Separate the DMA controllers - Convert ESP to new DMA methods (Blue Swirl)

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2143 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2006-09-03 16:09:07 +00:00
parent 91cc029598
commit 67e999be93
6 changed files with 338 additions and 173 deletions

View File

@ -359,8 +359,8 @@ VL_OBJS+= sun4u.o ide.o pckbd.o ps2.o vga.o apb_pci.o
VL_OBJS+= fdc.o mc146818rtc.o serial.o m48t59.o
VL_OBJS+= cirrus_vga.o parallel.o
else
VL_OBJS+= sun4m.o tcx.o lance.o iommu.o m48t59.o slavio_intctl.o
VL_OBJS+= slavio_timer.o slavio_serial.o slavio_misc.o fdc.o esp.o
VL_OBJS+= sun4m.o tcx.o pcnet.o iommu.o m48t59.o slavio_intctl.o
VL_OBJS+= slavio_timer.o slavio_serial.o slavio_misc.o fdc.o esp.o sparc32_dma.o
endif
endif
ifeq ($(TARGET_BASE_ARCH), arm)

172
hw/esp.c
View File

@ -1,5 +1,5 @@
/*
* QEMU ESP emulation
* QEMU ESP/NCR53C9x emulation
*
* Copyright (c) 2005-2006 Fabrice Bellard
*
@ -26,33 +26,31 @@
/* debug ESP card */
//#define DEBUG_ESP
/*
* On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), also
* produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
*/
#ifdef DEBUG_ESP
#define DPRINTF(fmt, args...) \
do { printf("ESP: " fmt , ##args); } while (0)
#define pic_set_irq(irq, level) \
do { printf("ESP: set_irq(%d): %d\n", (irq), (level)); pic_set_irq((irq),(level));} while (0)
#else
#define DPRINTF(fmt, args...)
#endif
#define ESPDMA_REGS 4
#define ESPDMA_MAXADDR (ESPDMA_REGS * 4 - 1)
#define ESP_MAXREG 0x3f
#define TI_BUFSZ 32
#define DMA_VER 0xa0000000
#define DMA_INTR 1
#define DMA_INTREN 0x10
#define DMA_WRITE_MEM 0x100
#define DMA_LOADED 0x04000000
typedef struct ESPState ESPState;
struct ESPState {
BlockDriverState **bd;
uint8_t rregs[ESP_MAXREG];
uint8_t wregs[ESP_MAXREG];
int irq;
uint32_t espdmaregs[ESPDMA_REGS];
uint32_t ti_size;
int32_t ti_size;
uint32_t ti_rptr, ti_wptr;
uint8_t ti_buf[TI_BUFSZ];
int sense;
@ -66,6 +64,7 @@ struct ESPState {
uint32_t dma_left;
uint8_t *async_buf;
uint32_t async_len;
void *dma_opaque;
};
#define STAT_DO 0x00
@ -97,9 +96,7 @@ static int get_cmd(ESPState *s, uint8_t *buf)
target = s->wregs[4] & 7;
DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
if (s->dma) {
DPRINTF("DMA Direction: %c, addr 0x%8.8x\n",
s->espdmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->espdmaregs[1]);
sparc_iommu_memory_read(s->espdmaregs[1], buf, dmalen);
espdma_memory_read(s->dma_opaque, buf, dmalen);
} else {
buf[0] = 0;
memcpy(&buf[1], s->ti_buf, dmalen);
@ -116,13 +113,12 @@ static int get_cmd(ESPState *s, uint8_t *buf)
s->async_len = 0;
}
if (target >= 4 || !s->scsi_dev[target]) {
if (target >= MAX_DISKS || !s->scsi_dev[target]) {
// No such drive
s->rregs[4] = STAT_IN;
s->rregs[5] = INTR_DC;
s->rregs[6] = SEQ_0;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
espdma_raise_irq(s->dma_opaque);
return 0;
}
s->current_dev = s->scsi_dev[target];
@ -137,25 +133,21 @@ static void do_cmd(ESPState *s, uint8_t *buf)
DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
lun = buf[0] & 7;
datalen = scsi_send_command(s->current_dev, 0, &buf[1], lun);
if (datalen == 0) {
s->ti_size = 0;
} else {
s->ti_size = datalen;
if (datalen != 0) {
s->rregs[4] = STAT_IN | STAT_TC;
s->dma_left = 0;
if (datalen > 0) {
s->rregs[4] |= STAT_DI;
s->ti_size = datalen;
scsi_read_data(s->current_dev, 0);
} else {
s->rregs[4] |= STAT_DO;
s->ti_size = -datalen;
scsi_write_data(s->current_dev, 0);
}
}
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
espdma_raise_irq(s->dma_opaque);
}
static void handle_satn(ESPState *s)
@ -174,12 +166,10 @@ static void handle_satn_stop(ESPState *s)
if (s->cmdlen) {
DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
s->do_cmd = 1;
s->espdmaregs[1] += s->cmdlen;
s->rregs[4] = STAT_IN | STAT_TC | STAT_CD;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
espdma_raise_irq(s->dma_opaque);
}
}
@ -189,9 +179,7 @@ static void write_response(ESPState *s)
s->ti_buf[0] = s->sense;
s->ti_buf[1] = 0;
if (s->dma) {
DPRINTF("DMA Direction: %c\n",
s->espdmaregs[0] & DMA_WRITE_MEM ? 'w': 'r');
sparc_iommu_memory_write(s->espdmaregs[1], s->ti_buf, 2);
espdma_memory_write(s->dma_opaque, s->ti_buf, 2);
s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
s->rregs[5] = INTR_BS | INTR_FC;
s->rregs[6] = SEQ_CD;
@ -201,9 +189,7 @@ static void write_response(ESPState *s)
s->ti_wptr = 0;
s->rregs[7] = 2;
}
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
espdma_raise_irq(s->dma_opaque);
}
static void esp_dma_done(ESPState *s)
@ -212,24 +198,19 @@ static void esp_dma_done(ESPState *s)
s->rregs[5] = INTR_BS;
s->rregs[6] = 0;
s->rregs[7] = 0;
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
espdma_raise_irq(s->dma_opaque);
}
static void esp_do_dma(ESPState *s)
{
uint32_t addr, len;
uint32_t len;
int to_device;
to_device = (s->espdmaregs[0] & DMA_WRITE_MEM) == 0;
addr = s->espdmaregs[1];
to_device = (s->ti_size < 0);
len = s->dma_left;
DPRINTF("DMA address %08x len %08x\n", addr, len);
if (s->do_cmd) {
s->espdmaregs[1] += len;
s->ti_size -= len;
DPRINTF("command len %d + %d\n", s->cmdlen, len);
sparc_iommu_memory_read(addr, &s->cmdbuf[s->cmdlen], len);
espdma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
s->ti_size = 0;
s->cmdlen = 0;
s->do_cmd = 0;
@ -244,19 +225,20 @@ static void esp_do_dma(ESPState *s)
len = s->async_len;
}
if (to_device) {
sparc_iommu_memory_read(addr, s->async_buf, len);
espdma_memory_read(s->dma_opaque, s->async_buf, len);
} else {
sparc_iommu_memory_write(addr, s->async_buf, len);
espdma_memory_write(s->dma_opaque, s->async_buf, len);
}
s->ti_size -= len;
s->dma_left -= len;
s->async_buf += len;
s->async_len -= len;
s->espdmaregs[1] += len;
if (s->async_len == 0) {
if (to_device) {
// ti_size is negative
s->ti_size += len;
scsi_write_data(s->current_dev, 0);
} else {
s->ti_size -= len;
scsi_read_data(s->current_dev, 0);
}
}
@ -303,6 +285,8 @@ static void handle_ti(ESPState *s)
if (s->do_cmd)
minlen = (dmalen < 32) ? dmalen : 32;
else if (s->ti_size < 0)
minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
else
minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
DPRINTF("Transfer Information len %d\n", minlen);
@ -320,13 +304,13 @@ static void handle_ti(ESPState *s)
}
}
static void esp_reset(void *opaque)
void esp_reset(void *opaque)
{
ESPState *s = opaque;
memset(s->rregs, 0, ESP_MAXREG);
memset(s->wregs, 0, ESP_MAXREG);
s->rregs[0x0e] = 0x4; // Indicate fas100a
memset(s->espdmaregs, 0, ESPDMA_REGS * 4);
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
@ -353,7 +337,7 @@ static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
} else {
s->rregs[2] = s->ti_buf[s->ti_rptr++];
}
pic_set_irq(s->irq, 1);
espdma_raise_irq(s->dma_opaque);
}
if (s->ti_size == 0) {
s->ti_rptr = 0;
@ -364,8 +348,7 @@ static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
// interrupt
// Clear interrupt/error status bits
s->rregs[4] &= ~(STAT_IN | STAT_GE | STAT_PE);
pic_set_irq(s->irq, 0);
s->espdmaregs[0] &= ~DMA_INTR;
espdma_clear_irq(s->dma_opaque);
break;
default:
break;
@ -426,8 +409,7 @@ static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
DPRINTF("Bus reset (%2.2x)\n", val);
s->rregs[5] = INTR_RST;
if (!(s->wregs[8] & 0x40)) {
s->espdmaregs[0] |= DMA_INTR;
pic_set_irq(s->irq, 1);
espdma_raise_irq(s->dma_opaque);
}
break;
case 0x10:
@ -490,68 +472,12 @@ static CPUWriteMemoryFunc *esp_mem_write[3] = {
esp_mem_writeb,
};
static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("read dmareg[%d]: 0x%8.8x\n", saddr, s->espdmaregs[saddr]);
return s->espdmaregs[saddr];
}
static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr & ESPDMA_MAXADDR) >> 2;
DPRINTF("write dmareg[%d]: 0x%8.8x -> 0x%8.8x\n", saddr, s->espdmaregs[saddr], val);
switch (saddr) {
case 0:
if (!(val & DMA_INTREN))
pic_set_irq(s->irq, 0);
if (val & 0x80) {
esp_reset(s);
} else if (val & 0x40) {
val &= ~0x40;
} else if (val == 0)
val = 0x40;
val &= 0x0fffffff;
val |= DMA_VER;
break;
case 1:
s->espdmaregs[0] |= DMA_LOADED;
break;
default:
break;
}
s->espdmaregs[saddr] = val;
}
static CPUReadMemoryFunc *espdma_mem_read[3] = {
espdma_mem_readl,
espdma_mem_readl,
espdma_mem_readl,
};
static CPUWriteMemoryFunc *espdma_mem_write[3] = {
espdma_mem_writel,
espdma_mem_writel,
espdma_mem_writel,
};
static void esp_save(QEMUFile *f, void *opaque)
{
ESPState *s = opaque;
unsigned int i;
qemu_put_buffer(f, s->rregs, ESP_MAXREG);
qemu_put_buffer(f, s->wregs, ESP_MAXREG);
qemu_put_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_put_be32s(f, &s->espdmaregs[i]);
qemu_put_be32s(f, &s->ti_size);
qemu_put_be32s(f, &s->ti_rptr);
qemu_put_be32s(f, &s->ti_wptr);
@ -562,16 +488,12 @@ static void esp_save(QEMUFile *f, void *opaque)
static int esp_load(QEMUFile *f, void *opaque, int version_id)
{
ESPState *s = opaque;
unsigned int i;
if (version_id != 1)
return -EINVAL;
if (version_id != 2)
return -EINVAL; // Cannot emulate 1
qemu_get_buffer(f, s->rregs, ESP_MAXREG);
qemu_get_buffer(f, s->wregs, ESP_MAXREG);
qemu_get_be32s(f, &s->irq);
for (i = 0; i < ESPDMA_REGS; i++)
qemu_get_be32s(f, &s->espdmaregs[i]);
qemu_get_be32s(f, &s->ti_size);
qemu_get_be32s(f, &s->ti_rptr);
qemu_get_be32s(f, &s->ti_wptr);
@ -581,28 +503,25 @@ static int esp_load(QEMUFile *f, void *opaque, int version_id)
return 0;
}
void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr)
void *esp_init(BlockDriverState **bd, uint32_t espaddr, void *dma_opaque)
{
ESPState *s;
int esp_io_memory, espdma_io_memory;
int esp_io_memory;
int i;
s = qemu_mallocz(sizeof(ESPState));
if (!s)
return;
return NULL;
s->bd = bd;
s->irq = irq;
s->dma_opaque = dma_opaque;
esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory);
espdma_io_memory = cpu_register_io_memory(0, espdma_mem_read, espdma_mem_write, s);
cpu_register_physical_memory(espdaddr, 16, espdma_io_memory);
esp_reset(s);
register_savevm("esp", espaddr, 1, esp_save, esp_load, s);
register_savevm("esp", espaddr, 2, esp_save, esp_load, s);
qemu_register_reset(esp_reset, s);
for (i = 0; i < MAX_DISKS; i++) {
if (bs_table[i]) {
@ -611,5 +530,6 @@ void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdadd
scsi_disk_init(bs_table[i], 0, esp_command_complete, s);
}
}
}
return s;
}

View File

@ -206,19 +206,11 @@ static uint32_t iommu_translate_pa(IOMMUState *s, uint32_t addr, uint32_t pa)
return pa;
}
uint32_t iommu_translate_local(void *opaque, uint32_t addr)
{
uint32_t flags;
flags = iommu_page_get_flags(opaque, addr);
return iommu_translate_pa(opaque, addr, flags);
}
void sparc_iommu_memory_rw_local(void *opaque, target_phys_addr_t addr,
uint8_t *buf, int len, int is_write)
void sparc_iommu_memory_rw(void *opaque, target_phys_addr_t addr,
uint8_t *buf, int len, int is_write)
{
int l, flags;
target_ulong page, phys_addr;
void * p;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;

249
hw/sparc32_dma.c Normal file
View File

@ -0,0 +1,249 @@
/*
* QEMU Sparc32 DMA controller emulation
*
* Copyright (c) 2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
/* debug DMA */
//#define DEBUG_DMA
/*
* This is the DMA controller part of chip STP2000 (Master I/O), also
* produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
*/
#ifdef DEBUG_DMA
#define DPRINTF(fmt, args...) \
do { printf("DMA: " fmt , ##args); } while (0)
#define pic_set_irq_new(ctl, irq, level) \
do { printf("DMA: set_irq(%d): %d\n", (irq), (level)); \
pic_set_irq_new((ctl), (irq),(level));} while (0)
#else
#define DPRINTF(fmt, args...)
#endif
#define DMA_REGS 8
#define DMA_MAXADDR (DMA_REGS * 4 - 1)
#define DMA_VER 0xa0000000
#define DMA_INTR 1
#define DMA_INTREN 0x10
#define DMA_WRITE_MEM 0x100
#define DMA_LOADED 0x04000000
#define DMA_RESET 0x80
typedef struct DMAState DMAState;
struct DMAState {
uint32_t dmaregs[DMA_REGS];
int espirq, leirq;
void *iommu, *esp_opaque, *lance_opaque, *intctl;
};
void ledma_set_irq(void *opaque, int isr)
{
DMAState *s = opaque;
pic_set_irq_new(s->intctl, s->leirq, isr);
}
void ledma_memory_read(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len)
{
DMAState *s = opaque;
DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
sparc_iommu_memory_read(s->iommu, addr | s->dmaregs[7], buf, len);
}
void ledma_memory_write(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len)
{
DMAState *s = opaque;
DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
sparc_iommu_memory_write(s->iommu, addr | s->dmaregs[7], buf, len);
}
void espdma_raise_irq(void *opaque)
{
DMAState *s = opaque;
s->dmaregs[0] |= DMA_INTR;
pic_set_irq_new(s->intctl, s->espirq, 1);
}
void espdma_clear_irq(void *opaque)
{
DMAState *s = opaque;
s->dmaregs[0] &= ~DMA_INTR;
pic_set_irq_new(s->intctl, s->espirq, 0);
}
void espdma_memory_read(void *opaque, uint8_t *buf, int len)
{
DMAState *s = opaque;
DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
s->dmaregs[0] |= DMA_INTR;
s->dmaregs[1] += len;
}
void espdma_memory_write(void *opaque, uint8_t *buf, int len)
{
DMAState *s = opaque;
DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
s->dmaregs[0] |= DMA_INTR;
s->dmaregs[1] += len;
}
static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
{
DMAState *s = opaque;
uint32_t saddr;
saddr = (addr & DMA_MAXADDR) >> 2;
DPRINTF("read dmareg[%d]: 0x%8.8x\n", saddr, s->dmaregs[saddr]);
return s->dmaregs[saddr];
}
static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
DMAState *s = opaque;
uint32_t saddr;
saddr = (addr & DMA_MAXADDR) >> 2;
DPRINTF("write dmareg[%d]: 0x%8.8x -> 0x%8.8x\n", saddr, s->dmaregs[saddr], val);
switch (saddr) {
case 0:
if (!(val & DMA_INTREN))
pic_set_irq_new(s->intctl, s->espirq, 0);
if (val & DMA_RESET) {
esp_reset(s->esp_opaque);
} else if (val & 0x40) {
val &= ~0x40;
} else if (val == 0)
val = 0x40;
val &= 0x0fffffff;
val |= DMA_VER;
break;
case 1:
s->dmaregs[0] |= DMA_LOADED;
break;
case 4:
if (!(val & DMA_INTREN))
pic_set_irq_new(s->intctl, s->leirq, 0);
if (val & DMA_RESET)
pcnet_h_reset(s->lance_opaque);
val &= 0x0fffffff;
val |= DMA_VER;
break;
default:
break;
}
s->dmaregs[saddr] = val;
}
static CPUReadMemoryFunc *dma_mem_read[3] = {
dma_mem_readl,
dma_mem_readl,
dma_mem_readl,
};
static CPUWriteMemoryFunc *dma_mem_write[3] = {
dma_mem_writel,
dma_mem_writel,
dma_mem_writel,
};
static void dma_reset(void *opaque)
{
DMAState *s = opaque;
memset(s->dmaregs, 0, DMA_REGS * 4);
s->dmaregs[0] = DMA_VER;
s->dmaregs[4] = DMA_VER;
}
static void dma_save(QEMUFile *f, void *opaque)
{
DMAState *s = opaque;
unsigned int i;
for (i = 0; i < DMA_REGS; i++)
qemu_put_be32s(f, &s->dmaregs[i]);
}
static int dma_load(QEMUFile *f, void *opaque, int version_id)
{
DMAState *s = opaque;
unsigned int i;
if (version_id != 1)
return -EINVAL;
for (i = 0; i < DMA_REGS; i++)
qemu_get_be32s(f, &s->dmaregs[i]);
return 0;
}
void *sparc32_dma_init(uint32_t daddr, int espirq, int leirq, void *iommu, void *intctl)
{
DMAState *s;
int dma_io_memory;
s = qemu_mallocz(sizeof(DMAState));
if (!s)
return NULL;
s->espirq = espirq;
s->leirq = leirq;
s->iommu = iommu;
s->intctl = intctl;
dma_io_memory = cpu_register_io_memory(0, dma_mem_read, dma_mem_write, s);
cpu_register_physical_memory(daddr, 16 * 2, dma_io_memory);
register_savevm("sparc32_dma", daddr, 1, dma_save, dma_load, s);
qemu_register_reset(dma_reset, s);
return s;
}
void sparc32_dma_set_reset_data(void *opaque, void *esp_opaque,
void *lance_opaque)
{
DMAState *s = opaque;
s->esp_opaque = esp_opaque;
s->lance_opaque = lance_opaque;
}

View File

@ -37,10 +37,9 @@
#define PHYS_JJ_IOMMU 0x10000000 /* I/O MMU */
#define PHYS_JJ_TCX_FB 0x50000000 /* TCX frame buffer */
#define PHYS_JJ_SLAVIO 0x70000000 /* Slavio base */
#define PHYS_JJ_ESPDMA 0x78400000 /* ESP DMA controller */
#define PHYS_JJ_DMA 0x78400000 /* DMA controller */
#define PHYS_JJ_ESP 0x78800000 /* ESP SCSI */
#define PHYS_JJ_ESP_IRQ 18
#define PHYS_JJ_LEDMA 0x78400010 /* Lance DMA controller */
#define PHYS_JJ_LE 0x78C00000 /* Lance ethernet */
#define PHYS_JJ_LE_IRQ 16
#define PHYS_JJ_CLOCK 0x71D00000 /* Per-CPU timer/counter, L14 */
@ -192,25 +191,6 @@ void pic_set_irq_cpu(int irq, int level, unsigned int cpu)
slavio_pic_set_irq_cpu(slavio_intctl, irq, level, cpu);
}
static void *iommu;
uint32_t iommu_translate(uint32_t addr)
{
return iommu_translate_local(iommu, addr);
}
void sparc_iommu_memory_read(target_phys_addr_t addr,
uint8_t *buf, int len)
{
return sparc_iommu_memory_rw_local(iommu, addr, buf, len, 0);
}
void sparc_iommu_memory_write(target_phys_addr_t addr,
uint8_t *buf, int len)
{
return sparc_iommu_memory_rw_local(iommu, addr, buf, len, 1);
}
static void *slavio_misc;
void qemu_system_powerdown(void)
@ -235,6 +215,7 @@ static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
int ret, linux_boot;
unsigned int i;
long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
void *iommu, *dma, *main_esp, *main_lance = NULL;
linux_boot = (kernel_filename != NULL);
@ -255,12 +236,13 @@ static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
for(i = 0; i < smp_cpus; i++) {
slavio_intctl_set_cpu(slavio_intctl, i, envs[i]);
}
dma = sparc32_dma_init(PHYS_JJ_DMA, PHYS_JJ_ESP_IRQ, PHYS_JJ_LE_IRQ, iommu, slavio_intctl);
tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
if (nd_table[0].vlan) {
if (nd_table[0].model == NULL
|| strcmp(nd_table[0].model, "lance") == 0) {
lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
main_lance = lance_init(&nd_table[0], PHYS_JJ_LE, dma);
} else {
fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
exit (1);
@ -276,8 +258,9 @@ static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]);
fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
main_esp = esp_init(bs_table, PHYS_JJ_ESP, dma);
slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ);
sparc32_dma_set_reset_data(dma, main_esp, main_lance);
prom_offset = ram_size + vram_size;
cpu_register_physical_memory(PROM_ADDR,

45
vl.h
View File

@ -924,6 +924,9 @@ void pci_rtl8139_init(PCIBus *bus, NICInfo *nd);
/* pcnet.c */
void pci_pcnet_init(PCIBus *bus, NICInfo *nd);
void pcnet_h_reset(void *opaque);
void *lance_init(NICInfo *nd, uint32_t leaddr, void *dma_opaque);
/* pckbd.c */
@ -1027,22 +1030,24 @@ void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val);
/* sun4m.c */
extern QEMUMachine sun4m_machine;
void pic_set_irq_cpu(int irq, int level, unsigned int cpu);
/* ??? Remove iommu_translate once lance emulation has been converted. */
uint32_t iommu_translate(uint32_t addr);
void sparc_iommu_memory_read(target_phys_addr_t addr,
uint8_t *buf, int len);
void sparc_iommu_memory_write(target_phys_addr_t addr,
uint8_t *buf, int len);
/* iommu.c */
void *iommu_init(uint32_t addr);
/* ??? Remove iommu_translate_local. */
uint32_t iommu_translate_local(void *opaque, uint32_t addr);
void sparc_iommu_memory_rw_local(void *opaque, target_phys_addr_t addr,
void sparc_iommu_memory_rw(void *opaque, target_phys_addr_t addr,
uint8_t *buf, int len, int is_write);
static inline void sparc_iommu_memory_read(void *opaque,
target_phys_addr_t addr,
uint8_t *buf, int len)
{
sparc_iommu_memory_rw(opaque, addr, buf, len, 0);
}
/* lance.c */
void lance_init(NICInfo *nd, int irq, uint32_t leaddr, uint32_t ledaddr);
static inline void sparc_iommu_memory_write(void *opaque,
target_phys_addr_t addr,
uint8_t *buf, int len)
{
sparc_iommu_memory_rw(opaque, addr, buf, len, 1);
}
/* tcx.c */
void tcx_init(DisplayState *ds, uint32_t addr, uint8_t *vram_base,
@ -1074,7 +1079,23 @@ void *slavio_misc_init(uint32_t base, int irq);
void slavio_set_power_fail(void *opaque, int power_failing);
/* esp.c */
void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr);
void *esp_init(BlockDriverState **bd, uint32_t espaddr, void *dma_opaque);
void esp_reset(void *opaque);
/* sparc32_dma.c */
void *sparc32_dma_init(uint32_t daddr, int espirq, int leirq, void *iommu,
void *intctl);
void ledma_set_irq(void *opaque, int isr);
void ledma_memory_read(void *opaque, target_phys_addr_t addr, uint8_t *buf,
int len);
void ledma_memory_write(void *opaque, target_phys_addr_t addr, uint8_t *buf,
int len);
void espdma_raise_irq(void *opaque);
void espdma_clear_irq(void *opaque);
void espdma_memory_read(void *opaque, uint8_t *buf, int len);
void espdma_memory_write(void *opaque, uint8_t *buf, int len);
void sparc32_dma_set_reset_data(void *opaque, void *esp_opaque,
void *lance_opaque);
/* sun4u.c */
extern QEMUMachine sun4u_machine;