monitor_qmp_dispatcher_co() runs in the iohandler AioContext that is not
polled during nested event loops. The coroutine currently reschedules
itself in the main loop's qemu_aio_context AioContext, which is polled
during nested event loops. One known problem is that QMP device-add
calls drain_call_rcu(), which temporarily drops the BQL, leading to all
sorts of havoc like other vCPU threads re-entering device emulation code
while another vCPU thread is waiting in device emulation code with
aio_poll().
Paolo Bonzini suggested running non-coroutine QMP handlers in the
iohandler AioContext. This avoids trouble with nested event loops. His
original idea was to move coroutine rescheduling to
monitor_qmp_dispatch(), but I resorted to moving it to qmp_dispatch()
because we don't know if the QMP handler needs to run in coroutine
context in monitor_qmp_dispatch(). monitor_qmp_dispatch() would have
been nicer since it's associated with the monitor implementation and not
as general as qmp_dispatch(), which is also used by qemu-ga.
A number of qemu-iotests need updated .out files because the order of
QMP events vs QMP responses has changed.
Solves Issue #1933.
Cc: qemu-stable@nongnu.org
Fixes: 7bed89958b ("device_core: use drain_call_rcu in in qmp_device_add")
Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2215192
Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2214985
Buglink: https://issues.redhat.com/browse/RHEL-17369
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-ID: <20240118144823.1497953-4-stefanha@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Tested-by: Fiona Ebner <f.ebner@proxmox.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
One clear problem with how qcow2's refcount structure rebuild algorithm
used to be before "qcow2: Improve refcount structure rebuilding" was
that it is prone to failure for qcow2 images on block devices: There is
generally unused space after the actual image, and if that exceeds what
one refblock covers, the old algorithm would invariably write the
reftable past the block device's end, which cannot work. The new
algorithm does not have this problem.
Test it with three tests:
(1) Create an image with more empty space at the end than what one
refblock covers, see whether rebuilding the refcount structures
results in a change in the image file length. (It should not.)
(2) Leave precisely enough space somewhere at the beginning of the image
for the new reftable (and the refblock for that place), see whether
the new algorithm puts the reftable there. (It should.)
(3) Test the original problem: Create (something like) a block device
with a fixed size, then create a qcow2 image in there, write some
data, and then have qemu-img check rebuild the refcount structures.
Before HEAD^, the reftable would have been written past the image
file end, i.e. outside of what the block device provides, which
cannot work. HEAD^ should have fixed that.
("Something like a block device" means a loop device if we can use
one ("sudo -n losetup" works), or a FUSE block export with
growable=false otherwise.)
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Hanna Reitz <hreitz@redhat.com>
Message-Id: <20220405134652.19278-3-hreitz@redhat.com>
This is simply:
$ cd tests/qemu-iotests; sed -i -e 's/ *$//' *.out
Signed-off-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Message-id: 1418110684-19528-2-git-send-email-famz@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
There are certain cases where repairing a qcow2 image might actually
damage it further (or rather, where repairing it has in fact damaged it
further with the old qcow2 check implementation). This should not
happen, so add a test for these cases.
Furthermore, the repair function now repairs refblocks beyond the image
end by resizing the image accordingly. Add several tests for this as
well.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>