Lwsp2h+jMBBsbCWhwYdA3THFO4YO31cUaZ191A7z57905QMbqJG/H3HB
7IUBYBNbrhgysPsNBvY6Lr7yUJIocMgcfP36UHYcBPsDdZgjNCQZneJlkaRlQb8+
CtUSF8D614EguzGsWaIn3uBSm9THKKLd1rSXCyTSgrXDI285mXlKmEWZvm236ew0
OEmIz/Ach/R4268j76enYGa1aubsxnrphUfC3aePu0Wzd3QW4RxnCSq7wc4ARPw7
WTL7J00P578h
=aCeG
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/vivier2/tags/trivial-branch-for-6.1-pull-request' into staging
Trivial patches pull request 20210503
# gpg: Signature made Mon 03 May 2021 09:34:56 BST
# gpg: using RSA key CD2F75DDC8E3A4DC2E4F5173F30C38BD3F2FBE3C
# gpg: issuer "laurent@vivier.eu"
# gpg: Good signature from "Laurent Vivier <lvivier@redhat.com>" [full]
# gpg: aka "Laurent Vivier <laurent@vivier.eu>" [full]
# gpg: aka "Laurent Vivier (Red Hat) <lvivier@redhat.com>" [full]
# Primary key fingerprint: CD2F 75DD C8E3 A4DC 2E4F 5173 F30C 38BD 3F2F BE3C
* remotes/vivier2/tags/trivial-branch-for-6.1-pull-request: (23 commits)
hw/rx/rx-gdbsim: Do not accept invalid memory size
docs: More precisely describe memory-backend-*::id's user
scripts: fix generation update-binfmts templates
docs/system: Document the removal of "compat" property for POWER CPUs
mc146818rtc: put it into the 'misc' category
Do not include exec/address-spaces.h if it's not really necessary
Do not include cpu.h if it's not really necessary
Do not include hw/boards.h if it's not really necessary
Do not include sysemu/sysemu.h if it's not really necessary
hw: Do not include qemu/log.h if it is not necessary
hw: Do not include hw/irq.h if it is not necessary
hw: Do not include hw/sysbus.h if it is not necessary
hw: Remove superfluous includes of hw/hw.h
ui: Fix memory leak in qemu_xkeymap_mapping_table()
hw/usb: Constify VMStateDescription
hw/display/qxl: Constify VMStateDescription
hw/arm: Constify VMStateDescription
vmstate: Constify some VMStateDescriptions
Fix typo in CFI build documentation
hw/pcmcia: Do not register PCMCIA type if not required
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Stop including exec/address-spaces.h in files that don't need it.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20210416171314.2074665-5-thuth@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Stop including cpu.h in files that don't need it.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20210416171314.2074665-4-thuth@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Many files include qemu/log.h without needing it. Remove the superfluous
include statements.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20210328054833.2351597-1-thuth@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
When we introduced support for the AST2600 SoC, the XDMA controller
was forgotten. It went unnoticed because it's not used under emulation.
But the register layout being different, the reset procedure is bogus
and this breaks kexec.
Add a AspeedXDMAClass to take into account the register differences.
Cc: Eddie James <eajames@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Eddie James <eajames@linux.ibm.com>
Message-Id: <20210407171637.777743-14-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Add the hash and crypto engine model to the Aspeed socs.
Reviewed-by: Andrew Jeffery <andrew@aj.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Klaus Heinrich Kiwi <klaus@linux.vnet.ibm.com>
Signed-off-by: Joel Stanley <joel@jms.id.au>
Message-Id: <20210409000253.1475587-3-joel@jms.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Cc: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20210407171637.777743-3-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Keyboard-Controller-Style devices for IPMI purposes are exposed via LPC
IO cycles from the BMC to the host.
Expose support on the BMC side by implementing the usual MMIO
behaviours, and expose the ability to inspect the KCS registers in
"host" style by accessing QOM properties associated with each register.
The model caters to the IRQ style of both the AST2600 and the earlier
SoCs (AST2400 and AST2500). The AST2600 allocates an IRQ for each LPC
sub-device, while there is a single IRQ shared across all subdevices on
the AST2400 and AST2500.
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210302014317.915120-6-andrew@aj.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This is a very minimal framework to access registers which are used to
configure the AHB memory mapping of the flash chips on the LPC HC
Firmware address space.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Message-Id: <20210302014317.915120-5-andrew@aj.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The AST2600 allocates distinct GIC IRQs for the LPC subdevices such as
the iBT device. Previously on the AST2400 and AST2500 the LPC subdevices
shared a single LPC IRQ.
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210302014317.915120-4-andrew@aj.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The datasheet says we have 197 IRQs allocated, and we need more than 128
to describe IRQs from LPC devices. Raise the value now to allow
modelling of the LPC devices.
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20210302014317.915120-3-andrew@aj.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>