Commit Graph

390 Commits

Author SHA1 Message Date
Cédric Le Goater
3ba3d0bc33 spapr: introduce an 'ic-mode' machine option
This option is used to select the interrupt controller mode (XICS or
XIVE) with which the machine will operate. XICS being the default
mode for now.

When running a machine with the XIVE interrupt mode backend, the guest
OS is required to have support for the XIVE exploitation mode. In the
case of legacy OS, the mode selected by CAS should be XICS and the OS
should fail to boot. However, QEMU could possibly detect it, terminate
the boot process and reset to stop in the SLOF firmware. This is not
yet handled.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:40:43 +11:00
Cédric Le Goater
db592b5b16 spapr: add an extra OV5 field to the sPAPR IRQ backend
The interrupt modes supported by the hypervisor are advertised to the
guest with new bits definitions of the option vector 5 of property
"ibm,arch-vec-5-platform-support. The byte 23 bits 0-1 of the OV5 are
defined as follow :

  0b00   PAPR 2.7 and earlier (Legacy systems)
  0b01   XIVE Exploitation mode only
  0b10   Either available

If the client/guest selects the XIVE interrupt mode, it informs the
hypervisor by returning the value 0b01 in byte 23 bits 0-1. A 0b00
value indicates the use of the XICS interrupt mode (Legacy systems).

The sPAPR IRQ backend is extended with these definitions and the
values are directly used to populate the "ibm,arch-vec-5-platform-support"
property. The interrupt mode is advertised under TCG and under KVM.
Although a KVM XIVE device is not yet available, the machine can still
operate with kernel_irqchip=off. However, we apply a restriction on
the CPU which is required to be a POWER9 when a XIVE interrupt
controller is in use.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:40:43 +11:00
Cédric Le Goater
b2e2247716 spapr: add a 'reset' method to the sPAPR IRQ backend
For the time being, the XIVE reset handler updates the OS CAM line of
the vCPU as it is done under a real hypervisor when a vCPU is
scheduled to run on a HW thread. This will let the XIVE presenter
engine find a match among the NVTs dispatched on the HW threads.

This handler will become even more useful when we introduce the
machine supporting both interrupt modes, XIVE and XICS. In this
machine, the interrupt mode is chosen by the CAS negotiation process
and activated after a reset.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:40:35 +11:00
Cédric Le Goater
1c53b06c03 spapr: extend the sPAPR IRQ backend for XICS migration
Introduce a new sPAPR IRQ handler to handle resend after migration
when the machine is using a KVM XICS interrupt controller model.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:39:13 +11:00
Cédric Le Goater
1a937ad7e7 spapr: allocate the interrupt thread context under the CPU core
Each interrupt mode has its own specific interrupt presenter object,
that we store under the CPU object, one for XICS and one for XIVE.

Extend the sPAPR IRQ backend with a new handler to support them both.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:39:13 +11:00
Cédric Le Goater
6e21de4a50 spapr: add device tree support for the XIVE exploitation mode
The XIVE interface for the guest is described in the device tree under
the "interrupt-controller" node. A couple of new properties are
specific to XIVE :

 - "reg"

   contains the base address and size of the thread interrupt
   managnement areas (TIMA), for the User level and for the Guest OS
   level. Only the Guest OS level is taken into account today.

 - "ibm,xive-eq-sizes"

   the size of the event queues. One cell per size supported, contains
   log2 of size, in ascending order.

 - "ibm,xive-lisn-ranges"

   the IRQ interrupt number ranges assigned to the guest for the IPIs.

and also under the root node :

 - "ibm,plat-res-int-priorities"

   contains a list of priorities that the hypervisor has reserved for
   its own use. OPAL uses the priority 7 queue to automatically
   escalate interrupts for all other queues (DD2.X POWER9). So only
   priorities [0..6] are allowed for the guest.

Extend the sPAPR IRQ backend with a new handler to populate the DT
with the appropriate "interrupt-controller" node.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:39:07 +11:00
Cédric Le Goater
23bcd5eb9a spapr: add hcalls support for the XIVE exploitation interrupt mode
The different XIVE virtualization structures (sources and event queues)
are configured with a set of Hypervisor calls :

 - H_INT_GET_SOURCE_INFO

   used to obtain the address of the MMIO page of the Event State
   Buffer (ESB) entry associated with the source.

 - H_INT_SET_SOURCE_CONFIG

   assigns a source to a "target".

 - H_INT_GET_SOURCE_CONFIG

   determines which "target" and "priority" is assigned to a source

 - H_INT_GET_QUEUE_INFO

   returns the address of the notification management page associated
   with the specified "target" and "priority".

 - H_INT_SET_QUEUE_CONFIG

   sets or resets the event queue for a given "target" and "priority".
   It is also used to set the notification configuration associated
   with the queue, only unconditional notification is supported for
   the moment. Reset is performed with a queue size of 0 and queueing
   is disabled in that case.

 - H_INT_GET_QUEUE_CONFIG

   returns the queue settings for a given "target" and "priority".

 - H_INT_RESET

   resets all of the guest's internal interrupt structures to their
   initial state, losing all configuration set via the hcalls
   H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.

 - H_INT_SYNC

   issue a synchronisation on a source to make sure all notifications
   have reached their queue.

Calls that still need to be addressed :

   H_INT_SET_OS_REPORTING_LINE
   H_INT_GET_OS_REPORTING_LINE

See the code for more documentation on each hcall.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Folded in fix for field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:37:38 +11:00
Cédric Le Goater
dcc345b61e spapr: introduce a new machine IRQ backend for XIVE
The XIVE IRQ backend uses the same layout as the new XICS backend but
covers the full range of the IRQ number space. The IRQ numbers for the
CPU IPIs are allocated at the bottom of this space, below 4K, to
preserve compatibility with XICS which does not use that range.

This should be enough given that the maximum number of CPUs is 1024
for the sPAPR machine under QEMU. For the record, the biggest POWER8
or POWER9 system has a maximum of 1536 HW threads (16 sockets, 192
cores, SMT8).

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:37:38 +11:00
Cédric Le Goater
3aa597f650 spapr/xive: introduce a XIVE interrupt controller
sPAPRXive models the XIVE interrupt controller of the sPAPR machine.
It inherits from the XiveRouter and provisions storage for the routing
tables :

  - Event Assignment Structure (EAS)
  - Event Notification Descriptor (END)

The sPAPRXive model incorporates an internal XiveSource for the IPIs
and for the interrupts of the virtual devices of the guest. This model
is consistent with XIVE architecture which also incorporates an
internal IVSE for IPIs and accelerator interrupts in the IVRE
sub-engine.

The sPAPRXive model exports two memory regions, one for the ESB
trigger and management pages used to control the sources and one for
the TIMA pages. They are mapped by default at the addresses found on
chip 0 of a baremetal system. This is also consistent with the XIVE
architecture which defines a Virtualization Controller BAR for the
internal IVSE ESB pages and a Thread Managment BAR for the TIMA.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Fold in field accessor fixes]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:37:38 +11:00
Cédric Le Goater
af53dbf622 ppc/xive: introduce a simplified XIVE presenter
The last sub-engine of the XIVE architecture is the Interrupt
Virtualization Presentation Engine (IVPE). On HW, the IVRE and the
IVPE share elements, the Power Bus interface (CQ), the routing table
descriptors, and they can be combined in the same HW logic. We do the
same in QEMU and combine both engines in the XiveRouter for
simplicity.

When the IVRE has completed its job of matching an event source with a
Notification Virtual Target (NVT) to notify, it forwards the event
notification to the IVPE sub-engine. The IVPE scans the thread
interrupt contexts of the Notification Virtual Targets (NVT)
dispatched on the HW processor threads and if a match is found, it
signals the thread. If not, the IVPE escalates the notification to
some other targets and records the notification in a backlog queue.

The IVPE maintains the thread interrupt context state for each of its
NVTs not dispatched on HW processor threads in the Notification
Virtual Target table (NVTT).

The model currently only supports single NVT notifications.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Folded in fix for field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:37:04 +11:00
Cédric Le Goater
207d9fe985 ppc/xive: introduce the XIVE interrupt thread context
Each POWER9 processor chip has a XIVE presenter that can generate four
different exceptions to its threads:

  - hypervisor exception,
  - O/S exception
  - Event-Based Branch (EBB)
  - msgsnd (doorbell).

Each exception has a state independent from the others called a Thread
Interrupt Management context. This context is a set of registers which
lets the thread handle priority management and interrupt acknowledgment
among other things. The most important ones being :

  - Interrupt Priority Register  (PIPR)
  - Interrupt Pending Buffer     (IPB)
  - Current Processor Priority   (CPPR)
  - Notification Source Register (NSR)

These registers are accessible through a specific MMIO region, called
the Thread Interrupt Management Area (TIMA), four aligned pages, each
exposing a different view of the registers. First page (page address
ending in 0b00) gives access to the entire context and is reserved for
the ring 0 view for the physical thread context. The second (page
address ending in 0b01) is for the hypervisor, ring 1 view. The third
(page address ending in 0b10) is for the operating system, ring 2
view. The fourth (page address ending in 0b11) is for user level, ring
3 view.

The thread interrupt context is modeled with a XiveTCTX object
containing the values of the different exception registers. The TIMA
region is mapped at the same address for each CPU.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:29:12 +11:00
Cédric Le Goater
002686be42 ppc/xive: add support for the END Event State Buffers
The Event Notification Descriptor (END) XIVE structure also contains
two Event State Buffers providing further coalescing of interrupts,
one for the notification event (ESn) and one for the escalation events
(ESe). A MMIO page is assigned for each to control the EOI through
loads only. Stores are not allowed.

The END ESBs are modeled through an object resembling the 'XiveSource'
It is stateless as the END state bits are backed into the XiveEND
structure under the XiveRouter and the MMIO accesses follow the same
rules as for the XiveSource ESBs.

END ESBs are not supported by the Linux drivers neither on OPAL nor on
sPAPR. Nevetherless, it provides a mean to study the question in the
future and validates a bit more the XIVE model.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fold in a later fix for field access]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:29:12 +11:00
Cédric Le Goater
1a518e7693 spapr: export and rename the xics_max_server_number() routine
The XIVE sPAPR IRQ backend will use it to define the number of ENDs of
the IC controller.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:29:10 +11:00
Cédric Le Goater
fab397d84a spapr: introduce a spapr_irq_init() routine
Initialize the MSI bitmap from it as this will be necessary for the
sPAPR IRQ backend for XIVE.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:28:47 +11:00
Cédric Le Goater
e4ddaac67f ppc/xive: introduce the XIVE Event Notification Descriptors
To complete the event routing, the IVRE sub-engine uses a second table
containing Event Notification Descriptor (END) structures.

An END specifies on which Event Queue (EQ) the event notification
data, defined in the associated EAS, should be posted when an
exception occurs. It also defines which Notification Virtual Target
(NVT) should be notified.

The Event Queue is a memory page provided by the O/S defining a
circular buffer, one per server and priority couple, containing Event
Queue entries. These are 4 bytes long, the first bit being a
'generation' bit and the 31 following bits the END Data field. They
are pulled by the O/S when the exception occurs.

The END Data field is a way to set an invariant logical event source
number for an IRQ. On sPAPR machines, it is set with the
H_INT_SET_SOURCE_CONFIG hcall when the EISN flag is used.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fold in a later fix from Cédric fixing field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:26:42 +11:00
Cédric Le Goater
7ff7ea9280 ppc/xive: introduce the XiveRouter model
The XiveRouter models the second sub-engine of the XIVE architecture :
the Interrupt Virtualization Routing Engine (IVRE).

The IVRE handles event notifications of the IVSE and performs the
interrupt routing process. For this purpose, it uses a set of tables
stored in system memory, the first of which being the Event Assignment
Structure (EAS) table.

The EAT associates an interrupt source number with an Event Notification
Descriptor (END) which will be used in a second phase of the routing
process to identify a Notification Virtual Target.

The XiveRouter is an abstract class which needs to be inherited from
to define a storage for the EAT, and other upcoming tables.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Folded in parts of a later fix by Cédric fixing field access]
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:26:31 +11:00
Cédric Le Goater
5e79b155a8 ppc/xive: introduce the XiveNotifier interface
The XiveNotifier offers a simple interface, between the XiveSource
object and the main interrupt controller of the machine. It will
forward event notifications to the XIVE Interrupt Virtualization
Routing Engine (IVRE).

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Adjust type name string for XiveNotifier]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:24:23 +11:00
Cédric Le Goater
5fd9ef18a9 ppc/xive: add support for the LSI interrupt sources
The 'sent' status of the LSI interrupt source is modeled with the 'P'
bit of the ESB and the assertion status of the source is maintained
with an extra bit under the main XiveSource object. The type of the
source is stored in the same array for practical reasons.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nit]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:24:23 +11:00
Cédric Le Goater
02e3ff548d ppc/xive: introduce a XIVE interrupt source model
The first sub-engine of the overall XIVE architecture is the Interrupt
Virtualization Source Engine (IVSE). An IVSE can be integrated into
another logic, like in a PCI PHB or in the main interrupt controller
to manage IPIs.

Each IVSE instance is associated with an Event State Buffer (ESB) that
contains a two bit state entry for each possible event source. When an
event is signaled to the IVSE, by MMIO or some other means, the
associated interrupt state bits are fetched from the ESB and
modified. Depending on the resulting ESB state, the event is forwarded
to the IVRE sub-engine of the controller doing the routing.

Each supported ESB entry is associated with either a single or a
even/odd pair of pages which provides commands to manage the source:
to EOI, to turn off the source for instance.

On a sPAPR machine, the O/S will obtain the page address of the ESB
entry associated with a source and its characteristic using the
H_INT_GET_SOURCE_INFO hcall. On PowerNV, a similar OPAL call is used.

The xive_source_notify() routine is in charge forwarding the source
event notification to the routing engine. It will be filled later on.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:24:23 +11:00
Greg Kurz
9929301ee1 mac_newworld: simplify IRQ wiring
The OpenPIC have 5 outputs per connected CPU. The machine init code hence
needs a bi-dimensional array (smp_cpu lines, 5 columns) to wire up the irqs
between the PIC and the CPUs.

The current code first allocates an array of smp_cpus pointers to qemu_irq
type, then it allocates another array of smp_cpus * 5 qemu_irq and fills the
first array with pointers to each line of the second array. This is rather
convoluted.

Simplify the logic by introducing a structured type that describes all the
OpenPIC outputs for a single CPU, ie, fixed size of 5 qemu_irq, and only
allocate a smp_cpu sized array of those.

This also allows to use g_new(T, n) instead of g_malloc(sizeof(T) * n)
as recommended in HACKING.

Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:24:23 +11:00
Suraj Jitindar Singh
b9a477b725 ppc/spapr_caps: Add SPAPR_CAP_NESTED_KVM_HV
Add the spapr cap SPAPR_CAP_NESTED_KVM_HV to be used to control the
availability of nested kvm-hv to the level 1 (L1) guest.

Assuming a hypervisor with support enabled an L1 guest can be allowed to
use the kvm-hv module (and thus run it's own kvm-hv guests) by setting:
-machine pseries,cap-nested-hv=true
or disabled with:
-machine pseries,cap-nested-hv=false

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-11-08 13:08:35 +11:00
Thomas Huth
0e947a89ce hw/ppc/spapr_rng: Introduce CONFIG_SPAPR_RNG switch for spapr_rng.c
The spapr-rng device is suboptimal when compared to virtio-rng, so
users might want to disable it in their builds. Thus let's introduce
a proper CONFIG switch to allow us to compile QEMU without this device.
The function spapr_rng_populate_dt is required for linking, so move it
to a different location.

Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-11-08 12:04:40 +11:00
Cédric Le Goater
ae83740237 spapr: increase the size of the IRQ number space
The new layout using static IRQ number does not leave much space to
the dynamic MSI range, only 0x100 IRQ numbers. Increase the total
number of IRQS for newer machines and introduce a legacy XICS backend
for pre-3.1 machines to maintain compatibility.

For the old backend, provide a 'nr_msis' value covering the full IRQ
number space as it does not use the bitmap allocator to allocate MSI
interrupt numbers.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-09-25 11:12:25 +10:00
Cédric Le Goater
e39de895f6 spapr: introduce a spapr_irq class 'nr_msis' attribute
The number of MSI interrupts a sPAPR machine can allocate is in direct
relation with the number of interrupts of the sPAPRIrq backend. Define
statically this value at the sPAPRIrq class level and use it for the
"ibm,pe-total-#msi" property of the sPAPR PHB.

According to the PAPR specs, "ibm,pe-total-#msi" defines the maximum
number of MSIs that are available to the PE. We choose to advertise
the maximum number of MSIs that are available to the machine for
simplicity of the model and to avoid segmenting the MSI interrupt pool
which can be easily shared. If the pool limit is reached, it can be
extended dynamically.

Finally, remove XICS_IRQS_SPAPR which is now unused.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-09-25 11:12:25 +10:00
Cédric Le Goater
ef01ed9d19 spapr: introduce a IRQ controller backend to the machine
This proposal moves all the related IRQ routines of the sPAPR machine
behind a sPAPR IRQ backend interface 'spapr_irq' to prepare for future
changes. First of which will be to increase the size of the IRQ number
space, then, will follow a new backend for the POWER9 XIVE IRQ controller.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-08-21 14:28:45 +10:00
Cédric Le Goater
82cffa2eb2 spapr: introduce a fixed IRQ number space
This proposal introduces a new IRQ number space layout using static
numbers for all devices, depending on a device index, and a bitmap
allocator for the MSI IRQ numbers which are negotiated by the guest at
runtime.

As the VIO device model does not have a device index but a "reg"
property, we introduce a formula to compute an IRQ number from a "reg"
value. It should minimize most of the collisions.

The previous layout is kept in pre-3.1 machines raising the
'legacy_irq_allocation' machine class flag.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-08-21 14:28:45 +10:00
Greg Kurz
71c55a1eef xics: don't include "target/ppc/cpu-qom.h" in "hw/ppc/xics.h"
The last user of the PowerPCCPU typedef in "hw/ppc/xics.h" vanished with
commit b1fd36c363. It isn't necessary to
include "target/ppc/cpu-qom.h" there anymore.

Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-08-21 14:28:45 +10:00
Peter Maydell
b07cd3e748 ppc patch queue 2018-07-03
Here's a last minue pull request before today's soft freeze.  Ideally
 I would have sent this earlier, but I was waiting for a couple of
 extra fixes I knew were close.  And the freeze crept up on me, like
 always.
 
 Most of the changes here are bugfixes in any case.  There are some
 cleanups as well, which have been in my staging tree for a little
 while.  There are a couple of truly new features (some extensions to
 the sam460ex platform), but these are low risk, since they only affect
 a new and not really stabilized machine type anyway.
 
 Higlights are:
   * Mac platform improvements from Mark Cave-Ayland
   * Sam460ex improvements from BALATON Zoltan et al.
   * XICS interrupt handler cleanups from Cédric Le Goater
   * TCG improvements for atomic loads and stores from Richard
     Henderson
   * Assorted other bugfixes
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAls7D8oACgkQbDjKyiDZ
 s5Lxmg//YzPfC/nKqTTKkyJPzh/NnSC+kRTMAT3mbxdRIc7yfgMqJtWGGbS1iKgK
 EeJ9hl5Qm0HfscfDuzf0xasU62ZEv3kNdLnWJEIgkqiXrxoO5KCnC0y4D8NN1W03
 mvINNCa8+QDg2OsirGmNUTkriiG3wLIrHTpLZ4+JuC2Bd9H3nTHZgJ0MXON/1VWY
 oRgr6kMZ5+IAzPhvYLFR6l3nPI883fgJOFyRo7YqYrkVBKFrFkfK0Xjw6vpsNxcx
 2dE/YCHhNIriLuBG5noewL7GuqZRtLnl6rjjee5VAKIe1EmFeR+jsXwNjzGOVOJg
 dhjOtsJsQQ3WdEw5uImJzE64kV228WCgmkeXzZd1010JBLr7sUkrd2EuoZ23vvat
 uvZAHVSBrJg5WvzMo1VMEoPU3VeeZQ5HL+MI80iKiU6oUgRK11gVJcebtA0sEKt+
 zhJC4JiUlHtZLTGIpMBmU8DJZ3Tyk1cBEm+Ky+SaPE+dsz16UHI0fazFQXJnXphE
 MLHEGAyQgzWYp7kIcAjUFev0Geq/Uovy4JKIGI6ISop1wRPEQDxkthfkfRyQxQkE
 zuse4EBcEH/Undw9KrmEQa0hCe+8BRkxklVbPesFPPdqH3PKNxtHYuWpSShQF0PW
 XMjw43O2Rbsl8kBUHCpy4pYSugD1hpfgaw/mVUOU1u/M1O6toTw=
 =AHrx
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-3.0-20180703' into staging

ppc patch queue 2018-07-03

Here's a last minue pull request before today's soft freeze.  Ideally
I would have sent this earlier, but I was waiting for a couple of
extra fixes I knew were close.  And the freeze crept up on me, like
always.

Most of the changes here are bugfixes in any case.  There are some
cleanups as well, which have been in my staging tree for a little
while.  There are a couple of truly new features (some extensions to
the sam460ex platform), but these are low risk, since they only affect
a new and not really stabilized machine type anyway.

Higlights are:
  * Mac platform improvements from Mark Cave-Ayland
  * Sam460ex improvements from BALATON Zoltan et al.
  * XICS interrupt handler cleanups from Cédric Le Goater
  * TCG improvements for atomic loads and stores from Richard
    Henderson
  * Assorted other bugfixes

# gpg: Signature made Tue 03 Jul 2018 06:55:22 BST
# gpg:                using RSA key 6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>"
# gpg:                 aka "David Gibson (Red Hat) <dgibson@redhat.com>"
# gpg:                 aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>"
# gpg:                 aka "David Gibson (kernel.org) <dwg@kernel.org>"
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E  87DC 6C38 CACA 20D9 B392

* remotes/dgibson/tags/ppc-for-3.0-20180703: (35 commits)
  ppc: Include vga cirrus card into the compiling process
  target/ppc: Relax reserved bitmask of indexed store instructions
  target/ppc: set is_jmp on ppc_tr_breakpoint_check
  spapr: compute default value of "hpt-max-page-size" later
  target/ppc/kvm: don't pass cpu to kvm_get_smmu_info()
  target/ppc/kvm: get rid of kvm_get_fallback_smmu_info()
  ppc440_uc: Basic emulation of PPC440 DMA controller
  sam460ex: Add RTC device
  hw/timer: Add basic M41T80 emulation
  ppc4xx_i2c: Rewrite to model hardware more closely
  hw/ppc: Give sam46ex its own config option
  fpu_helper.c: fix setting FPSCR[FI] bit
  target/ppc: Implement the rest of gen_st_atomic
  target/ppc: Implement the rest of gen_ld_atomic
  target/ppc: Use atomic min/max helpers
  target/ppc: Use MO_ALIGN for EXIWX and ECOWX
  target/ppc: Split out gen_st_atomic
  target/ppc: Split out gen_ld_atomic
  target/ppc: Split out gen_load_locked
  target/ppc: Tidy gen_conditional_store
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>

# Conflicts:
#	hw/ppc/spapr.c
2018-07-03 14:59:27 +01:00
Cédric Le Goater
eeefd43b3c ppx/xics: introduce a parent_reset in ICSStateClass
Just like for the realize handlers, this makes possible to move the
common ICSState code of the reset handlers in the ics-base class.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-07-03 09:56:51 +10:00
Cédric Le Goater
0a647b76db ppc/xics: introduce a parent_realize in ICSStateClass
This makes possible to move the common ICSState code of the realize
handlers in the ics-base class.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-07-03 09:56:51 +10:00
Cédric Le Goater
a028dd423e ppc/xics: introduce ICP DeviceRealize and DeviceReset handlers
This changes the ICP realize and reset handlers in DeviceRealize and
DeviceReset handlers. parent handlers are now called from the
inheriting classes which is a cleaner object pattern.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-07-03 09:56:51 +10:00
Philippe Mathieu-Daudé
ab3dd74924 hw/ppc: Use the IEC binary prefix definitions
It eases code review, unit is explicit.

Patch generated using:

  $ git grep -E '(1024|2048|4096|8192|(<<|>>).?(10|20|30))' hw/ include/hw/

and modified manually.

Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20180625124238.25339-33-f4bug@amsat.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-07-02 15:41:16 +02:00
David Gibson
123eec6552 spapr: Use maximum page size capability to simplify memory backend checking
The way we used to handle KVM allowable guest pagesizes for PAPR guests
required some convoluted checking of memory attached to the guest.

The allowable pagesizes advertised to the guest cpus depended on the memory
which was attached at boot, but then we needed to ensure that any memory
later hotplugged didn't change which pagesizes were allowed.

Now that we have an explicit machine option to control the allowable
maximum pagesize we can simplify this.  We just check all memory backends
against that declared pagesize.  We check base and cold-plugged memory at
reset time, and hotplugged memory at pre_plug() time.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
2018-06-22 14:19:07 +10:00
David Gibson
2309832afd spapr: Maximum (HPT) pagesize property
The way the POWER Hash Page Table (HPT) MMU is virtualized by KVM HV means
that every page that the guest puts in the pagetables must be truly
physically contiguous, not just GPA-contiguous.  In effect this means that
an HPT guest can't use any pagesizes greater than the host page size used
to back its memory.

At present we handle this by changing what we advertise to the guest based
on the backing pagesizes.  This is pretty bad, because it means the guest
sees a different environment depending on what should be host configuration
details.

As a start on fixing this, we add a new capability parameter to the
pseries machine type which gives the maximum allowed pagesizes for an
HPT guest.  For now we just create and validate the parameter without
making it do anything.

For backwards compatibility, on older machine types we set it to the max
available page size for the host.  For the 3.0 machine type, we fix it to
16, the intention being to only allow HPT pagesizes up to 64kiB by default
in future.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
2018-06-22 14:19:07 +10:00
Cédric Le Goater
71b5c8d26e spapr: remove unused spapr_irq routines
spapr_irq_alloc_block and spapr_irq_alloc() are now deprecated.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-06-21 21:22:53 +10:00
Cédric Le Goater
4fe75a8ccd spapr: split the IRQ allocation sequence
Today, when a device requests for IRQ number in a sPAPR machine, the
spapr_irq_alloc() routine first scans the ICSState status array to
find an empty slot and then performs the assignement of the selected
numbers. Split this sequence in two distinct routines : spapr_irq_find()
for lookups and spapr_irq_claim() for claiming the IRQ numbers.

This will ease the introduction of a static layout of IRQ numbers.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-06-21 21:22:53 +10:00
David Gibson
e2e4f64118 spapr: Add cpu_apply hook to capabilities
spapr capabilities have an apply hook to actually activate (or deactivate)
the feature in the system at reset time.  However, a number of capabilities
affect the setup of cpus, and need to be applied to each of them -
including hotplugged cpus for extra complication.  To make this simpler,
add an optional cpu_apply hook that is called from spapr_cpu_reset().

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
2018-06-21 21:22:53 +10:00
David Gibson
9f6edd066e spapr: Compute effective capability values earlier
Previously, the effective values of the various spapr capability flags
were only determined at machine reset time.  That was a lazy way of making
sure it was after cpu initialization so it could use the cpu object to
inform the defaults.

But we've now improved the compat checking code so that we don't need to
instantiate the cpus to use it.  That lets us move the resolution of the
capability defaults much earlier.

This is going to be necessary for some future capabilities.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
2018-06-21 21:22:53 +10:00
Cédric Le Goater
77864267c3 ppc/pnv: introduce Pnv8Chip and Pnv9Chip models
It introduces a base PnvChip class from which the specific processor
chip classes, Pnv8Chip and Pnv9Chip, inherit. Each of them needs to
define an init and a realize routine which will create the controllers
of the target processor. For the moment, the base PnvChip class
handles the XSCOM bus and the cores.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-06-21 21:22:53 +10:00
Greg Kurz
b94020268e spapr_cpu_core: migrate per-CPU data
A per-CPU machine data pointer was recently added to PowerPCCPU. The
motivation is to to hide platform specific details from the core CPU
code. This per-CPU data can hold state which is relevant to the guest
though, eg, Virtual Processor Areas, and we should migrate this state.

This patch adds the plumbing so that we can migrate the per-CPU data
for PAPR guests. We only do this for newer machine types for the sake
of backward compatibility. No state is migrated for the moment: the
vmstate_spapr_cpu_state structure will be populated by subsequent
patches.

Signed-off-by: Greg Kurz <groug@kaod.org>
[dwg: Fix some trivial spelling and spacing errors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-06-21 21:22:53 +10:00
Cédric Le Goater
04026890f2 ppc/pnv: introduce a new isa_create() operation to the chip model
This moves the details of the ISA bus creation under the LPC model but
more important, the new PnvChip operation will let us choose the chip
class to use when we introduce the different chip classes for Power9
and Power8. It hides away the processor chip controllers from the
machine.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-06-21 21:22:53 +10:00
Cédric Le Goater
d35aefa9ae ppc/pnv: introduce a new intc_create() operation to the chip model
On Power9, the thread interrupt presenter has a different type and is
linked to the chip owning the cores.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-06-21 21:22:53 +10:00
David Gibson
7388efafc2 target/ppc, spapr: Move VPA information to machine_data
CPUPPCState currently contains a number of fields containing the state of
the VPA.  The VPA is a PAPR specific concept covering several guest/host
shared memory areas used to communicate some information with the
hypervisor.

As a PAPR concept this is really machine specific information, although it
is per-cpu, so it doesn't really belong in the core CPU state structure.

There's also other information that's per-cpu, but platform/machine
specific.  So create a (void *)machine_data in PowerPCCPU which can be
used by the machine to locate per-cpu data.  Intialization, lifetime and
cleanup of machine_data is entirely up to the machine type.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
2018-06-16 16:32:50 +10:00
David Gibson
08304a8689 pnv_core: Allocate cpu thread objects individually
Currently, we allocate space for all the cpu objects within a single core
in one big block.  This was copied from an older version of the spapr code
and requires some ugly pointer manipulation to extract the individual
objects.

This design was due to a misunderstanding of qemu lifetime conventions and
has already been changed in spapr (in 94ad93bd "spapr_cpu_core: instantiate
CPUs separately".

Make an equivalent change in pnv_core to get rid of the nasty pointer
arithmetic.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
2018-06-16 16:32:33 +10:00
Mark Cave-Ayland
f1114c17ee mac_newworld: add via machine option to control mac99 VIA/ADB configuration
This option allows the VIA configuration to be controlled between 3
different possible setups: cuda, pmu-adb and pmu with USB rather than ADB
keyboard/mouse.

For the moment we don't do anything with the configuration except to pass
it to the macio device (the via-cuda parent) and also to the firmware via
the fw_cfg interface so that it can present the correct device tree.

The default is cuda which is the current default and so will have no
change in behaviour.

Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-06-16 16:32:33 +10:00
Cédric Le Goater
d61c285703 ppc/pnv: fix LPC HC firmware address space
A specific MemoryRegion is required for the LPC HC Firmware address
space.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-06-12 10:44:36 +10:00
Mark Cave-Ayland
5b64db9754 ppc: add missing FW_CFG_PPC_NVRAM_FLAT definition
This is used in OpenBIOS to define the memory layout of the NVRAM device. Whilst
currently left at its default value, add the missing definition to ensure it is
reserved.

Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-06-12 10:44:36 +10:00
Thomas Huth
f23c81073a trivial: Do not include pci.h if it is not necessary
There is no need to include pci.h in these files.

Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2018-05-20 08:40:00 +03:00
David Hildenbrand
0c9269a52d spapr: rename "hotplug memory" terminology to "device memory"
Let's make it clear at relevant places that we are dealing with device
memory. That it can be used for memory hotplug is just a special case.

Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180423165126.15441-11-david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
[ehabkost: rebased series, solved conflicts at spapr.c]
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2018-05-07 10:00:02 -03:00
David Hildenbrand
b0c14ec4ef machine: make MemoryHotplugState accessible via the machine
Let's allow to query the MemoryHotplugState directly from the machine.
If the pointer is NULL, the machine does not support memory devices. If
the pointer is !NULL, the machine supports memory devices and the
data structure contains information about the applicable physical
guest address space region.

This allows us to generically detect if a certain machine has support
for memory devices, and to generically manage it (find free address
range, plug/unplug a memory region).

We will rename "MemoryHotplugState" to something more meaningful
("DeviceMemory") after we completed factoring out the pc-dimm code into
MemoryDevice code.

Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20180423165126.15441-3-david@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
[ehabkost: rebased series, solved conflicts at spapr.c]
[ehabkost: squashed fix to use g_malloc0()]
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2018-05-07 10:00:02 -03:00