target-arm: fix support for VRSQRTE.

Now use the same algorithm as described in the ARM ARM.

Signed-off-by: Christophe Lyon <christophe.lyon@st.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
This commit is contained in:
Christophe Lyon 2011-02-21 17:38:48 +01:00 committed by Aurelien Jarno
parent fe0e4872e4
commit e07be5d2ae

View File

@ -2755,11 +2755,104 @@ float32 HELPER(recpe_f32)(float32 a, CPUState *env)
return make_float32(val32); return make_float32(val32);
} }
/* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM.
*/
static float64 recip_sqrt_estimate(float64 a, CPUState *env)
{
float_status *s = &env->vfp.standard_fp_status;
float64 q;
int64_t q_int;
if (float64_lt(a, float64_half, s)) {
/* range 0.25 <= a < 0.5 */
/* a in units of 1/512 rounded down */
/* q0 = (int)(a * 512.0); */
q = float64_mul(float64_512, a, s);
q_int = float64_to_int64_round_to_zero(q, s);
/* reciprocal root r */
/* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
q = int64_to_float64(q_int, s);
q = float64_add(q, float64_half, s);
q = float64_div(q, float64_512, s);
q = float64_sqrt(q, s);
q = float64_div(float64_one, q, s);
} else {
/* range 0.5 <= a < 1.0 */
/* a in units of 1/256 rounded down */
/* q1 = (int)(a * 256.0); */
q = float64_mul(float64_256, a, s);
int64_t q_int = float64_to_int64_round_to_zero(q, s);
/* reciprocal root r */
/* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
q = int64_to_float64(q_int, s);
q = float64_add(q, float64_half, s);
q = float64_div(q, float64_256, s);
q = float64_sqrt(q, s);
q = float64_div(float64_one, q, s);
}
/* r in units of 1/256 rounded to nearest */
/* s = (int)(256.0 * r + 0.5); */
q = float64_mul(q, float64_256,s );
q = float64_add(q, float64_half, s);
q_int = float64_to_int64_round_to_zero(q, s);
/* return (double)s / 256.0;*/
return float64_div(int64_to_float64(q_int, s), float64_256, s);
}
float32 HELPER(rsqrte_f32)(float32 a, CPUState *env) float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
{ {
float_status *s = &env->vfp.fp_status; float_status *s = &env->vfp.standard_fp_status;
float32 one = int32_to_float32(1, s); int result_exp;
return float32_div(one, float32_sqrt(a, s), s); float64 f64;
uint32_t val;
uint64_t val64;
val = float32_val(a);
if (float32_is_any_nan(a)) {
if (float32_is_signaling_nan(a)) {
float_raise(float_flag_invalid, s);
}
return float32_default_nan;
} else if (float32_is_zero_or_denormal(a)) {
float_raise(float_flag_divbyzero, s);
return float32_set_sign(float32_infinity, float32_is_neg(a));
} else if (float32_is_neg(a)) {
float_raise(float_flag_invalid, s);
return float32_default_nan;
} else if (float32_is_infinity(a)) {
return float32_zero;
}
/* Normalize to a double-precision value between 0.25 and 1.0,
* preserving the parity of the exponent. */
if ((val & 0x800000) == 0) {
f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
| (0x3feULL << 52)
| ((uint64_t)(val & 0x7fffff) << 29));
} else {
f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
| (0x3fdULL << 52)
| ((uint64_t)(val & 0x7fffff) << 29));
}
result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
f64 = recip_sqrt_estimate(f64, env);
val64 = float64_val(f64);
val = ((val64 >> 63) & 0x80000000)
| ((result_exp & 0xff) << 23)
| ((val64 >> 29) & 0x7fffff);
return make_float32(val);
} }
uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env) uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
@ -2780,13 +2873,23 @@ uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env) uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
{ {
float_status *s = &env->vfp.fp_status; float64 f64;
float32 tmp;
tmp = int32_to_float32(a, s); if ((a & 0xc0000000) == 0) {
tmp = float32_scalbn(tmp, -32, s); return 0xffffffff;
tmp = helper_rsqrte_f32(tmp, env); }
tmp = float32_scalbn(tmp, 31, s);
return float32_to_int32(tmp, s); if (a & 0x80000000) {
f64 = make_float64((0x3feULL << 52)
| ((uint64_t)(a & 0x7fffffff) << 21));
} else { /* bits 31-30 == '01' */
f64 = make_float64((0x3fdULL << 52)
| ((uint64_t)(a & 0x3fffffff) << 22));
}
f64 = recip_sqrt_estimate(f64, env);
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
} }
void HELPER(set_teecr)(CPUState *env, uint32_t val) void HELPER(set_teecr)(CPUState *env, uint32_t val)