qemu/hw/riscv/spike.c

384 lines
14 KiB
C
Raw Normal View History

/*
* QEMU RISC-V Spike Board
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017-2018 SiFive, Inc.
*
* This provides a RISC-V Board with the following devices:
*
* 0) HTIF Console and Poweroff
* 1) CLINT (Timer and IPI)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "target/riscv/cpu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/spike.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/numa.h"
#include "hw/char/riscv_htif.h"
#include "hw/intc/riscv_aclint.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include <libfdt.h>
static const MemMapEntry spike_memmap[] = {
[SPIKE_MROM] = { 0x1000, 0xf000 },
[SPIKE_HTIF] = { 0x1000000, 0x1000 },
[SPIKE_CLINT] = { 0x2000000, 0x10000 },
[SPIKE_DRAM] = { 0x80000000, 0x0 },
};
static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
bool is_32_bit, bool htif_custom_base)
{
void *fdt;
int fdt_size;
uint64_t addr, size;
unsigned long clint_addr;
int cpu, socket;
MachineState *ms = MACHINE(s);
uint32_t *clint_cells;
uint32_t cpu_phandle, intc_phandle, phandle = 1;
char *name, *mem_name, *clint_name, *clust_name;
char *core_name, *cpu_name, *intc_name;
static const char * const clint_compat[2] = {
"sifive,clint0", "riscv,clint0"
};
fdt = ms->fdt = create_device_tree(&fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_add_subnode(fdt, "/htif");
qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
if (htif_custom_base) {
qemu_fdt_setprop_cells(fdt, "/htif", "reg",
0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
}
qemu_fdt_add_subnode(fdt, "/soc");
qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
for (socket = (riscv_socket_count(ms) - 1); socket >= 0; socket--) {
clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
qemu_fdt_add_subnode(fdt, clust_name);
clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
cpu_phandle = phandle++;
cpu_name = g_strdup_printf("/cpus/cpu@%d",
s->soc[socket].hartid_base + cpu);
qemu_fdt_add_subnode(fdt, cpu_name);
if (is_32_bit) {
qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
} else {
qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
}
name = riscv_isa_string(&s->soc[socket].harts[cpu]);
qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
g_free(name);
qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
s->soc[socket].hartid_base + cpu);
qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
riscv_socket_fdt_write_id(ms, cpu_name, socket);
qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
qemu_fdt_add_subnode(fdt, intc_name);
intc_phandle = phandle++;
qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
qemu_fdt_setprop_string(fdt, intc_name, "compatible",
"riscv,cpu-intc");
qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
qemu_fdt_add_subnode(fdt, core_name);
qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
g_free(core_name);
g_free(intc_name);
g_free(cpu_name);
}
addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(ms, socket);
size = riscv_socket_mem_size(ms, socket);
mem_name = g_strdup_printf("/memory@%lx", (long)addr);
qemu_fdt_add_subnode(fdt, mem_name);
qemu_fdt_setprop_cells(fdt, mem_name, "reg",
addr >> 32, addr, size >> 32, size);
qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
riscv_socket_fdt_write_id(ms, mem_name, socket);
g_free(mem_name);
clint_addr = memmap[SPIKE_CLINT].base +
(memmap[SPIKE_CLINT].size * socket);
clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
qemu_fdt_add_subnode(fdt, clint_name);
qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
(char **)&clint_compat, ARRAY_SIZE(clint_compat));
qemu_fdt_setprop_cells(fdt, clint_name, "reg",
0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
riscv_socket_fdt_write_id(ms, clint_name, socket);
g_free(clint_name);
g_free(clint_cells);
g_free(clust_name);
}
riscv_socket_fdt_write_distance_matrix(ms);
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
}
static bool spike_test_elf_image(char *filename)
{
Error *err = NULL;
load_elf_hdr(filename, NULL, NULL, &err);
if (err) {
error_free(err);
return false;
} else {
return true;
}
}
static void spike_board_init(MachineState *machine)
{
const MemMapEntry *memmap = spike_memmap;
SpikeState *s = SPIKE_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
target_ulong firmware_end_addr = memmap[SPIKE_DRAM].base;
target_ulong kernel_start_addr;
char *firmware_name;
uint32_t fdt_load_addr;
uint64_t kernel_entry;
char *soc_name;
int i, base_hartid, hart_count;
bool htif_custom_base = false;
/* Check socket count limit */
if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
error_report("number of sockets/nodes should be less than %d",
SPIKE_SOCKETS_MAX);
exit(1);
}
/* Initialize sockets */
for (i = 0; i < riscv_socket_count(machine); i++) {
if (!riscv_socket_check_hartids(machine, i)) {
error_report("discontinuous hartids in socket%d", i);
exit(1);
}
base_hartid = riscv_socket_first_hartid(machine, i);
if (base_hartid < 0) {
error_report("can't find hartid base for socket%d", i);
exit(1);
}
hart_count = riscv_socket_hart_count(machine, i);
if (hart_count < 0) {
error_report("can't find hart count for socket%d", i);
exit(1);
}
soc_name = g_strdup_printf("soc%d", i);
object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
TYPE_RISCV_HART_ARRAY);
g_free(soc_name);
object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
machine->cpu_type, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
base_hartid, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
hart_count, &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
/* Core Local Interruptor (timer and IPI) for each socket */
riscv_aclint_swi_create(
memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
base_hartid, hart_count, false);
riscv_aclint_mtimer_create(
memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
RISCV_ACLINT_SWI_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
}
/* register system main memory (actual RAM) */
memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
machine->ram);
/* boot rom */
memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
memmap[SPIKE_MROM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
mask_rom);
/* Find firmware */
firmware_name = riscv_find_firmware(machine->firmware,
riscv_default_firmware_name(&s->soc[0]));
/*
* Test the given firmware or kernel file to see if it is an ELF image.
* If it is an ELF, we assume it contains the symbols required for
* the HTIF console, otherwise we fall back to use the custom base
* passed from device tree for the HTIF console.
*/
if (!firmware_name && !machine->kernel_filename) {
htif_custom_base = true;
} else {
if (firmware_name) {
htif_custom_base = !spike_test_elf_image(firmware_name);
}
if (!htif_custom_base && machine->kernel_filename) {
htif_custom_base = !spike_test_elf_image(machine->kernel_filename);
}
}
/* Load firmware */
if (firmware_name) {
firmware_end_addr = riscv_load_firmware(firmware_name,
memmap[SPIKE_DRAM].base,
htif_symbol_callback);
g_free(firmware_name);
}
/* Create device tree */
create_fdt(s, memmap, riscv_is_32bit(&s->soc[0]), htif_custom_base);
/* Load kernel */
if (machine->kernel_filename) {
kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
firmware_end_addr);
hw/riscv: handle 32 bit CPUs kernel_entry in riscv_load_kernel() Next patch will move all calls to riscv_load_initrd() to riscv_load_kernel(). Machines that want to load initrd will be able to do via an extra flag to riscv_load_kernel(). This change will expose a sign-extend behavior that is happening in load_elf_ram_sym() when running 32 bit guests [1]. This is currently obscured by the fact that riscv_load_initrd() is using the return of riscv_load_kernel(), defined as target_ulong, and this return type will crop the higher 32 bits that would be padded with 1s by the sign extension when running in 32 bit targets. The changes to be done will force riscv_load_initrd() to use an uint64_t instead, exposing it to the padding when dealing with 32 bit CPUs. There is a discussion about whether load_elf_ram_sym() should or should not sign extend the value returned by 'lowaddr'. What we can do is to prevent the behavior change that the next patch will end up doing. riscv_load_initrd() wasn't dealing with 64 bit kernel entries when running 32 bit CPUs, and we want to keep it that way. One way of doing it is to use target_ulong in 'kernel_entry' in riscv_load_kernel() and rely on the fact that this var will not be sign extended for 32 bit targets. Another way is to explictly clear the higher 32 bits when running 32 bit CPUs for all possibilities of kernel_entry. We opted for the later. This will allow us to be clear about the design choices made in the function, while also allowing us to add a small comment about what load_elf_ram_sym() is doing. With this change, the consolation patch can do its job without worrying about unintended behavioral changes. [1] https://lists.gnu.org/archive/html/qemu-devel/2023-01/msg02281.html Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230206140022.2748401-2-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com> Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-02-06 17:00:20 +03:00
kernel_entry = riscv_load_kernel(machine, &s->soc[0],
kernel_start_addr,
true, htif_symbol_callback);
} else {
/*
* If dynamic firmware is used, it doesn't know where is the next mode
* if kernel argument is not set.
*/
kernel_entry = 0;
}
fdt_load_addr = riscv_compute_fdt_addr(memmap[SPIKE_DRAM].base,
hw/riscv: change riscv_compute_fdt_addr() semantics As it is now, riscv_compute_fdt_addr() is receiving a dram_base, a mem_size (which is defaulted to MachineState::ram_size in all boards) and the FDT pointer. And it makes a very important assumption: the DRAM interval dram_base + mem_size is contiguous. This is indeed the case for most boards that use a FDT. The Icicle Kit board works with 2 distinct RAM banks that are separated by a gap. We have a lower bank with 1GiB size, a gap follows, then at 64GiB the high memory starts. MachineClass::default_ram_size for this board is set to 1.5Gb, and machine_init() is enforcing it as minimal RAM size, meaning that there we'll always have at least 512 MiB in the Hi RAM area. Using riscv_compute_fdt_addr() in this board is weird because not only the board has sparse RAM, and it's calling it using the base address of the Lo RAM area, but it's also using a mem_size that we have guarantees that it will go up to the Hi RAM. All the function assumptions doesn't work for this board. In fact, what makes the function works at all in this case is a coincidence. Commit 1a475d39ef54 introduced a 3GB boundary for the FDT, down from 4Gb, that is enforced if dram_base is lower than 3072 MiB. For the Icicle Kit board, memmap[MICROCHIP_PFSOC_DRAM_LO].base is 0x80000000 (2 Gb) and it has a 1Gb size, so it will fall in the conditions to put the FDT under a 3Gb address, which happens to be exactly at the end of DRAM_LO. If the base address of the Lo area started later than 3Gb this function would be unusable by the board. Changing any assumptions inside riscv_compute_fdt_addr() can also break it by accident as well. Let's change riscv_compute_fdt_addr() semantics to be appropriate to the Icicle Kit board and for future boards that might have sparse RAM topologies to worry about: - relieve the condition that the dram_base + mem_size area is contiguous, since this is already not the case today; - receive an extra 'dram_size' size attribute that refers to a contiguous RAM block that the board wants the FDT to reside on. Together with 'mem_size' and 'fdt', which are now now being consumed by a MachineState pointer, we're able to make clear assumptions based on the DRAM block and total mem_size available to ensure that the FDT will be put in a valid RAM address. Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230201171212.1219375-4-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-02-01 20:12:12 +03:00
memmap[SPIKE_DRAM].size,
machine);
riscv_load_fdt(fdt_load_addr, machine->fdt);
/* load the reset vector */
riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
memmap[SPIKE_MROM].base,
memmap[SPIKE_MROM].size, kernel_entry,
fdt_load_addr);
/* initialize HTIF using symbols found in load_kernel */
htif_mm_init(system_memory, serial_hd(0), memmap[SPIKE_HTIF].base,
htif_custom_base);
}
static void spike_set_signature(Object *obj, const char *val, Error **errp)
{
sig_file = g_strdup(val);
}
static void spike_machine_instance_init(Object *obj)
{
}
static void spike_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "RISC-V Spike board";
mc->init = spike_board_init;
mc->max_cpus = SPIKE_CPUS_MAX;
mc->is_default = true;
mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
mc->numa_mem_supported = true;
/* platform instead of architectural choice */
mc->cpu_cluster_has_numa_boundary = true;
mc->default_ram_id = "riscv.spike.ram";
object_class_property_add_str(oc, "signature", NULL, spike_set_signature);
object_class_property_set_description(oc, "signature",
"File to write ACT test signature");
object_class_property_add_uint8_ptr(oc, "signature-granularity",
&line_size, OBJ_PROP_FLAG_WRITE);
object_class_property_set_description(oc, "signature-granularity",
"Size of each line in ACT signature "
"file");
}
static const TypeInfo spike_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("spike"),
.parent = TYPE_MACHINE,
.class_init = spike_machine_class_init,
.instance_init = spike_machine_instance_init,
.instance_size = sizeof(SpikeState),
};
static void spike_machine_init_register_types(void)
{
type_register_static(&spike_machine_typeinfo);
}
type_init(spike_machine_init_register_types)