diff --git a/target-arm/helper.c b/target-arm/helper.c index 031f2ecc62..1852352abd 100644 --- a/target-arm/helper.c +++ b/target-arm/helper.c @@ -2755,11 +2755,104 @@ float32 HELPER(recpe_f32)(float32 a, CPUState *env) return make_float32(val32); } +/* The algorithm that must be used to calculate the estimate + * is specified by the ARM ARM. + */ +static float64 recip_sqrt_estimate(float64 a, CPUState *env) +{ + float_status *s = &env->vfp.standard_fp_status; + float64 q; + int64_t q_int; + + if (float64_lt(a, float64_half, s)) { + /* range 0.25 <= a < 0.5 */ + + /* a in units of 1/512 rounded down */ + /* q0 = (int)(a * 512.0); */ + q = float64_mul(float64_512, a, s); + q_int = float64_to_int64_round_to_zero(q, s); + + /* reciprocal root r */ + /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ + q = int64_to_float64(q_int, s); + q = float64_add(q, float64_half, s); + q = float64_div(q, float64_512, s); + q = float64_sqrt(q, s); + q = float64_div(float64_one, q, s); + } else { + /* range 0.5 <= a < 1.0 */ + + /* a in units of 1/256 rounded down */ + /* q1 = (int)(a * 256.0); */ + q = float64_mul(float64_256, a, s); + int64_t q_int = float64_to_int64_round_to_zero(q, s); + + /* reciprocal root r */ + /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ + q = int64_to_float64(q_int, s); + q = float64_add(q, float64_half, s); + q = float64_div(q, float64_256, s); + q = float64_sqrt(q, s); + q = float64_div(float64_one, q, s); + } + /* r in units of 1/256 rounded to nearest */ + /* s = (int)(256.0 * r + 0.5); */ + + q = float64_mul(q, float64_256,s ); + q = float64_add(q, float64_half, s); + q_int = float64_to_int64_round_to_zero(q, s); + + /* return (double)s / 256.0;*/ + return float64_div(int64_to_float64(q_int, s), float64_256, s); +} + float32 HELPER(rsqrte_f32)(float32 a, CPUState *env) { - float_status *s = &env->vfp.fp_status; - float32 one = int32_to_float32(1, s); - return float32_div(one, float32_sqrt(a, s), s); + float_status *s = &env->vfp.standard_fp_status; + int result_exp; + float64 f64; + uint32_t val; + uint64_t val64; + + val = float32_val(a); + + if (float32_is_any_nan(a)) { + if (float32_is_signaling_nan(a)) { + float_raise(float_flag_invalid, s); + } + return float32_default_nan; + } else if (float32_is_zero_or_denormal(a)) { + float_raise(float_flag_divbyzero, s); + return float32_set_sign(float32_infinity, float32_is_neg(a)); + } else if (float32_is_neg(a)) { + float_raise(float_flag_invalid, s); + return float32_default_nan; + } else if (float32_is_infinity(a)) { + return float32_zero; + } + + /* Normalize to a double-precision value between 0.25 and 1.0, + * preserving the parity of the exponent. */ + if ((val & 0x800000) == 0) { + f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) + | (0x3feULL << 52) + | ((uint64_t)(val & 0x7fffff) << 29)); + } else { + f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) + | (0x3fdULL << 52) + | ((uint64_t)(val & 0x7fffff) << 29)); + } + + result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; + + f64 = recip_sqrt_estimate(f64, env); + + val64 = float64_val(f64); + + val = ((val64 >> 63) & 0x80000000) + | ((result_exp & 0xff) << 23) + | ((val64 >> 29) & 0x7fffff); + return make_float32(val); } uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env) @@ -2780,13 +2873,23 @@ uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env) uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env) { - float_status *s = &env->vfp.fp_status; - float32 tmp; - tmp = int32_to_float32(a, s); - tmp = float32_scalbn(tmp, -32, s); - tmp = helper_rsqrte_f32(tmp, env); - tmp = float32_scalbn(tmp, 31, s); - return float32_to_int32(tmp, s); + float64 f64; + + if ((a & 0xc0000000) == 0) { + return 0xffffffff; + } + + if (a & 0x80000000) { + f64 = make_float64((0x3feULL << 52) + | ((uint64_t)(a & 0x7fffffff) << 21)); + } else { /* bits 31-30 == '01' */ + f64 = make_float64((0x3fdULL << 52) + | ((uint64_t)(a & 0x3fffffff) << 22)); + } + + f64 = recip_sqrt_estimate(f64, env); + + return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); } void HELPER(set_teecr)(CPUState *env, uint32_t val)